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Abstract. A discontinuous finite element formulation is presented for Helmholtz equation. 
Continuity is relaxed locally in the interior of the element instead of across the element edges. 
Discontinuities are introduced locally, inside each element, through C1 shape functions 
associated with interior nodes. The interior shape functions can be viewed as discontinuous 
bubbles and the corresponding degrees of freedom can be eliminated at element level by 
static condensation yielding a global matrix topologically equivalent to those of classical C0 
finite element approximations. A crucial point of the discontinuous formulation relies on the 
choice of the stabilization parameters related to the weak enforcement of continuity inside 
each element. Explicit values of these stabilization parameters minimizing the pollution effect 
are presented for uniform meshes. The accuracy and stability of the proposed formulation  for 
bilinear shape functions are demonstrated in several numerical examples.  
 
Keywords: Discontinuous bubbles, Helhmoltz equation, Stabilization, Discontinuous finite 
element method  
 
1. INTRODUCTION 
 
 Time-harmonic acoustic, elastic and electromagnetic waves are governed by the 
Helmholtz equation. Numerical approximation of this equation is particularly challenging as 
reported in a vast literature. The oscillatory behavior of the exact solution and the quality of 
the numerical approximation depend on the wave number k. To approximate Helmholtz 
equation with acceptable accuracy the resolution of the mesh should be adjusted to the wave 
number according to the rule of thumb (Harari et al, 1991), which prescribes a minimum 
number of elements per wavelength. It is well known that, despite of the adoption of this rule, 
the performance of the Galerkin finite element method deteriorates as k increases. This 
misbehavior, known as pollution of the finite element solution (Ihlenburg et al, 1995; 
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Babuška et al, 1995), can only be avoided after a drastic refinement of the mesh, which 
normally entails significant barriers for the numerical analysis of Helmholtz equation at mid 
and high frequencies. 
 A great effort has been devoted to alleviate the pollution effect (see references). In 
particular, the GLS method (Galerkin Least-Squares) is able to completely eliminate the phase 
lag in one dimension problems (Harari et al, 1992). Nevertheless, in two-dimensions this 
method is not pollution-free for any direction of a plane wave (Thompson et al, 1995). In fact, 
in two space dimensions, there is no finite element method with piecewise linear shape 
functions free of pollution effect. Stencils with minimal pollution error are constructed in 
(Babuška et al, 1995 ) through the Quasi Stabilized Finite Element Method (QSFEM). The 
QSFEM is really a finite difference rather than a finite element method. The modifications of 
the discrete operator are made on the algebraic level and no variational formulation is 
associated with the QSFEM presented in (Babuška et al, 1995 ). 
 Recently, we introduced a discontinuous finite element formulation for Helmholtz 
equation depending on two stabilization parameters (Alvarez et al, submitted). Several 
numerical experiments show the good performance and potential of this formulation to reduce 
the pollution effect. Completely discontinuous formulation, as presented in (Alvarez et al, 
submitted) , may lead to high computational cost since the degrees of freedom associated with 
the discontinuity can not be eliminated. Moreover, the two parameters of this formulation (β 
and λ) are determined through numerical experiments. 
 The new method contained in the present work is also based on a discontinuous finite 
element formulation (Dutra do Carmo et al, 2002; Alvarez et al, submitted), but now the 
continuity is relaxed only on the interiors of elements instead of across the element edges as it 
was admitted in our previous formulation (Loula et al, submitted). Continuity on the 
interelement boundaries is enforced considering C0 Lagrangian interpolation globally as 
usual. Discontinuities are introduced locally, inside each element, through C1 shape functions 
associated with interior nodes with zero value on the element boundary. Thus, the interior 
shape functions can be viewed as discontinuous bubbles and the corresponding degrees of 
freedom can be eliminated at element level by static condensation yielding a global matrix 
topologically equivalent to those of classical C0 finite element approximations. Again, a 
crucial point of the discontinuous formulation relies on the choice of the stabilization 
parameters (β and λ) related to the weak enforcement of continuity inside each element. For 
uniform meshes we present a methodology to determine explicitly the stabilization parameters 
minimizing the pollution effect. In particular, the QSFEM stencil emanates consistently from 
the proposed variational formulation by an appropriate choice of these parameters. 
  
