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Abstract. The Helmholtz equation is a linear mathematical model that describes time-
harmonic acoustic, elastic and electromagnetic waves. The finite element method is often used
to obtain numerical solutions of the Helmholtz problem. It is well known that the performance
of the Galerkin finite element method deteriorates for large values of the wave number k, due
to the highly oscillatory behavior of the exact solution. In this paper a finite element
formulation with discontinuous interpolations across interelements boundaries is presented
for Helmholtz problem. The proposed formulation introduces two parameters β  and λ  that
should be chosen appropriately. We chose both parameters by numerical experiments. The
accuracy and stability of the proposed formulation for the linear and bilinear shape functions
is demonstrated in several numerical examples in one and two-dimensions.

Keywords: Stabilized FEM, Discontinuous Galerkin, Helmholtz equation, discontinuous finite
element method



1. INTRODUCTION

The Helmholtz equation is the linear mathematical model that describes time-harmonic
acoustic, elastic and electromagnetic waves. The finite element method is often used to obtain
numerical solutions of the Helmholtz problem. The oscillatory behavior of the exact solution
and the quality of the approximate numerical solution depends on the wave number k. The
resolution of the mesh resn  should be adjusted to the wave number according to a "rule of the
thumb" khhresn π2== Λ , where Λ  is the wave-length and h is the element diameter of the mesh
(Harari and Hughes, 1991).

The rule of thumb controls the interpolation error. For low waves number the
approximate solution of the classic finite element method guarantee a reasonable result
(Bayliss et al., 1985). However, the performance of the Galerkin finite element method is
deteriorated when k is increased and the error of the finite element approximation grows with
the wave number even when the rule of thumb is observed. This is known as the pollution of
the finite element solution. The errors in H¹-norm are bounded only if the mesh resolution is
appropriately increased: 1<<kh  in the preasymptotic range (Ihlenburg and Babuška, 1995)
and 12 <<hk  in the asymptotic range of convergence (Douglas et al., 1993 and Harari et al.,
1992,). The pollution effect can only be avoided after a drastic refinement of the mesh. This
obviously impedes the numerical analyses of the Helmholtz equation by the finite element
method in mid and high frequency.

A great variety of stabilized finite element formulations have been developed to alleviate
the pollution effect (Babuška et al., 1995, Thompson et al., 1995, Ihlenburg et al., 1997 and
Franca et al., 1997). The relative merits of some of these formulations are presented in Farhat
et al. (2003).

In this work we apply the discontinuous finite element formulation developed in Do
Carmo et al. (2002) to the Helmholtz equation. The formulation shows excellent properties of
stability and accuracy, both for one-dimensional or two-dimensional problems.

2. THE HELMHOLTZ EQUATION

2.1 The boundary value problem
Let nR⊂Ω  be an open bounded domain, whose boundary Γ  is a piecewise smooth

boundary. The unit outward normal vector n̂  to Γ  is defined almost everywhere. We shall
consider the problem:

Ω=−∇⋅∇− in)( 2 fuku , (1)

ggu Γ= on , (2)

qqnu Γ=⋅∇ onˆ , (3)

rrunu Γ=+⋅∇ onˆ α , (4)

where u  denotes the unknown field, k  is the wave number, f  is the volume source term and
g , q  and r  are the boundary conditions prescribed for the problem.

2.2 Variational Formulation

Consider the set of all functions S  and the space of the admissible variations V  defined
as: { }gguHuS Γ=Ω∈= on:)(1 , { }gvHvV Γ=Ω∈= on0:)(1 , where )(1 ΩH  is the



standard Hilbert space. The variational formulation of the boundary value problem defined as
Eq. (1) to Eq. (4), involves finding Su ∈  that satisfies the variational equation:
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2.3 Finite element formulations
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Galerkin + Least-Squares method (GLS)
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In one dimension with appropriate choice of τ this GLS finite element approximation
coincide with the nodal interpolant. In two dimensions the parameter τ  depends on the
direction of the wave, which in most of the cases of interest is unknown. For this reason, the
solution of GLS presents a strong dependence on the direction of the wave and its error can be
of the order of Galerkin’s error.

