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Abstract. In previous works the method GPR (Galerkin Projected Residual Method) was 
introduced. The method is obtained adding to the Galerkin formulation an appropriate 
numbers of projections of the residual of PDE within each element. These multiple 
projections allow the generation of appropriate number of free stabilization parameters in the 
element matrix depending on the local space of approximation and on the differential 
operator. The free parameters can be determined imposing some convergence and/or stability 
criteria or by postulating the element matrix with the desired stability properties. The element 
matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained from 
this new method with appropriate choices of the stabilization parameters. The GPR 
formulation has been applied with success to Helmholtz problem and to diffusion-reaction 
singularly perturbed problem. 
 
In this work, based on the initial ideas of the GPR method, we developed the Galerkin 
Symmetrical Projected Residual Method (GSPR). The GSPR method introduces new ideas 
about the space of matrices associated with the multiple projections of the residual. In this 
case, the space of matrices is splitting in symmetrical and skew-symmetrical matrices. We 
observed that only the symmetrical matrices are decisive to stabilize the numerical method 
and therefore to determine the free parameters. The methodology to choose the free 
parameters is similar to used for GPR method and consists in to postulate an element matrix 
with the desired stability properties (generating matrix) and the free parameters are 
determinate solving a least square problem at element level. We presented some numerical 
tests for problems with sharp layer and two different postulated generating matrices are 
proposed to show the importance of this matrix in the stabilization properties of the method. 
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1 INTRODUCTION 

The advection-diffusion equation model several physical phenomena. The Galerkin finite 
element method is often used to obtain numerical solutions for this boundary value problem. 
In general, only for purely diffusive problem the Galerkin approximate solution is the optimal 
solution. It is well known that the Galerkin finite element method is unstable and inaccuracy 
for this equation with dominate advection (Brooks et al., 1982), (Johnson et al., 1984). Its 
numerical solution presents spurious oscillations that do not corresponding with the physical 
solution of problem. 

Stable and accuracy numerical solution via finite element method (FEM) for this problem 
has been the greatest challenge. A great variety of FEM have been developed to obtain stable 
and accuracy solution, but it is impossible to list all of the works in this direction. 
Comparisons between different methods and a recent bibliographical review can be found in 
(Codina, 1998), (John et al., 2007) and (John et al., 2008). Many of these attempts have used 
continuous (Hughes et al., 1989), (Franca et al., 1989), (Hughes, 1995), (Oñate, 1998), (Ilinca 
et al., 2000), (Franca et al., 2000), (Nesliturk et al., 2003), (Burman et al., 2004), (Franca et 
al., 2005), (Lube et al., 2006) and discontinuous finite element spaces (Hughes et al., 2006) to 
development de new FEM. The main challenge, in term of FEM, is to find a consistent 
formulation in continuous or discontinuous finite dimensional spaces, such that, its 
approximate solution is stable and the closest possible of the correspondent solution in infinite 
dimensional space.  

Here we will just treat with continuous finite dimensional spaces. In previous works the 
GPR method (Galerkin Projected Residual Method) was introduced. This method is obtained 
adding to the Galerkin formulation an appropriate numbers of projections of the residual of 
PDE within each element. These multiple projections allow the generation of appropriate 
number of free stabilization parameters in the element matrix depending on the local space of 
approximation and on the differential operator. The free parameters can be determined 
imposing some convergence and/or stability criteria or by postulating the element matrix with 
the desired stability properties. The element matrix of most stabilized methods (such as, GLS 
and GGLS methods) can be obtained from this new method with appropriate choices of the 
stabilization parameters. 

In this paper, the fundamental ideas of the GPR method are maintained to develop the 
Galerkin Symmetrical Projected Residual Method (GSPR). The GSPR method introduces 
new ideas about the space of matrices associated with the multiple projections of the residual. 
The space of matrices is splitting in symmetrical and skew-symmetrical matrices and only the 
symmetrical matrices are decisive to determine the free parameters. The methodology to 
choose the free parameters is similar to used for GPR method and consists in to postulate an 
element matrix with the desired stability properties (generating matrix) and the free 
parameters are determinate solving a least square problem at element level. Two different 
generating matrices are postulated to determine the free parameters and the stabilization 
properties of the method are studied by numerical tests. 