2. THE HELMHOLTZ EQUATION 
 
2.1 The boundary value problem 
 
 Let nR⊂Ω  be an open bounded domain with a Lipschitz continuous smooth piecewise 
boundary Γ . Let gΓ , qΓ , rΓ  be three disjoint subsets of Γ where boundary conditions are 
specified, such that Γ=Γ∪Γ∪Γ rqg . We shall consider the interior Helmholtz problem: 
 
 Ω=−∇⋅∇− in)( 2 fuku , (1) 
 ggu Γ= on , (2) 
 qqnu Γ=⋅∇ onˆ , (3) 
 rrunu Γ=+⋅∇ onˆ α , (4) 
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where u  denotes a scalar field that describes time-harmonic acoustic, elastic or 
electromagnetic steady state waves. The coefficient Rk ∈  is the wave number, )(2 Ω∈ Lf  is 

the source term, )()( 02
1

gg CHg Γ∩Γ∈ , )(2
qLq Γ∈  and )(2

rLr Γ∈  are the prescribed 

boundary conditions. The coefficient )( rL Γ∈ ∞α  is positive on rΓ  and n̂  denotes the 
outward normal unit vector defined almost everywhere on Γ . 
 
2.2 Variational boundary-value problem 
 
 The variational formulation of the boundary value problem defined as Eq. (1) to Eq. (4), 
involves finding Su ∈  that satisfies the variational equation: 
 
 Vvdvfdvrudqvduvkvu

q r

∈∀Ω=Γ−+Γ−Ω−∇⋅∇ ∫∫ ∫∫
ΩΓ ΓΩ

)(])[( 2 α , (5) 

where { }gguHuS Γ=Ω∈= on:)(1  denotes the set of admissible solution and 

{ }gvHvV Γ=Ω∈= on0:)(1  the space of the admissible test functions. 
 
2.3 The continuous Galerkin and GLS finite element formulations 
 
 Consider },,{ 1 NE

hM ΩΩ= K  a finite element partition of Ω , such that: 

UU
NE

E
EE

NE

E
E

11

)(
==

Γ∪Ω=Ω=Γ∪Ω=Ω ,  ≠   0/=Ω∩Ω /  if/ EEEE and EΓ  denotes the 

boundary of EΩ . The continuous finite element set and space of S  and V  are defined as: 
}on      , )(:)({ ,,1,

, g
hah

E
lah

E
ahl

ah guPuHuS Γ=Ω∈Ω∈=  and 

}on    0  , )(:)({ ,,1,
, g

ah
E

lah
E

ahl
ah vPvHvV Γ=Ω∈Ω∈= , where )( E

lP Ω  is the space of 

polynomials of degree less than or equal to l , hg  denotes the interpolation of g  and ah
Eu ,  

denotes the restriction of ahu ,  to EΩ . 
 Problem Eq. (5) have been approximated by the following finite element methods: find 

l
ah

h Su ,∈  that satisfies l
ah

h Vv ,∈∀ , 
 
    Galerkin method 
 )(),( h

G
hh

G vFvuA = , (6) 

 ∑ ∫ ∫
= Ω Γ

Γ+Ω−∇⋅∇=
NE

E

hhh
E

h
E

h
E

h
EG

E r

dvudvukvuA
1

2 ,][ α  (7) 

 ∫ ∫∑ ∫
Γ Γ= Ω

Γ+Γ+Ω=
q rE

drvdqvdvfF hh
NE

E

h
EG

1

, 

 Galerkin Least-Squares method (GLS) 
 )()(),(),( h

LS
h

G
hh

LS
hh

G vFvFvuAvuA +=+ , (8) 

