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Time-harmonic acoustic, elastic and 

electromagnetic waves are governed by the 
Helmholtz equation. Numerical approximation 
of this equation is particularly challenging as 
reported in a vast literature [2-12]. The 
oscillatory behavior of the exact solution and 
the quality of the numerical approximation 
depend on the wave number k. To 
approximate Helmholtz equation with 
acceptable accuracy the resolution of the mesh 
should be adjusted to the wave number 
according to the rule of thumb [7], which 
prescribes a minimum number of elements per 
wavelength. It is well known that, despite of 
the adoption of this rule, the performance of 
the Galerkin finite element method 
deteriorates as k increases. This misbehavior, 
known as pollution of the finite element 
solution [9,3], can only be avoided after a 
drastic refinement of the mesh, which 
normally entails significant barriers for the 
numerical analysis of Helmholtz equation at 
mid and high frequencies. 

To improve the stability and accuracy 
of FEM for this boundary-value problem it is 
necessary to have some criterion that allows 
obtaining the stability and/or accuracy wanted. 
A form of obtaining such stabilized methods 
consists of adding residual terms at element 
level to the Galerkin formulation. This is the 
base of the GLS (Galerkin Least-Squares), 
GGLS (Galerkin Gradient Least-Squares) 
methods and other stabilized methods. 
Therefore, it is desirable that a stabilized 
method based on these ideas with a maximum 

number of free parameters can be developed. 
In one-dimension, the GLS method is able to 
completely eliminate the pollution effect [8]. 
In two dimensions, there is no FEM with 
piecewise linear shape functions free of 
pollution effect [3,12].  

We should emphasize that several 
methods that minimize the phase error of the 
approximate solution to solve the Helmholtz 
equation in two-dimensions exist. The Quasi-
Stabilized Finite Element Method (QS) [3] is 
one of these methods. Though, this method is 
not based on a variational formulation. This 
hinders the extension of the QS method for no 
uniforms meshes, high-order polynomials and 
problems with source term. Three methods, 
originating from of variational formulations, 
that minimize the phase error exist: Residual-
Based Finite Element Method (RBFEM) [11], 
Discontinuous Finite Element Method at 
Element Level (DGB) [10] and Galerkin 
Projected Residual Method (GPR)[5,6]. 

The RBFEM method is obtained from 
the Galerkin approximation by appending 
terms that are proportional to residuals on 
element interiors and inter-element 
boundaries. The terms that are proportional to 
the residuals on elements interiors can be 
understood as an extension of GLS method, 
considering the stabilization parameter 
dependent on the position. The free parameters 
are completed through residual terms on 
boundaries of the element. The residual on 
inter-element boundaries terms are motivated 
by the variational multiscale formulation. 



These terms implicate in an extra 
computational effort when the RBFEM 
formulation is compared with a classical 
continuous finite element formulation. 
Besides, a systematic for the choice of the 
functions at element level, that allows 
obtaining these residual terms, doesn't exist. 

The DGB method is a discontinuous 
finite element formulation, where 
discontinuities are introduced locally, inside 
each element. These discontinuities can be 
viewed as discontinuous bubbles and the 
corresponding degrees of freedom can be 
eliminated at element level by static 
condensation yielding a global matrix 
topologically equivalent to those of classical   
finite element approximations. However, the 
DGB method needs the condensation 
technique to eliminate degrees of freedom 
introduced by the discontinuities. The free 
parameters, related to the weak enforcement of 
continuity inside each element, need to be 
determined. For uniform meshes we present a 
methodology to determine explicitly the 
stabilization parameters minimizing the 
pollution effect. But, for no uniforms meshes 
this methodology can transform the DGB 
formulation in a non linear method, in the 
sense that will be necessary to solve a non 
linear problem at element level to determine 
the free parameters and to accomplish the 
condensation technique. Besides, the local 
discontinuities introduced on inter-bubbles 
boundaries implicate in an extra computational 
effort. 

Recently, we developed the GPR 
method for second-order generic scalar linear 
boundary-value problems. This formulation is 
obtained adding appropriate multiple 
projections of residual of the differential 
equation, only at element level, to the Galerkin 
formulation. The formulation carries out 
explicitly the dependence of differential 
equation operator, the local approach space 
and is general for any dimension of the 
domain. Besides, this methodology allows 
introducing in the formulation a maximum 
number of free parameters, which can be 
determined following some criterion to 
improve the stability and accuracy of the 
approximate solution. In particular, when the 
GPR method is applied to Helmholtz equation 
is possible obtain explicit values of the free 
parameters minimizing the phase error via a 
dispersion analysis. 

In this work, we introduced, concisely, 
two formulations that minimize the pollution 
effect in two-dimension: DGB and GPR 
methods. One numerical experiment to 
evaluate the performance of these 
formulations is presented. 