2 THE ADVECTION-DIFFUSION EQUATION 

2.1 The model boundary value problem 

Let )1( ≥⊂Ω nRn  be an open bounded domain with a Lipschitz continuous smooth 
piecewise boundary Γ. Let  gΓ ,  qΓ  and  rΓ  are subsets of Γ satisfying  

∅=Γ∩Γ=Γ∩Γ=Γ∩Γ rqrgqg  and  Γ=Γ∪Γ∪Γ rqg . We shall consider the problem: 



 Ω=∇⋅+∇⋅−∇≡ in)()( fuDL φφφ , (1) 
 gg Γ= onφ , (2) 
 qqnD Γ=⋅∇ onˆφ , (3) 
 rrnD Γ=+⋅∇ onˆ αφφ . (4) 
 
where the functions D  (diffusive coefficient) and u  (advection field) are assumed satisfy: 

DD ≤<0  and  u⋅∇−≤ 2
10  with  D  being positive real constant. )(2 Ω∈ Lf  is the source 

term,  )()( 02
1

gg CHg Γ∩Γ∈ , )(2
qLq Γ∈  and )(2

rLr Γ∈  are the prescribed boundary 

conditions. The coefficient )( rL Γ∈ ∞α  and n̂  denotes the outward normal unit vector defined 
almost everywhere on Γ. 

2.2 The associated variational problem 

Let S  and V defined as { }ggHS Γ=Ω∈= on:)(1 φφ , { }gHV Γ=Ω∈= on0:)(1 ηη .   
The variational problem associated to the boundary value problem defined by Eqs. (1-4) 
consist of finding  S∈φ  satisfying the following variational equation: 
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The major challenges, in term of FEM, is to find a consistent formulation in continuous 

or discontinuous finite dimensional spaces, such that, its approximate solution is stable and 
the closest possible of the correspondent solution in infinite dimensional space given by (5). 
In this paper we will just treat with continuous finite dimensional spaces. The continuous 
Galerkin FEM is the most used approximation. 

2.3 The associated Galerkin finite element formulation 

Let },,{ 1 ne
hM ΩΩ= K  be a partition of Ω  in no-degenerated finite element  eΩ , such 

that eΩ  can be mapped in standard elements by isoparametric mapping and that satisfy 
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Γ∪Ω=Γ∪Ω , where eΓ  denotes the boundary of  eΩ . 

Let 1≥k  an integer and consider )( e
kP Ω  defined as the space of polynomials of degree 

less than or equal to k . Let )}();({)( 1,
e

k
e
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g
hkhkh gHS Γ=Ω∈= ηη  and }on   0);({ ,,

g
khkh HV Γ=Ω∈= ηη  are the finite 

dimension spaces, where eη  denotes the restriction of η  to eΩ . Let hg  be the interpolate of 
g . The Galerkin formulation consists of finding khh S ,∈φ  that satisfies: 

 
 )(),( hhh FA ηηφ =   khh V ,∈∀η . (6) 
 

Only for purely diffusive problems the solution of Galerkin FEM is an accurate 
approximation. It is well known that the Galerkin finite element method is unstable and 
inaccuracy for several problems described by scalar and linear second-order partial 



differential equations. Its numerical solution presents spurious oscillations that do not 
corresponding with the physical solution of problem. 

3 THE GALERKIN SYMMETRICAL PROJECTED RESIDUAL METHOD (GSPR) 

The GPR method was previously introduced for Helmholtz equation and diffusion-
reaction equation in (Dutra do Carmo et al., 2008). This method was obtained adding to the 
Galerkin formulation an appropriate numbers of projections of the residual of PDE within 
each element. This allows that the element matrix has a maximum number of free parameters. 
Other theoretical details on the method can be found in Dutra do Carmo (2008).  