 ∑ ∫∑ ∫
= Ω= Ω

Ω=Ω−∇⋅−∇=
NE

E

h
EELS

NE

E

h
E

h
E

h
ELS

EE

dpfFdpukuA
11

2 ,)])([ , (9) 

 [ ]h
E

h
EE

h
E vkvp 2)( −∇⋅∇−= τ   h

E M∈Ω∀ , (10) 
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τ khsinkh

hkkE ==⎥
⎦

⎤
⎢
⎣

⎡
++

−−−
−= 2122

21

2121
2 ,cos,

)cos2)(cos2(
coscos2coscos4611
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 In one-dimension space, the GLS method eliminate the phase error (Harari et al, 1992). In 
two-dimensions, this method is not pollution-free for any θ directions of a plane wave 
(Thompson et al, 1995). 
 
3. THE DISCONTINUOUS FINITE ELEMENT METHOD AT ELEMENT LEVEL 
 

Consider for each element h
E M∈Ω  a subgrid U

ne

e

e
E

e
EE

1=

Γ∪Ω=Ω , where e
EΓ  denotes the 

boundary of e
EΩ . Introducing in each macroelement EΩ  the discontinuous finite element 

subspaces, {  and )(:)( ,
,

2,
,

e
E

lbh
eEE

bhl
bh PvLvV Ω∈Ω∈= }0/=Γ∩Γ= E

e
E

bh
eEv on0,

, , the 
discontinuous finite element method at element level consists in finding 

l
bh

l
ah

bhahh SSuuu ,,
,, )( +∈+=  satisfying two equations: 

 
 )(),( ,,,, ah

G
ahbhah

DG vFvuuA =+       l
ah

ah Vv ,
, ∈∀ , (12) 

 )(),( ,,,, bh
G

bhbhah
DG vFvuuA =+       l

bh
bh Vv ,

, ∈∀ , (13) 

where ),( hh
DG vuA  and )( h

G vF  are given by 
 

 ∑ ∫
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Γ+=
NE

E
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E
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EE
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DG
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1

),(),( α , (14) 
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E
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EE
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)()( ,  (15) 

 

 +Ω−∇⋅∇= ∑ ∫
= Ω

ne

e

h
E

h
E

h
E

h
E

h
E

h
EE

e
E

dvukvuvuA
1

2 ][),(  

∑ ∑ ∫
=

∅≠Γ
> Γ

⎢
⎣

⎡
⋅∇−⋅∇−+−−+

ne

e

ne

ee

e
E

h
eE

e
E

h
eE

h
eE

h
eE

ee
Eh

eE
h

eE
h

eE
h

eE
ee

ee
E

ee
E

ee
E

nnvuuvvuu
h1 '

´
',,',,

'

',,',,
'

'

'
'

)ˆˆ)((
2

))(( λβ  

 Γ⎥⎦
⎤−⋅∇−⋅∇− dvvnunu h

eE
h

eE
e
E

h
eE

e
E

h
eE ))(ˆˆ(

2
1

',,
´

',, ,                     (16) 

∑ ∫
= Ω

Ω=
ne

e

h
eEeE

h
EE

e
E

dvfvF
1

,,)( ,              (17) 

 
h

eEu , denotes the restriction hu  to element e
EΩ , ´´, e

E
e
E

ee
E Γ∩Γ=Γ , e

En̂  is the outward normal 

unit vector to e
EΓ , },min{ ',,' eEeEee hhh = , where eEh ,  and ',eEh  are the subgrid mesh 

parameters. This formulation is consistent in the sense that the exact solution u  of problem 
Eq.(1-4) is also solution of Eq.(12-13). 
 The space l

bh
l

ah VV ,, +  can be understood as classical finite element space l
ahV ,  enriched 

with discontinuous bubble functions within each macroelement. Bubbles functions are 
typically higher-order polynomials defined on the interiors of each element, which vanish on 
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element boundaries. Note that, for this case, these bubble functions do not need to be higher-
order polynomials ( 1≥l ). The degrees of freedom associated with bubbles can be eliminated 
by the know ‘static condensation’. Moreover, the continuity in this formulation is relaxed on 
the interiors of elements (subgrid) depending on 'ee

Eβ  and 'ee
Eλ  parameters. Initially, these 

parameters were introduced in (Dutra do carmo et al, 2002; Alvarez et al, submitted) and its 
choice is crucial for the quality of the numerical solution. Here, 'ee

Eβ  and 'ee
Eλ  parameters will 

be determined in order to reduce the pollution effects of the numerical solution. 
 
