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Abstract. A new finite element method, developed to second-order generic scalar linear 
boundary-value problems, is presented for Helmholtz equation. The method is obtained 
adding to the Galerkin formulation appropriate multiple projections of residual of the 
differential equation at element level. These multiple projections of the residual allow that the 
element matrix has a maximum number of free parameters. The number of these parameters 
will depend on the local space of approximation and the differential operator. These free 
parameters can be determined seeking to satisfy some convergence and/or stability criterion. 
Several stabilized methods (such like, GLS and GGLS methods, etc.) can be obtained starting 
from new method for an appropriate choice of the free parameters. Also, we present a 
methodology to choose of free parameters for rectangular domain, uniform mesh and bilinear 
elements. In this case, the criterion adopted to determine the free parameters consists of 
minimizing the phase error of the approximate solution. 
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1. INTRODUCTION 
 
 Boundary-value problems governed by second-order linear partial differential equations 
model several physical phenomena. Stable and accuracy numerical solution via finite element 
method (FEM) for this problem has been the greatest challenge. To improve the stability and 
accuracy of finite element methods for these boundary-value problems it is necessary to have 
some criterion that allows obtaining the stability and/or accuracy wanted. Given a certain 
criterion, the stabilized method should be capable to simulate the wanted criterion. A form of 
obtaining such stabilized methods consists of adding residual terms at element level to the 
classical Galerkin formulation. This is the base of the GLS, GGLS methods and other 
stabilized methods. Therefore, it is desirable that a stabilized method based on these ideas 
with a maximum number of free parameters can be developed. The new method should be 
built in a way that, if the criterion to determine the free parameters is the same as adopted, for 
example, in the GLS, GGLS methods or another linear stabilized method, then these methods 
can be obtained starting from the new formulation.  
 A method with this capacity can be applied to Helmholtz equation. In this case, a possible 
criterion to be adopted, to determine the free parameters of the formulation, can consist of 
minimizing the phase error of the approximate solution. We should emphasize that several 
methods that minimize the phase error of the approximate solution to solve the Helmholtz 
equation exist. The Quasi-Stabilized Finite Element Method (QS) (Babuška et al, 1995) is one 
of these methods. Though, this method is not based on a variational formulation. This hinders 
the extension of the QS method for no uniforms meshes, high-order polynomials and 
problems with source term. In one-dimension the approximate solution of GLS method 
(Harari et al, 1992) eliminates the phase error for Helmholtz problem. In two-dimensions, two 
methods, originating from of variational formulations, that minimize the phase error exist: 
Residual-Based Finite Element Method (RBFEM) (Oberai et al, 2000) and Discontinuous 
Finite Element Method at Element Level (DGB) (Loula et al, submitted). 
 The RBFEM method is obtained from the Galerkin approximation by appending terms 
that are proportional to residuals on element interiors and inter-element boundaries. The terms 
that are proportional to the residuals on elements interiors can be understood as an extension 
of GLS method, considering the stabilization parameter dependent on the position. The free 
parameters are completed through residual terms on boundaries of the element. The residual 
on inter-element boundaries terms are motivated by the variational multiscale formulation. 
These terms implicate in an extra computational effort when the RBFEM formulation is 
compared with a classical continuous finite element formulation. Besides, does not exist a 
systematic for the choice of the functions at element level that allows obtaining these residual 
terms. 
 The DGB method is a discontinuous finite element formulation, where discontinuities are 
introduced locally, inside each element. These discontinuities can be viewed as discontinuous 
bubbles and the corresponding degrees of freedom can be eliminated at element level by static 
condensation yielding a global matrix topologically equivalent to those of classical  finite 
element approximations. However, the DGB method needs the condensation technique to 
eliminate degrees of freedom introduced by the discontinuities. The free parameters, related to 
the weak enforcement of continuity inside each element, need to be determined. For uniform 
meshes we present a methodology to determine explicitly the stabilization parameters 
minimizing the pollution effect. But, for no uniforms meshes this methodology can transform 
the DGB formulation in a non linear method, in the sense that will be necessary to solve a non 
linear problem at element level to determine the free parameters and to accomplish the 
condensation technique. Besides, the local discontinuities introduced on inter-bubbles 
boundaries implicate in an extra computational effort. 
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 In this paper, a new formulation, developed for second-order generic scalar linear 
boundary-value problems, is applied to Helmholtz equation. This formulation is obtained 
adding appropriate multiple projections of residual of the differential equation, only at 
element level, to the Galerkin formulation. These projections of residual at element level are 
obtained through a methodology, in such way that the formulation carries the dependence of 
differential equation operator and of local approach space explicitly. Besides, this 
methodology allows introducing in the formulation a maximum number of free parameters, 
which can be determined following some criterion to improve the stability and accuracy of the 
approximate solution. Explicit values of the free parameters minimizing the phase error are 
presented via a dispersion analysis. The formulation is general for any dimension of the 
domain. Some numerical experiments to evaluate the performance of the new formulation are 
presented. Finally, section 5 contains some conclusions and final remarks. 
 