Here, the space of matrices associated with the multiple projections of the residual is 
splitting in symmetrical and skew-symmetrical matrices. We observed that, when a GPR-
generating matrix is symmetrical, only the symmetrical matrices are decisive to stabilize the 
numerical method and therefore to determine the free parameters. The GSPR method applied 
to advection-diffusion equation consist of finding khh S ,∈φ  satisfying khh V ,∈∀η  the 
variational equation: 
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where e

0τ  is the GLS parameter. Works as (Hughes et al., 1986), (Tezduyar et al., 2000), 
(Dutra do Carmo et al., 2004), (Knobloch, 2006), (Knobloch, 2008) study an optimal choice 
for the free parameters of some stabilized methods. The e

lτ  are the free parameters of the 
GSPR formulation, Ν  is the dimension of a real linear space )( eGPRE Ω  defined as  

→Ω=Ω eeGPRE :{)( ψ  ∑∑
= =
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,, ),,(ˆ; ηηψ } with basis denoted by el ,ψ , 

npel  denotes the number of nodal points of the element eΩ  and ),,1( npelii K=η  denotes the 

usual local shape functions associated to nodal point i. )(* oL  is a linear operator. ),(ˆ ooL  
denotes an arbitrary symmetrical operator and do not necessarily have to be linear. The choice 
of this operator will depend on each specific problem and it is crucial to generate an adequate 
space of matrices for the GSPR method. Note that, a new GSPR formulation is consistent, in 
sense that the exact solution of Eq. (5) is also solution of Eq. (7).  

In order to determine the Ν parameters e
lτ  we shall determine the element matrix of the 

GSPR method. Let h
eφ  be the restriction of hφ  to eΩ  given by: 
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where )(ˆ jh
eφ  denote the value of )( jh

eφ  in local node j  of  element eΩ . Let Sle
ijM ,, and 

ASle
ijM ,,  two matrices of npel×npel order with components given by: 
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Therefore, we have: 
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If we chose ),(ˆ

jiL ηη  as being the symmetrical linear operator defined as: 
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then front (7) and (9-13) follows that 
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where eGSPR

ijM ,  denotes the element matrix of GSPR method. 

The free parameters e
lτ  can be determined through some criterion adopted to improve the 

accuracy and/or stability of the approximate solution. In general, if through some criterion 
adopted we find that the adequate element matrix is egeneGLS MA ,, + , where egenM ,  is a 
symmetrical matrix. As all skew-symmetrical matrix it verifies 
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then only the symmetrical matrices are decisive to determine the free parameters. Therefore, 
the e

lτ  can be determined by solving the following minimization problem at element level. 
Find e

1τ ,..., e
Ντ  that minimize the least square functional 
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where egen
ijM ,  denote the (i,j) - entry of egenM , . 

Remark 1 A particular GSPR method is derived for each specific choice of the set of free 
parameters e

lτ . This set of parameters can be determined, as illustrated above, by knowing or 
postulating an element matrix with the stability properties coherent with the differential 
operator. With this strategy in mind, a consistent variational formulation can be derived 
associated with any postulated element matrix. 

Remark 2 The set of parameters can also be determined using information on the 
solution of the homogeneous or non homogeneous problem like in optimal or nearly optimal 
Petrov-Galerkin formulations, Multiscale or Residual Free Bubble stabilizations. 

Remark 3 In (Dutra do Carmo et al., 2008) a stabilization matrix obtained via standard 
dispersion analysis for the homogeneous Helmholtz equation is adopted to develop a 
variationally consistent GPR formulation capable to deal with the non homogeneous equation. 

Note that, the strategy to determine the vector e
lτ  depends on differential operator of the 

problem and the chosen matrix egenM , . 
For advection-diffusion equation we design our method with *L  as identity operator. It is 

well known that to generate stability in advection-diffusion problems is necessary to add to 
the GLS formulation some type of capture operator. Unfortunately, the stabilized 
formulations based on capture operators are no linear even when the problem is linear 
(Hughes et al., 1986), (Galeão et al., 1988), (Dutra do Carmo et al., 2003), (Dutra do Carmo et 
al., 2004). The GSPR formulation can be capable to supply a linear stabilized formulation for 
this problem. The GLS formulation controls the gradient in the direction of the field u. In 
order to get the control of derivatives in another directions, we consider for each element eΩ  
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control of derivatives: 
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where 10 << eα  and eβ  are two parameters that should be determined. In all cases the 
numerical experiments suggest 5.0=eα , 1=eβ   for egenM ,1  and 175.0=eβ  for egenM ,2 . 

