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Abstract. 4 discontinuous finite element formulation is presented for Helmholtz equation.
Continuity is relaxed locally in the interior of the element instead of across the element edges.
Discontinuities are introduced locally, inside each element, through C' shape functions
associated with interior nodes. The interior shape functions can be viewed as discontinuous
bubbles and the corresponding degrees of freedom can be eliminated at element level by
static condensation yielding a global matrix topologically equivalent to those of classical C°
finite element approximations. A crucial point of the discontinuous formulation relies on the
choice of the stabilization parameters related to the weak enforcement of continuity inside
each element. Explicit values of these stabilization parameters minimizing the pollution effect
are presented for uniform meshes. The accuracy and stability of the proposed formulation for
bilinear shape functions are demonstrated in several numerical examples.
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1. INTRODUCTION

Time-harmonic acoustic, elastic and electromagnetic waves are governed by the
Helmholtz equation. Numerical approximation of this equation is particularly challenging as
reported in a vast literature. The oscillatory behavior of the exact solution and the quality of
the numerical approximation depend on the wave number k. To approximate Helmholtz
equation with acceptable accuracy the resolution of the mesh should be adjusted to the wave
number according to the rule of thumb (Harari et al, 1991), which prescribes a minimum
number of elements per wavelength. It is well known that, despite of the adoption of this rule,
the performance of the Galerkin finite element method deteriorates as k increases. This
misbehavior, known as pollution of the finite element solution (Ihlenburg et al, 1995;
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Babuska et al, 1995), can only be avoided after a drastic refinement of the mesh, which
normally entails significant barriers for the numerical analysis of Helmholtz equation at mid
and high frequencies.

A great effort has been devoted to alleviate the pollution effect (see references). In
particular, the GLS method (Galerkin Least-Squares) is able to completely eliminate the phase
lag in one dimension problems (Harari et al, 1992). Nevertheless, in two-dimensions this
method is not pollution-free for any direction of a plane wave (Thompson et al, 1995). In fact,
in two space dimensions, there is no finite element method with piecewise linear shape
functions free of pollution effect. Stencils with minimal pollution error are constructed in
(Babuska et al, 1995 ) through the Quasi Stabilized Finite Element Method (QSFEM). The
QSFEM is really a finite difference rather than a finite element method. The modifications of
the discrete operator are made on the algebraic level and no variational formulation is
associated with the QSFEM presented in (Babuska et al, 1995 ).

Recently, we introduced a discontinuous finite element formulation for Helmholtz
equation depending on two stabilization parameters (Alvarez et al, submitted). Several
numerical experiments show the good performance and potential of this formulation to reduce
the pollution effect. Completely discontinuous formulation, as presented in (Alvarez et al,
submitted) , may lead to high computational cost since the degrees of freedom associated with
the discontinuity can not be eliminated. Moreover, the two parameters of this formulation (3
and A) are determined through numerical experiments.

The new method contained in the present work is also based on a discontinuous finite
element formulation (Dutra do Carmo et al, 2002; Alvarez et al, submitted), but now the
continuity is relaxed only on the interiors of elements instead of across the element edges as it
was admitted in our previous formulation (Loula et al, submitted). Continuity on the
interelement boundaries is enforced considering C° Lagrangian interpolation globally as
usual. Discontinuities are introduced locally, inside each element, through C' shape functions
associated with interior nodes with zero value on the element boundary. Thus, the interior
shape functions can be viewed as discontinuous bubbles and the corresponding degrees of
freedom can be eliminated at element level by static condensation yielding a global matrix
topologically equivalent to those of classical C° finite element approximations. Again, a
crucial point of the discontinuous formulation relies on the choice of the stabilization
parameters ( and A) related to the weak enforcement of continuity inside each element. For
uniform meshes we present a methodology to determine explicitly the stabilization parameters
minimizing the pollution effect. In particular, the QSFEM stencil emanates consistently from
the proposed variational formulation by an appropriate choice of these parameters.