2. THE HELMHOLTZ EQUATION 
  
2.1 The boundary value problem 
 
 Let  be an open bounded domain with a Lipschitz continuous smooth 
piecewise boundary. Let , 
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2.2 The associated variational problem 
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The major challenges, in term of FEM, is to find a consistent formulation in continuous or 
discontinuous finite dimensional spaces, such that, its approximate solution is stable and the 
closest possible of the correspondent solution in infinite dimensional space given by Eq. (5). 



In this paper we will just treat with continuous finite dimensional spaces. The continuous 
Galerkin FEM is the most used approximation. 
 
2.3 The associated Galerkin finite element formulation 
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 It is well know that the Galerkin FEM is shown unstable and little accuracy for 
Helmholtz equation. Its numerical solution presents spurious oscillations that do not 
corresponding with the physical solution of problem. 
 
3. THE GALERKIN PLUS MULTIPIES PROJECTION OF RESIDUAL METHOD 
 
 In this section we presented the Galerkin plus multiply projection of residual method 
(GMPR). As it was said previously, the idea consists of adding to the Galerkin FEM multiple 
projections of the residual with one free parameter associated to each projection. The 
maximum number of free parameters depends on the differential operator and the local 
approach space. It is to say, the maximum number of linearly independent projections of 
residual will depend on properties of operator (such as symmetry, etc) and on order of 
interpolant polynomials. These free parameters would be then determined by appropriate 
criteria for each specific problem, seeking to obtain more accuracy and stable approximate 
solutions. For this, consider for each fixed element eΩ  the space  defined as 
proceeds: 
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where  is defined by Eq. (1),  denotes the number of nodal points of the element )(⋅L npel eΩ  
and ),,1( npelii K=η  denotes the usual local shape functions associated to nodal point i. 
From Eq. (9) follows that,  is the space generated by )( egmprE Ω },,1,);()({ npeljiLL ji K=ηη . 
 Let  be a dimension of gmprd )( egmprE Ω  and 
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in other words, ⊥⊥
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where  denote the restriction of  to ef f eΩ . Note that, a new finite element formulation is 
consistent, in sense that the exact solution of Eq. (5) is also solution of Eq. (24). 
 
3.1 The element matrix 
 
Let  be the restriction of  to  given by: h
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and if  denote the elements of the element matrix we obtain: e
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where  is given by Eq. (28) and j is defined by Eq. (29). We can notice that the element 
matrix is formed by the usual part of Galerkin more  projections of residual of the 
differential equation at element level. The free parameters 

liC ,

gmprd

gmprdττ ,,1 K , corresponding to each 
projection of residual, can be determined through some criterion adopted to improve the 
accuracy and/or stability of the approximate solution for each specific problem. For 
Helmholtz equation with uniform mesh and bilinear quadrilateral elements we have: 
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and the base 
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     Notice that due to symmetry of the Helmholtz operator and that is using first-order 
interpolant polynomials has nine projections, and therefore nine free parameters. In this paper, 
for a uniform mesh we adopted the dispersion analysis criteria to determine the free 
parameters  that compose the element matrix **

1 ,,
gmprdττ K eM  given by Eq. (41), through the 

following steps: 
    1) Using an uniform mesh with bilinear quadrilateral elements, the interior stencil is 
obtained for a plane wave )0,1()sincos( πθθθ ≤≤−=+ ie yxik  as a function of the components 
of the matrix eM , given by: 
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Notice that the parameters 210 ,, τττ  and 3τ  depend on  but not on kk ~ . The stencil Eq. (42) is 
an equation with four unknowns 210 ,, τττ  and 3τ . Choosing two different directions 1θ  and 2θ  
for the plane wave follows that the interior stencil becomes two linearly independent 
equations. Therefore, two unknowns will be undetermined if we used the dispersion analysis 
criteria. 
    2) Let us assume the following restrictions for the free parameters: 
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 We should emphasize that for a non-uniform meshes these restrictions should not 
necessarily be assumed. Then the interior stencil is: 
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    3) To minimize the phase error of the approximate solution, following the work (Babuška 
et al, 1995) has: 
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 Therefore, the matrix eM  corresponds with the matrix given by (Babuška et al, 1995) 
and it has the following form: 
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 This way, *

lτ  are determined by Eqs. (47-48). Finally, μτ  are determined by Eqs. (39-40). 
The determination of μτ  becomes fundamental for problems that possess source term. We 
should highlight that it was not necessary any consideration as made in the reference (Loula et 
al, submitted), besides not needing of any term in boundary of element (Oberai et al, 2000). 
Beyond, we should emphasize that the GMPR formulation possesses a general methodology, 
that it is valid for any geometry and dimension of the domain, as well as, for any local 
approach space. 
 
