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Abstract. In general, the solution of the diffusion-convection problem possesses boundary
layers. The approximate solution of the classic finite element method possesses spurious
oscillations in the presence of boundary layers. In this work a new stabilized and accurate
finite element formulation for convection-dominated problems is presented. The basis of the
new formulation is a new upwind function. The upwind function chosen for the new method
degenerates into the SUPG or CAU methods, depending on the approximate solution’s
regularity. The accuracy and stability of the new formulation for the linear and scalar
advection-diffusion equation is demonstrated in several numerical examples.
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1. INTRODUCTION

In general, the solution of diffusive-convective problems possesses boundary layers, that
are small subregions where derivatives of the solution are very large. In this case, the classic
finite element method or Galerkin method is inappropriate, because its numerical solution
presents spurious oscillations. This difficulty of the Galerkin method has been motivating,
during the last two decades, to obtain new methods that eliminate such spurious oscillations.
Today, these methods are known as stabilized finite element methods.

It is well known that the stability of the Galerkin method can be improved introducing a
small "artificial" diffusion. Hughes & Brooks (1982) proposed the SUPG method (Streamline
Upwind/Petrov-Galerkin), which consists of modifying the weighting functions to produce a
small artificial diffusion in the streamline direction. Later on, Hughes, Franca and Hulbert
(1989) developed the GLS method (Galerkin-Least-Squares) that adds a least squares term to
the Galerkin method.

The SUPG and GLS methods are obtained by adding stabilization terms to the Galerkin
formulation, and which do not introduce an excessive diffusion. When applied to the
convection-dominated problems, both methods produce similar numerical results. They also
present properties of good stability and accuracy, if the exact solution is smooth or the
gradient of the solution is in the streamline direction. For problems whose solution is not
smooth, spurious oscillations can remain in sub regions where boundary layers exist.

A great variety of stabilized finite element formulations have been developed to solve this
problem (Carmo & Alvarez, 2003, Hauke, 2002, Sampaio & Coutinho, 2001, Ilinca, Hétu &
Pelletier,2000, Papastavrou & Verfürth, 2000, Codina, 1998, Almeida & Silva, 1997 and
Hughes, 1995). Many of these attempts have used SUPG or GLS methods as a starting point.
In particular, Galeão & Carmo (1988) used the idea of "approximate upwind direction" to
develop the CAU method (Consistent Approximate Upwind), which preserves the term of
SUPG or GLS and adds a nonlinear term. The latter provides an extra control concerning the
function's derivative in the direction of the approximate gradient.

The CAU's approximate solution is much more stable than the solution obtained by
SUPG or GLS methods when the problem presents boundary layers. However, when the exact
solution of the problem is regular, the approximate solution of the CAU method presents an
undesirable crosswind diffusion. This led Carmo & Galeão (1991) to develop the CCAU
method (Controlled Consistent Approximate Upwind), which keeps the basic characteristics
of methods such as the CAU class ones, to build the approximate upwind direction and to
incorporate a parameter of feedback control. This parameter modifies the weighting functions
Petrov-Galerkin depending on the regularity of the approximate solution.

The CCAU method presents properties of good stability and accuracy, when it is applied
to convection-dominated problems, both for smooth solutions and not smooth solutions. In
spite of this, CCAU is not a method that presents a simple computational algorithm. Up to
date, it has not been generalized for the diffusion-convection problems where the magnitude
that describes the transport is a vector.

In this work we propose a new Petrov-Galerkin method, which belongs to the CAU's
class and introduces just the "right amount" of artificial diffusion. The method shows
excellent properties of stability and accuracy, both for problems with boundary layers and for
smooth problems. It's worth mentioning that, throughout the paper one can verify how simple
the method is, as well as how easy implementing its computational algorithm becomes.