2. THE HELMHOLTZ EQUATION

2.1 The boundary value problem

Let Q c R" be an open bounded domain with a Lipschitz continuous smooth piecewise
boundary I'. Let I',, I',, I', be three disjoint subsets of I" where boundary conditions are

specified, such that I', UT, U, =I". We shall consider the interior Helmholtz problem:

-V-(Vu)-k’u=f inQ, (1)
u=g onl,, 2)
Vu-n=q onl,, 3)

Vu-n+ou=r onl,, “)
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where u denotes a scalar field that describes time-harmonic acoustic, elastic or
electromagnetic steady state waves. The coefficient k € R is the wave number, f € L*(Q) is
the source term, g e H%(Fg YN C° (r,), qge L () and re L*(T,) are the prescribed

boundary conditions. The coefficient « € L*(I".) is positive on I'. and 7 denotes the
outward normal unit vector defined almost everywhere on .

2.2 Variational boundary-value problem

The variational formulation of the boundary value problem defined as Eq. (1) to Eq. (4),
involves finding u € S that satisfies the variational equation:

J[(Vu)~Vv—k2uv]dQ—qudF+J.(au—r)vdl“zjfde VYvel, &)

Q Q

where S = {u eH'(Q):u=gon Fg} denotes the set of admissible solution and
V= {v eH'(Q):v=00nT g} the space of the admissible test functions.

2.3 The continuous Galerkin and GLS finite element formulations

Consider M"={Q,,...,.Q,,} a finite element partition of €, such that:
— NE __ NE
a=0ur=Jao:={J@,ur,), Q,nQ, =0 if ExE and T, denotes the
E=1 E=1
boundary of Q,. The continuous finite element set and space of S and V' are defined as:
S,i,a =u" e H'(Q):uy' e P (Q,), u" =g" on L} and
Vi =" e H'(Q):vy" e P'(Qy), v =0 on I',}, where P'(Q,) is the space of
h,a

polynomials of degree less than or equal to /, g" denotes the interpolation of g and u]

denotes the restriction of u™* to Q.
Problem Eq. (5) have been approximated by the following finite element methods: find
u" €8, , that satisfies Vv" eV, ,

Galerkin method

AG(uh,vh)zFG(vh), (6)
NE

A =ZJ[VMZ-VVZ—k2uZ vZ]dQJrIauhv" dr, (7)
E=lq, T,
NE

F, :ijv,’; dQ+quhdF+IthF,
E=1Q, r, T,

Galerkin Least-Squares method (GLYS)

A" VY + A" VY= F,(0") + F 0", ®)
NE NE

Ay = [[=V-(Vup) =k ul)]ph dQ, Fio =) [ f; pi dQ, ©)
E=1 Q, E=1 Q,

ph=c, V- (Wh-k!] v, eM”, (10)
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_ 1 1_64—cos§1 —cos¢, —2cosg, coss,
k* (2+c0s,)(2+coss,)kh?

Ty , &, =khcosO, ¢, =khsind. (11)

In one-dimension space, the GLS method eliminate the phase error (Harari et al, 1992). In
two-dimensions, this method is not pollution-free for any 0 directions of a plane wave
(Thompson et al, 1995).

3. THE DISCONTINUOUS FINITE ELEMENT METHOD AT ELEMENT LEVEL

Consider for each element Q, € M" a subgrid Qs = UQ; T , where I'; denotes the

e=l1
boundary of Q. Introducing in each macroelement €, the discontinuous finite element
subspaces, Vh’!,, = {vh’b e ’(Q,): v";’f; e P'(Q¢)and v";’f; =0onl, NI, = (Z)}, the
discontinuous  finite element method at element level consists in finding
u" =@ +u"yes, + S,ib satisfying two equations:

h,a

Ap W™ +u™ VY =F (0" W er) (12)
Ape @™ +u™ VY =F, (") W e, (13)