3.1 Condensation of the Subgrid Degrees of Freedom 
 
 The finite element system Eq. (12) and Eq. (13) in matrix form is given by 
 
 aba FUBAU =+ )~(λ ,      bba FUDCU =+ )~,~( βλ                                              (18) 
 
where A , )~(λB , C  and )~,~( βλD  are global matrices, aF  and bF  are the global vectors of 
source term, aU  is the vector of global unknowns of the coarse mesh, bU  is the vector of 

subgrid unknowns, },1;,,1´,,{~,~ ´´ NEEneeeee
E

ee
E KK === βλβλ  are the two set of parameters 

related to the weak enforcement of continuity on the interface ´ee
EΓ  of the elements e

EΩ  and 
´e

EΩ  in each macroelement EΩ . For given λ~  and β~  the matrix )~,~( βλD  can be easily 
inverted for being block diagonal a direct consequence of choosing bhv ,  bubble-like functions. 
Eliminating the vector bU  in system Eq. (18) we obtain the condensed global system 
 
 ** FUA a = ,     CDBAA 1* )~,~()~( −−= βλλ ,    ba FDBFF 1* )~,~()~( −−= βλλ ,     (19) 
 
which is topologically equivalent to that corresponding to the classical 0C  Galerkin 
approximation in the macro mesh. In fact the subgrid degrees of freedom are eliminated at 
macroelement level, and the condensed global system is obtained by adding the corresponding 
macroelement contributions 
 
 EEEEE CDBAA 1* )~,~()~( −−= βλλ ,    EbEEEaE FDBFF ,

1
,

* )~,~()~( −−= βλλ .     (20) 
 
 In the next section we determined explicitly the sets of parameters λ~  and β~  by 
minimizing the phase lag for a uniform mesh. At that point it is important to mention that 
enriching the approximation space with the discontinuous bubbles has as a primary goal to 
provide stability to the discrete formulation. The great gain in accuracy of the proposed 
formulation compared to the standard 0C  Galerkin and Galerkin Least Squares methods, as 
illustrated in section 4, is only due to the additional stability of the discontinuous formulation 
which is capable to minimize pollution effects. In this aspect our approach differs from the 
residual free bubble formulation for Helmholtz equation presented in (Franca et al, 1997). 
 
3.2 Optimal Choice of the Stabilization Parameters 
 
 For simplicity we now consider only bilinear polynomial interpolations and uniform 
mesh with square macroelements of length h composed by a subgrid with four square 
elements of length 2

h . Thus we have 8 degrees of freedom per macroelements: 4 
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corresponding to ahu ,  and the other 4 corresponding to bhu ,  that will be condensed at the 
macroelement level. We observe that, for this particular mesh, λλ =´,ee

E , ββ =´,ee
E  and the 

local matrices are given explicitly by 
 

 ∑∑
==
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iiE EdDEcC βλ ,      (21) 

 
where iE  (i=0,1,2) are the following 4×4 matrices 
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210 EEIE        (22) 
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with  
9
)( 2kh

G =α ,  
43

2 Gα
γ −= ,  

6
12 −+

=
λβµ . 

 
 Solving the eigenproblem 
 

 wVXV = , with ∑
=

=
2

0i
ii ExX ,            (26) 

 
we obtain the eigenvalues 2101 2 xxxwx ++= ,  2032 xxww xx −== ,  2101 2 xxxwx +−= ,  and 
the matrix of the eigenvectors 
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⎡

−−
−−

−−
=

1111
1111
1111

1111

2
1M  with IMMMM TT == . 