 
 



4. NUMERICAL RESULTS 
 
 The plane-wave is solution of Helmholtz equation. In general, the direction of wave 
propagation is not known. Here, we present three 2-D examples that show the importance of 
having a finite element formulation to minimize the phase error. These examples illustrate as 
the accuracy and stability of any FEM that none minimize the phase error (such as, Galerkin 
and GLS methods) is deteriorates when we compared with a formulation, that possesses the 
property of minimizing the phase error (such as, QS, DGB, RBFEM and GMPR methods). 
For uniform meshes the solution of  QS, DGB and GMPR methods coincides. 
 For this consider the homogenous Helmholtz equation in a unity square domain. The 
Dirichlet boundary conditions are such that the exact solution is a plane-wave propagating in 
θ -direction: ))cos(cos(),( θθ ysinxkyxu += . In all examples bilinear shape functions, 3x3 
Gaussian integration, uniform mesh (160x160) and the same wave number (k=100) are 
adopted. Also, for all examples, the stabilization parameter of GLS method is choice at 
direction 8

πθ = , as proposed in (Thompson et al, 1995). 
 Figures 1 and 2 present a comparison between the relative errors in L²-norm and H¹-
seminorm of the GMPR, continuous interpolant (CI) and QS solutions. In this case, the 
solution of the QS and GMPR methods coincide. Fig. 3 shows the nodal interpolant, GMPR 
and GLS solutions in sections x=0.5 along the y direction for θ=(π/4) for this example. 
 The next example is similar to previous example, but now the exact solution is given by a 
superposition of n mono-energetic plane-waves propagating in n different θ -directions: 

. Firstly, three plane waves propagating in the directions ∑
=

+=
n

i
ii ysinxkyxu

1
))cos(cos(),( θθ

821   ,0 πθθ == and 43 πθ =  are considered. The relative errors in L²-norm, H¹-seminorm and 
H¹-norm are present in Table 1. Figure 4 shows the nodal interpolant, GMPR and GLS 
solutions in sections x=0.5 along the y direction. Figure 5 shows the same FEM solutions in 
section y=0.5 along the x direction. Again, the results show the good performance of the 
GMPR formulation and how this formulation reduces the phase error over all wave vector 
orientations θ. 
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Fig. 1 Relative error of the CI, GMPR and QS solutions in the L²-norm as a function of 

 θ-direction. 
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Fig. 2 Relative error of the CI, GMPR and QS solutions in the H¹-seminorm as a function of 

θ-direction. 
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Fig. 3 Solution of homogeneous problem in two dimension at sections x=0.5 for θ=(π/4). 

 
 

Table 1. Relative errors of FEMs for three and six plane waves 
 Relative Errors of three finite element methods 
Three plane waves CI GMPR GLS Galerkin 

L²-norm 3.22E-02 3.23E-02 5.40E-01 1.71E+00 
H¹-seminorm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 

H¹-norm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 
Six plane waves CI GMPR GLS Galerkin 

L²-norm 3.22E-02 3.23E-02 5.45E-01 3.24E+00 
H¹-seminorm 1.56E-01 1.56E-01 5.69E-01 3.24E+00 

H¹-norm 1.56E-01 1.56E-01 5.69E-01 3.24E+00 
 
 Secondly, six plane waves propagating in the directions 

5520
3

41032021   ,  ,  ,  ,0 ππππ θθθθθ =====  and 46
πθ =  are considered. Figures 6 and 7 show the 

nodal interpolant, GMPR and GLS solutions in sections x=0.5 and y=0.5 respectively. Very 
similar conclusions to the previous example can be drawn. We should observe that, in these 



two examples the directions of plane waves propagations are always different to 161
πθ =  and 

16
3

2
πθ = , which are the directions for asymptotically optimal interior stencil. 
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Fig. 4 GMPR and GLS solutions of homogeneous problem in two dimension at sections 

x=0.5, three plane-waves. 
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Fig. 5 GMPR and GLS solutions of homogeneous problem in two dimension at sections 

y=0.5, three plane-waves. 
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Fig. 6 GMPR and GLS solutions of homogeneous problem in two dimension at sections 

x=0.5, six plane-waves. 
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Fig. 7 GMPR and GLS solutions of homogeneous problem in two dimension at sections 

y=0.5, six plane-waves. 
 

     
5. CONCLUSIONS 
 
 Herein, we present a new consistent finite element formulation for Helmholtz equation. 
The formulation is valid for any dimension of the domain and any order of local basis 
functions. 
 The GMPR method introduces a maximum number of free parameters via multiple 
projections of the residual for each local approach space. These free parameters can be 
determined by appropriate criteria allowing to find the continuous finite dimensional space 



hS  that best approximates the infinite dimensional space . Explicit values of the free 
parameters minimizing the phase error are presented via a dispersion analysis. 

S

 For bilinear shape functions the GMPR method need 3x3 Gaussian integration, since the 
local base of  are quadratic polynomial functions. Even so, the GMPR method only 
has volume terms. The RBFEM formulation and DGB method have surface terms besides the 
volume terms. Therefore, the extra computational effort of GMPR method is minor that the 
extra computational effort of RBFEM and DGB methods. 

)( egmprE Ω

 The numerical simulations presented prove the importance of having a FEM that 
minimizes the phase error. The good performance of the proposed formulation obtained for 
Helmholtz equation, stimulates to apply the GMPR method to other problems in future works. 
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