where 4,.(u",v") and F,(v") are given by

NE
ADG(uh,vh)=ZAE(uZ,v§)+J.auhvhdF, (14)
E=1 T,
NE
Fo(0") =) F, () + [qv"dT + [ " dT, (15)
E=l T, T,

q

Ay, vy =Y [[Vup Vv —Eulvi]dQ+

e=1 QeE
S ﬂZ—e h h h h ﬂ? h h h h :
ne e
+ Z Z J 7 (uE,e _uE,e')(VE,e _VE,e') + ) (uE,e _uE,e')(va,e “Ng _VE,e' g
e=1 e'>fz re ee'
Iy #2
1 v h ~e V h ne' h h dr 16
_5( Uge Ny =Vig o N ) Ve, —vpa)|dl, (16)
h - h
FE(VE):ijE,evE,e dQ, (17)
e=1 Q%

u, , denotes the restriction u" to element Qf, 'y =T; NIy, Aj is the outward normal
unit vector to Iy, h, =min{h, h,,.}, where h,, and h,, are the subgrid mesh
parameters. This formulation is consistent in the sense that the exact solution u of problem
Eq.(1-4) is also solution of Eq.(12-13).

The space ¥, +V,, can be understood as classical finite element space V,, enriched

with discontinuous bubble functions within each macroelement. Bubbles functions are
typically higher-order polynomials defined on the interiors of each element, which vanish on
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element boundaries. Note that, for this case, these bubble functions do not need to be higher-
order polynomials (/ >1). The degrees of freedom associated with bubbles can be eliminated
by the know ‘static condensation’. Moreover, the continuity in this formulation is relaxed on

the interiors of elements (subgrid) depending on Sy° and A5 parameters. Initially, these
parameters were introduced in (Dutra do carmo et al, 2002; Alvarez et al, submitted) and its
choice is crucial for the quality of the numerical solution. Here, S5 and Ay parameters will
be determined in order to reduce the pollution effects of the numerical solution.

3.1 Condensation of the Subgrid Degrees of Freedom

The finite element system Eq. (12) and Eq. (13) in matrix form is given by
AU, +B(A)U, =F,, CU,+D(,p)U, =F, (18)

where A4, B(Z), C and D(/T, E) are global matrices, F, and F, are the global vectors of
source term, U, is the vector of global unknowns of the coarse mesh, U, is the vector of
subgrid unknowns, 1, = {1%, B e,e’=1,...,ne; E =1,... NE} are the two set of parameters
related to the weak enforcement of continuity on the interface I'y* of the elements Q¢ and
Q¢ in each macroelement Q, . For given A and E the matrix D(Z, ﬁ) can be easily

inverted for being block diagonal a direct consequence of choosing v"* bubble-like functions.
Eliminating the vector U, in system Eq. (18) we obtain the condensed global system

* *

AU, =F", A" =4-BA)D(,B)'C, F =F, -B(A)D,B)"'F,, (19)

a

which is topologically equivalent to that corresponding to the classical C° Galerkin
approximation in the macro mesh. In fact the subgrid degrees of freedom are eliminated at
macroelement level, and the condensed global system is obtained by adding the corresponding
macroelement contributions

Ay =A, =B (A)Dy(1,B)'Cy, F;=F,;—~B,(1)D,(1.B)"'F, . (20)

In the next section we determined explicitly the sets of parameters A and /7 by
minimizing the phase lag for a uniform mesh. At that point it is important to mention that
enriching the approximation space with the discontinuous bubbles has as a primary goal to
provide stability to the discrete formulation. The great gain in accuracy of the proposed
formulation compared to the standard C° Galerkin and Galerkin Least Squares methods, as
illustrated in section 4, is only due to the additional stability of the discontinuous formulation
which is capable to minimize pollution effects. In this aspect our approach differs from the
residual free bubble formulation for Helmholtz equation presented in (Franca et al, 1997).