2. THE SCALAR DIFFUSION-ADVECTION STATIONARY EQUATION

2.1 The boundary value problem
Let nR⊂Ω  be an open bounded domain, whose boundary Γ  is a piecewise smooth

boundary. The unit outward normal vector n̂  to Γ  is defined almost everywhere. We shall
consider the problem:

Ω=∇⋅+∇⋅∇− in)( fuK φφ , (1)
Γ= ongφ , (2)

where φ  denotes the unknown quantity of the problem, K  is the diffusivity tensor,
),,( 1 nuuu K=  is the transport advective field, f  is the volume source term and g  is the

boundary value prescribed for φ  on Γ .

2.2 Variational Formulation

Consider the set of all the kinematically admissible functions S  and the space of the
admissible variations V  defined as: { }Γ=Ω∈= on:)(1 gHS ψψ ,

{ }Γ=Ω∈= on0:)(1 ηη HV , where )(1 ΩH  is the standard Sobolev space. The variational
problem associated to the boundary value problem defined as Eq. (1) and Eq. (2), involves
finding S∈φ  that satisfies the variational equation:
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where ),,1()( niei K=Ωξ  is the local coordinates system that map eΩ  in the usual standard

elements eΩ̂ ; jeu ,  is the "j" component of eu ; and 1C  and 2C  are constants that depend of the
element type, eΩ  and k  ( 121 == CC  for bilinear quadrilaterals elements).

If the diffusive term in the advection diffusion equation is dominant, the Galerkin method
produces a good numerical approach of the exact solution. When the advective term is
dominant, the Galerkin method can present spurious oscillations. The term Eq. (8) supplies a
control of derivatives in the direction of the advective field. However, the GLS method
doesn't supply control of derivatives in another directions different from the direction of the
advective field. This allows the appearance of local spurious oscillations in the presence of
internal and/or external boundary layers, when 1>>eP . The non-linear term Eq. (13) uses the
vectorial field h

ev  to determine another upwind direction h
ee

h
e vuU −= , different from the

direction eu . Notice that from Eq. (18), h
eU  is in the direction of h

eφ∇ . This allows the CAU
method to possess greater stability than the GLS or SUPG methods in regions near to internal
and/or external boundary layers. It is known (Carmo & Galeão, 1991) that in the case of
problems with smooth exact solution, the CAU method presents loss of accuracy in its



solution, when compared to the SUPG or the GLS solutions. We will develop a new method
in the next section, which does not carry the CAU method's difficulties.

3. THE STREAMLINE AND APPROXIMATE UPWIND/PETROV-GALERKIN
METHOD

The fundamental idea that supports the development of SAUPG method (Carmo &
Alvarez, 2003) is the divergence in the performance of both SUPG and CAU methods. The
SUPG method lacks stability when applied to problems with boundary layers, while the CAU
method loses accuracy in the solution for smooth problems. We are interested in building a
new Petrov-Galerkin method that degenerates into SUPG and CAU methods, as extreme
cases. Then, the new perturbation for the weighting function should have the form:
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where h
ev  is the auxiliary vectorial field used in CAU formulation (Galeão & Carmo, 1988) to

determine the upwind approximate direction and it is given by Eq. (18). Therefore, the new
formulation involves finding khh S ,∈φ  that satisfies:
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The new method degenerate into the SUPG and CAU methods, as extreme cases, if the
function )( h

eeB φ  is searched as:
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where 1B , 2B  and γ  are functions that will depend on the regularity of the approximate
solution. Also notice that the function γ  and the weighting function should have the
following asymptotic behavior:
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In Eq. (19), the smaller the difference )( h
ee vu − , if compared to eu , the smaller the

contribution of the new term to the weighting function perturbation. In the limit, when that
difference tends to zero, the term of SUPG only contributes to the weighting function. For this
reason, we define the following dimensionless variable in order to evaluate the regularity of
the approximate solution,
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We chose 2B  as:
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where eh  and eτ  are respectively determined by Eq. (9) and Eq. (10). Now, consider the
following parameter eh  defined as:
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where )(adim eh  is a function that turns its argument dimensionless. Define the following
function,
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)(1 eq α  and  )(2 eq α  are functions that depends on the regularity of the approximate solution.
The function γ  determines the degree of diffusion of the new method, and in order to