3. A DISCONTINUOUS FINITE ELEMENT METHOD

3.1 Differential form of the boundary value problem by subdomain
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Helmholtz problem by subdomains as follows: find ),( hMHu Ω∈  satisfying
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3.2 Equivalent variational formulation

We introduce a family of variational formulations to the subdomain differential form (12-
15) as: find DGSu ∈  that satisfies:
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where, 'eeβ  and 'eeλ are functions that will be determined latter. For more details on this kind
of variational formulation see Do Carmo et al. (2002). Also, in Do Carmo et al. (2002) we
find results about existence and uniqueness, and the continuity of the solution with respect to
the data, for elliptic problems, where 'eeβ  and 'eeλ should be chosen as 0' >≥ o

ee ββ  and
11 ' ≤≤− eeλ . These restrictions for 'eeβ  and 'eeλ are not valid in the case of Helmholtz

equation, which is not elliptic for high values of k.

3.3 The finite element approximation

Introducing the discontinuous finite element spaces of degree 1≥l
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The above formulation is in fact a family of methods parameterized by the pair β and λ.
For strongly elliptic problems, β and λ are determined by a priori error estimates, but for the
Helmholtz equation this estimate is not valid anymore. Thus, we will determine optimal β and
λ through numerical experiments, and we assumed that β and λ are functions of two
dimensionless parameters: kh and kL.

4. NUMERICAL RESULTS

In this section, we first determined optimal values for β and λ through numerical
experiments carried out on a one-dimensional model problem. Then, using β and λ previously
determined, we solved other problems to illustrate the performance of the proposed



discontinuous finite element method. In all cases, we used linear and bilinear shape functions
and exact 2 or 2x2 Gaussian integration.

4.1 Numerical determination of the β and λ functions

For each choice of β and λ we have a discontinuous finite element solution ),( λβh
DGu .

We look for β and λ such that the relative errors in the L²-norm and H¹-seminorm are
minimized in a set of numerical experiments for the Helmholtz problem in one-dimension and
uniform meshes. These optimal values, which are not restricted to a single pair, will be used
in more general situations, that is, two-dimensional case and uniform meshes.

Let us consider the problem given by the equation (1) in one dimension with k²=constant,
f(x)=0 and Dirichlet boundary conditions: u(0)=1 and u(1)=cos(k). In this case, the exact
solution of the problem is uex(x)=cos(kx). The errors in the L²-norm and H¹-seminorm are
functional of β and λ given by
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and the corresponding relative error are
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In Figure 1 we show 
)(2),(

ΩLDGRE λβ  and 
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ΩHDGE λβ  as a function of β e λ

obtained with a uniform mesh of 40 elements. To assess the performance of the proposed
method we use for comparison the relative error in the L²-norm of the interpolant
(REI=0.0207) and of the continuous Galerkin finite element solution (RECG=0.125). For some
regions of the βλ plane, the accuracy of the discontinuous solution is quite similar to the
interpolant, which can be considered as target to any finite element method. It is important to
highlight that those regions encompass positive and/or negative values of the parameters.
Similar conclusion can be drawn from Figure 1 (b) that depicts H¹ semi-norm of the error. The
only point to be mention is that in this last case the regions of good performance are larger. In
Figure 2, we carry out the same study for a higher wave number, k²=4000, for which 160
elements were used. Observing Figures 1 and 2 we note that as the wave number k increases
the region of optimal choice, in the βλ plane, in which the error of the DG approximation is
close to the error of the interpolant, becomes narrower.

Restricting our search for optimal values to the region where β and λ are positive, the
numerical experiments indicate that βres and λres (the optimal values for those functions)
depend on two dimensionless parameters '1 eee hk=µ  and Lke=2µ , where
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The dependence of the optimal values on µ1 and µ2 is initially investigated by fixing the
former ( 628.051 ≈= πµ ) and plotting both βres and λres as functions of the second in Figure 3.