3.2 Optimal Choice of the Stabilization Parameters

For simplicity we now consider only bilinear polynomial interpolations and uniform
mesh with square macroelements of length # composed by a subgrid with four square

elements of length %4. Thus we have 8 degrees of freedom per macroelements: 4
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corresponding to u™* and the other 4 corresponding to u"’ that will be condensed at the

macroelement level. We observe that, for this particular mesh, 15° =1, B¢ = B and the
local matrices are given explicitly by

Ay = ZzlaiEi’ B, = Zzlbiu’)Ei , Cp= ZzlciEi’ D, = Zzldi(/l’ﬁ)Ei ) (21)
0 i=0 i=0 i=0

where E, (i=0,1,2) are the following 4 x4 matrices

1 0 0O 01 01 0 010
01 00 1 010 0 0 01
E,=1= , E, = , E, = (22)
0 010 01 01 1 00O
0 0 0 1 1 01 0 01 0O
and
2 1 «ag 1 o4
ay,=——-0Q;, a4 =————F, d,=———=, 23
0 3 G 1 6 2 2 3 4 ( )
b, :_a_G_M, b, :_a_0+ﬂ, b, :_a_0+ﬂ’ (24)
4 3 8 12 16 6
a a a
Cy = —TG, ¢ = —?G, c, =—i, dy=y+2u, d,=-u, d,=0, (25)
2 J—
with aG:(kh) ’ _2 a_G’ _2,B+/1 1
9 3 4 6
Solving the eigenproblem
2
XV =wV ,with X =) xE,, (26)

i=0

: : x _ X X _ X _ _
we obtain the eigenvalues w;' = x, +2x, +x,, w, =w; =x,—x,, W =x,—2x, +x,, and

the matrix of the eigenvectors

11 1 1
11 -1 -1 .
M= with MMT =M™M =1.
1

-1 1 -1

2

Using the matrix equation A, = » a,E, =4, — B,(A)D;(4, )" C, in the diagonal form
i=0

M "AM=M"A,M -M"B,(A)D,(4,B)"'C,M,

or equivalently, W = W — Wi /w%, i=1,23,4, we obtain the following algebraic

system of three independent equations
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2
a, +2a, +a, =—9ZG _{_91“60} % (27)
ao—a;—l—3ac—3ac 3a, A+1 1 ’ (28)
4 16 | 16 2 |y+2u
ao_za;‘+azzg_a_0_a_0a_0+ﬂ ! , (29)
3 4 16|16 3 |y+4u

relating the coefficients of the condensed matrix A4, and the stabilization parameters.

Now, using discrete Fourier transform in the homogeneous form of the global system
corresponding to the present uniform mesh, the stencil of an interior node leads to

a,F +ay,+a, w=0 (30)

with 7 = cos(/;h cosd) cos(l;hsinﬁ) , W= cos(l;h cosf) + cos(l;hsin 6) where 6 is the direction
of a plane wave, and £ is the discrete wavelength. We should observe that the coefficients
a: ,i=0,1,2, depend on k and A, and on the free parameters Aand . Thus we have the

freedom to choose Aand # to minimize the phase lag. We then choose two directions 6, and

6, such that the dispersion relation Eq. (30) is verified for k=k , yielding

ar, +ay +a;w, =0, 31

a,r, + ag +a;w, =0, (32)
with

1, = cos(khcos,)cos(khsin@,) , r, = cos(khcos@,)cos(khsinf,), (33)

w, = cos(khcos@,)+ cos(khsin@,) , w, = cos(khcos@,) + cos(khsin@,) , (34)

Solving the algebraic system Eq. (27-29, 31-32) of five independent equations we obtain
the following expressions for the stabilization parameters:

1=—1+ (P:81 - P8&3)