4 NUMERICAL RESULTS 

In the present section two 2-D examples to illustrate the main features and potential of 
GSPR method applied to advection-diffusion equation are presented. For these cases the 
solution of the GPR method is similar to GSPR formulation. Both examples deal with 
homogenous equation and Dirichlet boundary conditions. In all examples a unity square 



domain, bilinear shape functions, 3x3 Gaussian integration, uniform mesh (20x20), 1010−=D  
and three advection fields u ( )1,2(),2,1(),1,1( −−− ) skew to the mesh are adopted. 
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Figure 1 – Solutions for Example 1 with advection skew to mesh: case u=(1,-1) 
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Figure 2 - Solutions for Example 1 with advection skew to mesh: case u=(1,-2) 
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Figure 3 - Solutions for Example 1 with advection skew to mesh: case u=(2,-1) 
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Figure 4 - Solutions for Example 2 with advection skew to mesh: case u=(1,-1) 
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Figure 5 - Solutions for Example 2 with advection skew to mesh: case u=(1,-2) 
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Figure 6 - Solutions for Example 2 with advection skew to mesh: case u=(2,-1) 

 



The first numerical test presents sharp internal layer and the second numerical test 
presents sharp internal and boundary layers. The boundary conditions for Example 2 are: 

0)0,( =xφ ,             (20) 
1)1,( =xφ ,             (21) 
0),1( =yφ ,            (22) 

]6.0,0[0),0( ∈∀= yyφ ,           (23) 
]65.0,6.0[6.0),0( ∈∀−= yyyφ ,           (24) 

]7.0,65.0[05.0)65.0(18),0( ∈∀+−= yyyφ ,         (25) 
]75.0,7.0[95.0)7.0(),0( ∈∀+−= yyyφ ,        (26) 

]1,75.0[1),0( ∈∀= yyφ ,            (27) 
 
For Example 1 ),0( yφ and )1,(xφ  are the same of the Example 2, but )0,(xφ  and ),1( yφ  

are such that the external boundary layer is not presents. For Example 1 the Figs. 1, 2 and 3 
show a comparison between the solutions of GSPR, GLS and SAUPG methods. The SAUPG 
(Streamline and Approximate Upwind/Petrov-Galerkin) method is a no linear formulation that 
adds to the GLS formulation a capture operator (Dutra do Carmo et al., 2003). Figures 4, 5 
and 6 show a similar comparison for Example 2. The solution of GSPR method is presented 
for two generating matrix: M1 defined by Eq. 18 and M2 by Eq. 19. All figures show the four 
compared solutions in sections y = 0.2, y = 0.7 along the x direction (left) and in sections x = 
0.2, x = 0.7 along the y direction (right). In all cases, the solution of the SAUPG and GSPR 
methods are very close near the internal layer. However, near the boundary layer the GSPR 
method present some degree of instability, but inferior to the instability of the GLS method. 

5 CONCLUSIONS 

We developed, based on the initial ideas of the GPR method, a new consistent FEM to be 
applied to advection-diffusion boundary value problems. The GSPR method introduces new 
ideas about the space of matrices associated with the multiple projections of the residual. The 
space of matrices is splitting in symmetrical and skew-symmetrical matrices. These multiple 
projections allow the generation of appropriate number of free stabilization parameters in the 
element matrix. We observed that only the symmetrical matrices are decisive to determine 
these free parameters. The methodology to choose the free parameters is similar to used for 
GPR method and consists in to postulate an element matrix with the desired stability 
properties (generating matrix) and the free parameters are determinate solving a least square 
problem at element level. 

The numerical results presented in the previous section allow us to conclude that the 
GSPR method presents the following properties: 
• it is a linear stabilized method as GLS method, different of the nonlinear SAUPG method, 
• its computational algorithm can be easily implemented, 
• its stability in the proximity of internal layers is similar to the SAUPG method, 
• its stability in the proximity of boundary layers is inferior to the SAUPG method but 
superior to the GLS method. 

The good performance of the GSPR formulation stimulates to improvement this 
methodology, in future works, in order to obtain better stabilization near of boundary layers.  
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