 

Using the matrix equation EEEE
i

iiE CDBAEaA 1
2

0

** ),()( −

=

−== ∑ βλλ  in the diagonal form 

MCDBMMAMMAM EEE
T

E
T

E
T 1* ),()( −−= βλλ ,  

or equivalently, 4,3,2,1,/
*

=−= iwwwww iiiii dcbaa , we obtain the following algebraic 
system of three independent equations 
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relating the coefficients of the condensed matrix *
EA  and the stabilization parameters. 

    Now, using discrete Fourier transform in the homogeneous form of the global system 
corresponding to the present uniform mesh, the stencil of an interior node leads to 
 
 0~~ *

1
*
0

*
2 =++ waara             (30) 

 
 with )~cos()cos~cos(~ θθ hsinkhkr = , )~cos()cos~cos(~ θθ hsinkhkw +=  where θ is the direction 
of a plane wave, and k is the discrete wavelength. We should observe that the coefficients 

,2,1,0,* =iai  depend on k and h, and on the free parameters λ and β . Thus we have the 
freedom to choose λ and β  to minimize the phase lag. We then choose two directions 1θ  and 

2θ  such that the dispersion relation Eq. (30) is verified for kk =
~ , yielding 

 
 01
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with 
 
 )cos()coscos( 111 θθ khsinkhr = , )cos()coscos( 222 θθ khsinkhr = ,         (33) 
 )cos()coscos( 111 θθ khsinkhw += , )cos()coscos( 222 θθ khsinkhw += ,     (34) 
 
    Solving the algebraic system Eq. (27-29, 31-32) of five independent equations we obtain 
the following expressions for the stabilization parameters: 
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and for the coefficients of the condensed matrix *

EA : 
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 Due to the symmetry of the uniform mesh 1θ  and 2θ  should be chosen such that 

),0(, 421
πθθ ∈  with 21 θθ ≠  and 421

πθθ ≠−  to avoid an indefinite system for λ and β . We 
should note that the approximate solution is pollution-free only if the exact solution is a plane 
wave in direction 1θ  or 2θ . For any other direction different from 1θ  or 2θ , when the wave 
number k is increased pollution effects appear, as will be shown in the numerical tests. 
 From equations Eq. (31) and Eq. (32) we observe that choosing 161

πθ =  and 16
3

2
πθ = , the 

condensed element matrix of the present discontinuous finite element formulation generates 
an interior stencil identical to that of the Quasi Stabilized Finite Element Method (QSFEM) 
with minimal pollution error compared to any nine point stencil (or any 0C  four node 
element) as presented in (Babuška et al, 1995). Figure 1 plots λ and β  parameters as a 
function of kh obtained with 161

πθ =  and 16
3

2
πθ = . 

 The stabilization parameters ( λ and β ) and the coefficients of the condensed matrix ( *
EA ) 

can be expanded as a Taylor series. The coefficients of Taylor expansion about a point kh=0.5 
are present in Table 1.   
        The dispersion relation Eq. (30) leads to a phase lag kk ~

−  depending on kh and θ . In 

Fig. 2 we compare the exact and approximate dispersion relations corresponding to three 
finite element approximations: the classical Galerkin method (CG), the Galerkin Least-
Squares (GLS) with )( 8

πθτ = , as presented in (Thompson et al, 1995), and the present 
discontinuous bubble formulation (DGB), for kh=1. We observe no visual difference between 
the dispersion relation of DGB and the exact one (case b). 
 
4. NUMERICAL RESULTS 
 
 We present in this section three 2-D examples to illustrate the performance of the 
proposed discontinuous formulation applied to Helmholtz problem. In all examples bilinear 
shape functions and 2x2 Gaussian integration are adopted combined with the optimal choice 
of the stabilization parameters given by equations Eq. (35) and Eq. (36) with 161

πθ =  and 

16
3

2
πθ = . 
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 For the convergence study, we introduce relative errors of the continuous ahu ,  of the 
finite element approximation in L²-norm and H¹-seminorm: 
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 The additional accuracy provided by the contribution bhu ,  of the discontinuous bubbles to 
the finite element solution bhu ,  is only marginal and will not be considered in this study. 
 