The curve presented in that figure is divided in three regions, which leads to the following
interpolation using Lagrange polynomials:
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where )( 22
2

2
µµξ µ −= ∆  and )(ξηi  are the usual Lagrange polynomial. We should highlight

that although 10202 =µ  was used as superior limit to calculate the coefficients, Figure 3
indicates that bigger values of µ2 should verify the same linear dependence. The coefficients
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β  are determined by least squares fitting and presented in Table 1. To find the
dependence of β and λ with 1µ , we define the following functions:
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where )( 1µPol  and )( 1µβf  are fitted by Lagrange’s polynomial through numerical
experiments. The numerical tests showed that the degree of polynomial larger than 2 for
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Table 1: Coefficients determined by least squares fitting.

i
1
λC 2

λC 3
λC 1

βC 2
βC 3

βC
PC βfC

1 0.88562 10.71380 24.43120 10.60911 11.68891 24.93120 1.04353 9.28141
2 10.86634 20.85016 25.72949 12.03286 21.30053 26.22949 0.97743 2.22206
3 - 21.75043 - - 22.27510 - 1.00022 2.01088
4 - 22.92634 - - 23.42139 - - 7.28845
5 - 23.83735 - - 24.32916 - - 0.51209
6 - 24.11425 - - 24.60180 - - -
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Figure 1. Relative error REDG in the L²-norm (case-a) and H¹-seminorm (case-b) for k²=400:
ne=40,-300≤β,λ≤300,∆β=10,∆λ=10.
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Figure 2. Relative error REDG in the L²-norm (case-a) and H¹-seminorm (case-b) for k²=4000:
ne=160,-300≤β,λ≤300,∆β=10,∆λ=10.

In Figures 4 and 5 we plot the relative errors of CG and DG approximations as a function
of dimensionless parameter 22hkB =  for three values of k. In both figures the curves EI
correspond to the error of the nodal interpolant. In each case, the β and λ functions are
determined by (20-26). In Figure 4 we can observe clearly the pollution effect when k is
increased. In this case, the critical number of degrees of freedom (DOF) for the Galerkin finite
element error is predicted by 24

3k
DOFN =  whereas that for the nodal interpolant by

π
k

DOFN = . Also, the Galerkin FE error is not controlled by the magnitude of kh. Observing



Figure 5 we can verify that the error behavior of the nodal interpolant and discontinuous FE
solution are very close for the different k. It is well known that the nodal interpolation error
satisfies the following estimates if )(2 Ω∈Hu :
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where C1 and C2 are constants not depending on k and h. It was numerically determined that
starting from certain value B=Bo the following expressions are verified for the nodal
interpolation error and the discontinuous FE error:
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with the parameters introduced above shown in Table 2.
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Figure 3. Dependence of βres and λres with µ2.

Table 2: Convergence rates determined by numerical experiments.

k² C1I A1I C2I A2I C1DG A1DG C2DG A2DG
400 0.0831 0.99966 0.2937 0.49981 0.0831 0.99976 0.2937 0.49981
4000 0.0828 0.99886 0.2893 0.49932 0.0875 1.01032 0.2896 0.49948
40000 0.0827 0.99777 0.2867 0.49865 0.0830 0.99877 0.2867 0.49868

In Figs. 6, 7 and 8 show some solutions in one-dimension for k²=400, 4000 and 40000.
The exact solution is also plotted. All results up to now are obtained using β and λ given by
(20-26). As expected, we observe spurious dispersion of the continuous method, this
degradation of the solution quality is a manifestation of the pollution effect. It is important to
reinforce that the proposed method has achieved for coarser meshes better results, being able
to capture the correct phase and amplitude.
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Figure 5. Relative errors REDG and REI for k²=400, 4000, 40000: (a) the L²-norm and (b) H¹-
seminorm.
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Figure 6. Solution of homogeneous problem in one dimension k²=400
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4.2 Dispersion analysis