) (35)
(P.& — P1&>)
ﬂ:1+3(p2g3 —P38) 1(psg —p1g3)’ (36)
(.81 —1&) 2(p.8-p8g)
and for the coefficients of the condensed matrix A, :
i - (ryw, —rw,)(576a .y +8la,’) ’ (37)
256y/[rzw1 —nw, +2(r —nr)+w, — wl]
g =g —iTR) (38)

0 ’
(rzwl _7'1W2)
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@ =a , (39)
(r,w —rw,)
with
* * 81 2 aG
g =—4a +a,)-21+24p,+—p," |, po=—/, (40)
y 16
3 . 81
g = 129 S :7{2(% +a)+1+24p, +7poz}‘9poi S
p, =—16a; —4F+32pO +ﬁp02}, (42)
3 Y
» . 2 81
pzz?o, 11%:;{45;1 +§+32p0+7p02}—p02. (43)

Due to the symmetry of the uniform mesh 6, and 6, should be chosen such that
0,,0, €(0,%) with 6, #60, and 6, — 6, # % to avoid an indefinite system for Aand . We
should note that the approximate solution is pollution-free only if the exact solution is a plane
wave in direction 6, or 6, . For any other direction different fromé, or 6,, when the wave
number £ is increased pollution effects appear, as will be shown in the numerical tests.

From equations Eq. (31) and Eq. (32) we observe that choosing 6, =% and 6, =3Z, the
condensed element matrix of the present discontinuous finite element formulation generates
an interior stencil identical to that of the Quasi Stabilized Finite Element Method (QSFEM)
with minimal pollution error compared to any nine point stencil (or any C° four node
element) as presented in (Babuska et al, 1995). Figure 1 plots Aand f parameters as a

function of kh obtained with 6, = Z and 6, =3%.

The stabilization parameters (A and ) and the coefficients of the condensed matrix ( 4, )
can be expanded as a Taylor series. The coefficients of Taylor expansion about a point kh=0.5
are present in Table 1.

The dispersion relation Eq. (30) leads to a phase lag ‘k —k ‘ depending on k% and €. In

Fig. 2 we compare the exact and approximate dispersion relations corresponding to three
finite element approximations: the classical Galerkin method (CG), the Galerkin Least-
Squares (GLS) with 7(0 =%), as presented in (Thompson et al, 1995), and the present

discontinuous bubble formulation (DGB), for kh=1. We observe no visual difference between
the dispersion relation of DGB and the exact one (case b).

4. NUMERICAL RESULTS

We present in this section three 2-D examples to illustrate the performance of the
proposed discontinuous formulation applied to Helmholtz problem. In all examples bilinear
shape functions and 2x2 Gaussian integration are adopted combined with the optimal choice
of the stabilization parameters given by equations Eq. (35) and Eq. (36) with 6, =% and

_ 3
02_16'
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For the convergence study, we introduce relative errors of the continuous u"“ of the
finite element approximation in L?-norm and H'-seminorm:

ex h,a

“e e

L(Q)

*(Q) = ex

H@) ~

ex h,a

u —u

ex

H'(Q)

H'(Q)

The additional accuracy provided by the contribution 1™’ of the discontinuous bubbles to
the finite element solution #”” is only marginal and will not be considered in this study.

Table 1. Coefficients of Taylor serires for 1, and 4,

n=0

9 (n)
f(x) = Z%(x —x,)" +O(x"), where x = ki and x, = 0.5

A B

0 0.8713704950767354 -0.4317471787080831
1 -0.18213416553844297 0.10672708182473101
2 -0.18597491289271417 0.10826792756269055
3 -0.007842665723494235 0.0031191985941498857
4 -0.004350288276611991 0.0016609079390352832
5 -0.0005375125198270325 0.00011689601784681258
6 -0.00026856767294702877 0.000054599623325657376
7 -0.000034794064276866266 -0.000012440594417739703
8 -0.00008085841000138316 0.000026012290447852138
9 -1.341153620160184810°° -5.275705461826873910°