Table 1. Coefficients of Taylor serires for λ , β  and *
EA  
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xOxx
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xf

n

n
o

o
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+−= ∑
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, where khx =  and 5.0=ox  
 

n 

λ  β  
0 0.8713704950767354 -0.4317471787080831 
1 -0.18213416553844297 0.10672708182473101 
2 -0.18597491289271417 0.10826792756269055 
3 -0.007842665723494235 0.0031191985941498857 
4 -0.004350288276611991 0.0016609079390352832 
5 -0.0005375125198270325 0.00011689601784681258 
6 -0.00026856767294702877 0.000054599623325657376 
7 -0.000034794064276866266 -0.000012440594417739703 
8 -0.00008085841000138316 0.000026012290447852138 
9 -1.341153620160184810-6 -5.275705461826873910-6 
 *

0a  *
1a  *

2a  
0 0.79164791402110091 -0.34094683985104524 -0.17262430010848387 
1 -0.16690365594732715 -0.030876505682349231 -0.024319440721215946 
2 -0.16753986179438707 -0.032591537819737892 -0.026299533042878798 
3 -0.0012576018400359545 -0.0034987524703067319 -0.0040922017882303319 
4 -0.00055719318502756021 -0.001956668301353881 -0.0023503030143170456 
5 0.000052969910859573463 -0.0002185649559977576 -0.00042291963429186286 
6 0.000092946317790511788 -0.0001528070357962874 -0.00010850751528468372 
7 -0.00012033624991993779 0.00011630243201915524 -0.00015977404954095609 
8 0.00029546206646246159 -0.00029660356997895931 0.00028222153383191534 
9 -0.00064861599266253221 0.00064873928601494324 -0.0006515159005454213 
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Figure 1 - λ and β  parameters as a function of kh obtained with 161

πθ =  and 16
3

2
πθ = . 
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(a)  kh=1                                                            (b) kh=1 

Figure 2 - Dispersion relations for kh=1, (a) Continuous Galerkin (CG) and Galerkin Least 
Squares (GLS), (b) Discontinuous Bubble Galerkin formulation (DGB). 

 
 The first example treated here consists of solving the homogenous helmholtz Eq. (1) over 
a unity square domain submitted to Dirichlet boundary conditions. For that case, the exact 
solution is given by a plane wave propagating in θ-direction: 

))cos(cos(),( θθ ysinxkyxu += . A study of the accuracy of approximate solutions is carried 
out for k=100, using an uniform finite element mesh (160 x 160) and varying the propagation 
direction by choosing the appropriate values for the boundary conditions. This analysis is 
presented in Fig. 3 where the relative errors of the present discontinuous finite element 
formulation (DGB) in L²-norm  and H¹-seminorm are compared to the corresponding errors of 
the continuous interpolant (CI), the Quasi-Stabilized Finite Element Method (QS) and the 
Galerkin Least Squares (GLS) solutions for kh=0.625. Since we have addopted the optimal 
values of the stabilization parameters, DGB and QS approximations are identical in this case 
and close to the continuous interpolant while the GLS solution presents large relative erros. 
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 Figure 4 shows the nodal interpolant, Discontinuous Bubble and Galerkin Least Squares 
finite element solutions in sections x=0.5 along the y direction obtained with the same mesh 
for θ=(π/4), that is the θ-direction which corresponds to the largest "phase" error for 
Discontinuous Bubble solution. These results show clearly large pollution effect on the GLS 
solution and confirm the good performance of the DGB formulation with no significant 
difference when compared to the continuous interpolant. 
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Figure 3 - Relative error of the discontinuous Galerkin solution (DGB) compared to the 
continuous interpolant (CI), Galerkin Least Squares (GLS) and Quasi Stabilized Finite 

Element Method (QS) in the L²-norm and H¹-seminorm as a function of θ-direction for k=100 
with a 160x160 mesh. 