find the dependency of γ  with eα , we define the following functions:
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where |)||(|adimRe h
eeu φ∇= . In (Carmo & Alvarez, 2003) the procedures is described to

obtain the dependence of the functions )(1 eq α , )(2 eq α  and )(3 eq α with the parameter eα  by
numerical experiments.
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Finally, we have been building up a Petrov-Galerkin class finite element method to solve
diffusive-convective transport problems. The new method consists of finding khh S ,∈φ
satisfying Eq. (20), with the new upwind function successively determined by Eq. (22), Eq.
(25), Eq. (28) and Eq. (29).



4. NUMERICAL RESULTS

We present in this section the numerical results obtained from several standard numerical
tests, which are divided into two types of problems: with internal and/or external boundary
layers (examples1 and 2) and with smooth solutions (example 3). In all cases, the medium is
assumed homogeneous and isotropic with 1010−=K . The considered domain is a square of
unitary sides (0,1)×(0,1). Bilinear isoparametric quadrilaterals elements were used and three
iterations were accomplished for the CAU and SAUPG methods. A regular mesh (20×20) was
used for all problems.

Example 1: an inclined plane with a o45  slope

The source term 1),( =yxf  and homogeneous Dirichlet boundary conditions are
assumed. The advective field is )0,1(=u . The SAUPG method's good performance, when
compared to the GLS or CAU method's solutions is shown in Fig. 1.

0

0.95

0

0.95

(GLS)                                                                               (CAU)

0

0.95

(SAUPG)
Figure 1- An inclined plane with a o45  slope.



Example 2: advection skew to the mesh

In this problem we have 0),( =yxf  and the following boundary conditions:
0)0,( =xφ ,  1)1,( =xφ

0),1( =yφ ,   ]1,0[∈∀y

0),0( =yφ ,   ]6.0,0[∈∀y

6.0),0( −= yyφ ,   ]65.0,6.0[∈∀y

05.0)65.0(18),0( +−= yyφ ,   ]70.0,65.0[∈∀y

95.0)70.0(),0( +−= yyφ ,   ]75.0,70.0[∈∀y

1),0( =yφ ,   ]1,75.0[∈∀y .

and three differents advective fields skew to the mesh were considered. Observing Fig. 2, 3
and 4 we can verify that the SAUPG and the CAU solutions are in agreement.
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(GLS)                                                                              (CAU)
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Figure 2- Advection skew to the mesh: case )1,2( −=u .
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Figure 3- Advection skew to the mesh: case )1,1( −=u .

The numerical examples shown in Fig. 1, 2, 3 and Fig. 4 confirm the stability of the
proposed method, when applied to problems with boundary layers. Observing Fig. 1-4 we can
verify that the SAUPG stability is similar to that of the CAU method. In order to confirm the
accuracy of the proposed method, when applied to smooth problems, we shown the example
3.

Example 3: advection of a sine hill in a rotating flow field

The problems statement is shown in Fig. 5. For this classical test problem, the flow's
rotation is determined by the advective field ),( xyu −= . Along the external boundary 0=φ ,
and on the internal ‘boundary’ OA a sine hill function ]0,5.0[)2(),0( −∈∀= yysiny πφ  is
prescribed. For this problem, GLS and SAUPG methods yield to very good results as shown
in Fig. 6.
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Figure 4- Advection skew to the mesh: case )2,1( −=u .

Figure 5- Advection in a rotating flow field: problem statement.
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Figure 6- Advection in a rotating flow field.

4. CONCLUSIONS

The numerical results presented in the previous section allow us to conclude that we have
developed a new stabilized finite element formulation to solve scalar diffusion-convection
problems. The newly built Petrov-Galerkin method based on the CAU method is a non-linear
method, and its computational algorithm can be easily implemented. Also, the stability of the
method near of external and/or internal boundary layers is similar to that of the CAU method,
and its accuracy when applied to smooth solution is similar to that of the SUPG and GLS
methods. The new method can be easily combined with adaptive refinement techniques.
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