a, a a
0 0.79164791402110091 -0.34094683985104524 -0.17262430010848387
1 -0.16690365594732715 -0.030876505682349231 -0.024319440721215946
2 -0.16753986179438707 -0.032591537819737892 -0.026299533042878798
3 | -0.0012576018400359545 | -0.0034987524703067319 | -0.0040922017882303319
4 |-0.00055719318502756021 | -0.001956668301353881 | -0.0023503030143170456
5 10.000052969910859573463 | -0.0002185649559977576 | -0.00042291963429186286
6 10.000092946317790511788| -0.0001528070357962874 | -0.00010850751528468372
7 1-0.00012033624991993779 | 0.00011630243201915524 | -0.00015977404954095609
8 10.00029546206646246159 | -0.00029660356997895931 | 0.00028222153383191534
9 1-0.00064861599266253221 | 0.00064873928601494324 | -0.0006515159005454213
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Figure 1 - Aand B parameters as a function of k4 obtained with 6, =% and 0, =<%.

0,0 0,5 1,0 0,0 05 1,0

(a) kh=1 (b) kh=1
Figure 2 - Dispersion relations for k4=1, (a) Continuous Galerkin (CG) and Galerkin Least
Squares (GLS), (b) Discontinuous Bubble Galerkin formulation (DGB).

The first example treated here consists of solving the homogenous helmholtz Eq. (1) over
a unity square domain submitted to Dirichlet boundary conditions. For that case, the exact
solution is given by a plane  wave  propagating in O-direction:
u(x,y) = cos(k(xcos@+ ysinf)). A study of the accuracy of approximate solutions is carried
out for k=100, using an uniform finite element mesh (160 x 160) and varying the propagation
direction by choosing the appropriate values for the boundary conditions. This analysis is
presented in Fig. 3 where the relative errors of the present discontinuous finite element
formulation (DGB) in L*>-norm and H'-seminorm are compared to the corresponding errors of
the continuous interpolant (CI), the Quasi-Stabilized Finite Element Method (QS) and the
Galerkin Least Squares (GLS) solutions for k2=0.625. Since we have addopted the optimal
values of the stabilization parameters, DGB and QS approximations are identical in this case
and close to the continuous interpolant while the GLS solution presents large relative erros.
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Figure 4 shows the nodal interpolant, Discontinuous Bubble and Galerkin Least Squares
finite element solutions in sections x=0.5 along the y direction obtained with the same mesh
for 6=(n/4), that is the O-direction which corresponds to the largest "phase" error for
Discontinuous Bubble solution. These results show clearly large pollution effect on the GLS
solution and confirm the good performance of the DGB formulation with no significant
difference when compared to the continuous interpolant.

1.0
09 1
£ 03 1
o
0.7
[@\]
i 0.6 1
LER —d
Eo04 ] bGB
GLS
=024 N\l Qs
L
0.1 1
Ve mmm === AR -y AN -f1 - - -} - - - m m o o= AR -f
0.0 T : : : )
0 225 45 67.5 90
kh=0.625
12
g —a—CI
£ 10 1 DGB
5 . GLS
7 A N A
o= @
g ¢
—
o
=
O
(0]
2
g 2]
e
0 V‘\ T3 - : | I— .y‘\ ....... RAl -‘v = A -"‘V
0 2.5 45 67.5 90
kh=0.625

Figure 3 - Relative error of the discontinuous Galerkin solution (DGB) compared to the
continuous interpolant (CI), Galerkin Least Squares (GLS) and Quasi Stabilized Finite
Element Method (QS) in the L?*-norm and H’-seminorm as a function of #-direction for k=100
with a 760x160 mesh.