 
 The next example is similar to previous example, but now the exact solution is given by a 
superposition of n monoenergetic plane waves propagating in n different θ-directions: 

∑
=

+=
n

i
ii ysinxkyxu

1
))cos(cos(),( θθ .  Firstly, three plane waves propagating in the directions 

43821   ,  ,0 ππ θθθ === . The relative errors in L²-norm, H¹-seminorm and H¹-norm are present 
in Table 2. Figure 5 shows the nodal interpolant, Discontinuous Bubble and Galerkin Least 
Squares finite element solutions in sections x=0.5 along the y direction . Figure 6 shows the 
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same FEM solutions in section y=0.5 along the x direction. Again, the results show the good 
performance of the DGB formulation and how this formulation reduces the phase error over 
all wave vector orientations θ . 
 

Table 2. Realative errors of FEM: Example 2, three plane waves 
Relative Errors of finite element methods  

CI DGB GLS Galerkin 
L²-norm 3.22E-02 3.23E-02 5.40E-01 1.71E+00 

H¹-seminorm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 
H¹-norm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 

 
 Secondly, six plane waves propagating in the directions 

465520
3

41032021   ,  ,  ,  ,  ,0 πππππ θθθθθθ ====== . Figures 7 and 8 show the nodal 
interpolant, Discontinuous Bubble and Galerkin Least Squares finite element solutions in 
sections x=0.5  and y=0.5  respectively. Very similar conclusions to the previous example can 
be drawn. We should observe that, in these two examples the directions of plane waves 
propagations are always different to 161

πθ =  and 16
3

2
πθ = , which are the optimal choice in Eq. 

(35-36) for the stabilization parameters.  
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Figure 4 - DGB and GLS solutions of homogeneous problem in two dimension at sections 
x=0.5, k=100, θ=(π/4). 
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Figure 5 - DGB and GLS solutions of homogeneous problem in two dimension at sections 

x=0.5, k=100, three plane waves. 
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Figure 6 - DGB and GLS solutions of homogeneous problem in two dimension at sections 
y=0.5, k=100, three plane waves. 
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 Figure 7 - DGB and GLS solutions of homogeneous problem in two dimension at sections 
x=0.5, k=100, six plane waves. 
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Figure 8 - DGB and GLS solutions of homogeneous problem in two dimension at sections 

y=0.5, k=100, six plane waves. 
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4. CONCLUSIONS 
 
 We present a new consistent discontinuous finite element formulation for the Helmholtz 
problem. Consistency derives from the fact that the exact continuous solution satisfies the 
discrete equation. The continuity is only relaxed on nodes placed on the interior of the 
elements instead across the element edges as it was admitted initially. The interior degrees of 
freedom are associated to discontinuous bubble functions, which are not necessarily higher-
order polynomials, once those functions are to be zero on the element edges. From the 
computational standpoint, this represents a significant reduction of costs as the interior 
degrees of freedom might be eliminate using standard condensation techniques. 
 Moreover, discontinuous formulation proposed by the authors make use of two design 
parameters, which are selected to enhance accuracy and stability. In the present method, 
departing from the stencil obtained with the internal degrees condensation, we build a strategy 
for choosing those parameters aiming at matching the exact wave number in two different 
directions. This is conducted analytically for uniform meshes. The stencil of the Quasi 
Stabilized Finite Element Method is retrieved for the optimal choice of the stabilization 
parameters. Nevertheless, it is important to remark that in our case, the final problem is 
derived from a consistent variational formulation, which allows the enforcement of generic 
boundary conditions and the use of non structured meshes as well. In this last case, the 
analytical way of obtaining the parameters would be no longer available. 
 A number of numerical simulations involving acoustic problems is presented in order to 
assess the good performance of the proposed formulation. We understand that those results 
not only confirm the improvement on the approximations involving the Helmholtz equation 
but also estimulates the development of formulations containing the discontinuous bubbles for 
different applications. 
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