Now we face a more challenging situation concerning the propagation of a plane wave in
an arbitrary direction not necessarily aligned to the mesh. It is important to mention that the
propagation direction is usually not known a priori. This more general situation is decisive to
examine the dispersion properties of the proposed discontinuous finite element formulation.
We consider the problem given by equation (1) in a square domain of unity sides,
k²=constant, f(x,y)=0 and the following Dirichlet boundary conditions: u(0,y)=cos(k(ysinθ)),
u(1,y)=cos(k(cosθ+ysinθ)), u(x,0)=cos(k(xcosθ)), and u(x,1)=cos(k(xcosθ+sinθ)). The exact
solution of this problem is the real part of a plane wave propagating in the θ-direction in two
dimension: u(x,y)=cos(k(xcosθ+ysinθ)). In the experiments this propagation direction varies
in the range 20 πθ ≤≤ .

Figures 9 and 10 presents the relative errors of discontinuous FE solution (Edg) compared
to the nodal interpolant (Ei), Galerkin FEM (Ecg) and GLS (Egls) solutions in the L²-norm as
a function of θ-direction for two uniform meshes and different values of the wave number k.
Ei, Egls and Ecg corresponds to the relative errors of the nodal interpolant, GLS and the
Galerkin FE solutions respectively. In case (a) the mesh is coarse (kh>0.62), case (b) the mesh
verifies the rule of thumb kh=π/5≈0.62. In choosing β and λ we adopt two strategies. First βres
and λres values are determined by (20-26) (Edg1). Second β and λ are chosen such that
β1=105>>βres and λ1=108685>>λres (Edg2). We observe that whenever the mesh verifies the
rule of thumb (case b) starting from β=βres and λ=λres, we can chose β>>βres and λ>>λres



keeping a relationship between them, such what equivalent results are obtained. It is to say, β
and λ belong to the region where the functional of the errors in L²-norm and H1-seminorm
attains its minimum. For the coarse mesh (case a) the previous statement is not valid as show
the Figures 9(a) and 10(a). In this case, it is necessary what β<βres and λ<λres to get the
relative error of the discontinuous FE solution close the relative error of the nodal interpolant.

In Figure 11 we plot the nodal interpolant, discontinuous FE and Galerkin FE solutions in
sections x=0.505 (case a) and y=0.505 (case b), respectively along x and y directions. The
results were obtained with (101x101) mesh for θ=((3π)/8), that is the θ-direction, which
corresponds to the greatest "phase" error. The β and λ functions are, once again, chosen by
using (20-26). Those results confirm the good performance of the proposed method.
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                        (a) kh=1, coarse mesh                                     (b) kh=0.62, resolvable mesh

Figure 9. Relative errors of the DFE solution (REDG) compared to the nodal interpolant (REI)
in the L²-norm and H¹-norm as a function of θ-direction: k²=400.
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                        (a) kh=0.79, coarse mesh                                     (b) kh=0.62, resolvable mesh
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                        (a) kh=0.79, coarse mesh                                     (b) kh=0.62, resolvable mesh

Figure 10. Relative errors of the DFE solution (REDG) compared to the nodal interpolant (REI)
in the L²-norm and H¹-norm as a function of θ-direction: k²=4000.
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Figure 11. Solution of homogeneous problem in two dimension for sections x=0.505 (case a)
and y=0.505 (case b), k²=4000, θ=(3π/8).

5. CONCLUSIONS

We presented a discontinuous finite element method for the Helmholtz equation, in which
the standard finite element space lhV ,  presents discontinuity of the shape functions across
interelement boundaries lh

DGV , . 0C  continuity is enforced in a weak sense depending on two
free parameter β and λ. Optimal values of these parameters are determined numerically by
solving a one-dimension homogeneous Helmholtz equation with constant coefficient and



Dirichlet boundary conditions. The numerical results presented in the previous section
indicate a good accuracy of the approximate solution of the discontinuous finite element
method in one dimension, in which the error is controlled by the magnitude of kh. The
accurate of the approximate solution is maintained when the mesh is coarse. For the two-
dimensional case, numerical studies of dispersion properties demonstrate the good
performance of the discontinuous finite element method. The numerical results presented
indicate a good potential of the proposed formulation to solve the Helmholtz problem in the
mid and high frequency regime.
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