The next example is similar to previous example, but now the exact solution is given by a
superposition of n monoenergetic plane waves propagating in n different 6-directions:

u(x,y) = Zcos(k(x cosd, + ysin@,)) . Firstly, three plane waves propagating in the directions
i=1

0,=0, 8, =%, 0, =% . The relative errors in L*>-norm, H'-seminorm and H'-norm are present

in Table 2. Figure 5 shows the nodal interpolant, Discontinuous Bubble and Galerkin Least

Squares finite element solutions in sections x=0.5 along the y direction . Figure 6 shows the
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same FEM solutions in section y=0.5 along the x direction. Again, the results show the good
performance of the DGB formulation and how this formulation reduces the phase error over
all wave vector orientations 6.

Table 2. Realative errors of FEM: Example 2, three plane waves

Relative Errors of finite element methods
CI DGB GLS Galerkin
L2-norm 3.22E-02 3.23E-02 5.40E-01 1.71E+00
H'-seminorm 1.56E-01 1.56E-01 5.59E-01 1.72E+00
H'-norm 1.56E-01 1.56E-01 5.59E-01 1.72E+00
Secondly, Six plane waves propagating in the directions
0,=0,0=%,0,=%,0,=%,0,=%,0,=%. Figures 7 and 8 show the nodal

interpolant, Discontinuous Bubble and Galerkin Least Squares finite element solutions in
sections x=0.5 and y=0.5 respectively. Very similar conclusions to the previous example can
be drawn. We should observe that, in these two examples the directions of plane waves
propagations are always different to 6, =% and 6, =3%, which are the optimal choice in Eq.
(35-36) for the stabilization parameters.

1.010
0.505 - ‘
0,000 {F 1 b A Sy
o: |2 ] [02]|x 0.4~ 0:6 | 108 I
-0.505 ! ;
-1.010
EXACT DGB ------ GLS

Figure 4 - DGB and GLS solutions of homogeneous problem in two dimension at sections
x=0.5, k=100, 6=(n/4).
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3.5

3 | Exact

-1.5

Figure 5 - DGB and GLS solutions of homogeneous problem in two dimension at sections
x=0.5, k=100, three plane waves.

Exact

-4

Figure 6 - DGB and GLS solutions of homogeneous problem in two dimension at sections
y=0.5, k=100, three plane waves.
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Figure 7 - DGB and GLS solutions of homogeneous problem in two dimension at sections
x=0.5, k=100, six plane waves.
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Figure 8 - DGB and GLS solutions of homogeneous problem in two dimension at sections
y=0.5, k=100, six plane waves.
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4. CONCLUSIONS

We present a new consistent discontinuous finite element formulation for the Helmholtz
problem. Consistency derives from the fact that the exact continuous solution satisfies the
discrete equation. The continuity is only relaxed on nodes placed on the interior of the
elements instead across the element edges as it was admitted initially. The interior degrees of
freedom are associated to discontinuous bubble functions, which are not necessarily higher-
order polynomials, once those functions are to be zero on the element edges. From the
computational standpoint, this represents a significant reduction of costs as the interior
degrees of freedom might be eliminate using standard condensation techniques.

Moreover, discontinuous formulation proposed by the authors make use of two design
parameters, which are selected to enhance accuracy and stability. In the present method,
departing from the stencil obtained with the internal degrees condensation, we build a strategy
for choosing those parameters aiming at matching the exact wave number in two different
directions. This is conducted analytically for uniform meshes. The stencil of the Quasi
Stabilized Finite Element Method is retrieved for the optimal choice of the stabilization
parameters. Nevertheless, it is important to remark that in our case, the final problem is
derived from a consistent variational formulation, which allows the enforcement of generic
boundary conditions and the use of non structured meshes as well. In this last case, the
analytical way of obtaining the parameters would be no longer available.

A number of numerical simulations involving acoustic problems is presented in order to
assess the good performance of the proposed formulation. We understand that those results
not only confirm the improvement on the approximations involving the Helmholtz equation
but also estimulates the development of formulations containing the discontinuous bubbles for
different applications.
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