 
THE HELMHOLTZ EQUATION 

 
Let nR⊂Ω  be an open bounded 

domain with a Lipschitz continuous smooth 
piecewise boundary Γ . Let gΓ , qΓ , rΓ  be 
three disjoint subsets of Γ where boundary 
conditions are specified, such that 

Γ=Γ∪Γ∪Γ rqg . We shall consider the 
interior Helmholtz problem: 
      Ω=−∇⋅−∇= in)()( 2 fukuuL ,  (1) 
 ggu Γ= on ,                                  (2) 

 qqnu Γ=⋅∇ onˆ ,                           (3) 

 rrunu Γ=+⋅∇ onˆ α ,                  (4) 
where u  denotes a scalar field that describes 
time-harmonic acoustic, elastic or 
electromagnetic steady state waves. The 
coefficient k is the wave number, f is the 
source term, g, q and r are the prescribed 
boundary conditions. The coefficient α is 
positive on rΓ  and n̂  denotes the outward 
normal unit vector defined almost everywhere 
on Γ . 
 

The continuous Galerkin FEM 
 

Consider },,{ 1 NE
hM ΩΩ= K  a 

finite element partition of Ω , such that: 

UU
NE

E
EE

NE

E
E

11

)(
==

Γ∪Ω=Ω=Γ∪Ω=Ω , 

 ≠   0/=Ω∩Ω /  if/ EE
EE and EΓ  denotes 

the boundary of EΩ . The continuous finite 
element set and space are defined as: 

}on      , )(:)({ ,,1,
, g

hah
E

lah
E

ahl
ah guPuHuS Γ=Ω∈Ω∈=

}on    0  , )(:)({ ,,1,
, g

ah
E

lah
E

ahl
ah vPvHvV Γ=Ω∈Ω∈=

where )(1 ΩH  is Sobolev space defined in 
[1], )( E

lP Ω  is the space of polynomials of 
degree less than or equal to l , hg  denotes the 
interpolation of g  and ah

Eu ,  denotes the 
restriction of ahu ,  to EΩ . 



Problem Eq. (1-4) have been 
approximated by the following finite element 
methods: find l
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Only for purely diffusive problems the 
solution of Galerkin FEM is the best 
approximation. It is well known that the 
Galerkin FEM is shown unstable and little 
accuracy for Helmholtz equation. Its 
numerical solution presents spurious 
oscillations that do not corresponding with the 
physical solution of problem. 
 

The discontinuous FEM at element level 
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finite element method at element level consists 
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h
eEu , denotes the restriction hu  to element 

e
EΩ , ´´, e

E
e
E
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E Γ∩Γ=Γ , e

En̂  is the outward 
normal unit vector to e

EΓ , 'ee
Eβ  and 'ee

Eλ  are 
two set of free parameters related to the weak 
enforcement of continuity on the interface 

´,ee
EΓ  of the elements e and e’ in each 

macroelement E, },min{ ',,' eEeEee hhh = , 

where eEh ,  and ',eEh  are the subgrid mesh 
parameters. This formulation is consistent in 
the sense that the exact solution u  of problem 
Eq.(1-4) is also solution of Eq.(6-7). 

The space l
bh

l
ah VV ,, +  can be 

understood as classical finite element space 
l

ahV ,  enriched with discontinuous bubble 
functions within each macroelement. Bubbles 
functions are typically higher-order 
polynomials defined on the interiors of each 
element, which vanish on element boundaries. 
The degrees of freedom associated with 
bubbles can be eliminated by the ‘static 
condensation’. Moreover, the continuity in this 
formulation is relaxed on the interiors of 
elements (subgrid) depending on 'ee

Eβ  and 
'ee

Eλ  parameters and its choice is crucial for the 
quality of the numerical solution. Here, 'ee

Eβ  
and 'ee

Eλ  parameters will be determined in 
order to reduce the pollution effects of the 
numerical solution. 

The finite element system Eq. (6) and 
Eq. (7) in matrix form is given by 

aba FUBAU =+ )~(λ ,  (8) 

bba FUDCU =+ )~,~( βλ                         (9) 



where A , )~(λB , C  and )~,~( βλD  are global 
matrices, aF  and bF  are the global vectors of 
source term, aU  is the vector of global 
unknowns of the coarse mesh, bU  is the 
vector of subgrid unknowns, 
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parameters related to the weak enforcement of 
continuity on the interface ´ee

EΓ  of the 
elements e

EΩ  and ´e
EΩ  in each macroelement 

EΩ . For given λ~  and β~  the matrix 

)~,~( βλD  can be inverted for being block 
diagonal a direct consequence of choosing 

bhv ,  bubble-like functions. Eliminating the 
vector bU  in system Eq. (9) we obtain the 
condensed global system: 

** FUA a = ,   
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ba FDBFF 1* )~,~()~( −−= βλλ ,  
which is topologically equivalent to that 
corresponding to the classical 0C  Galerkin 
approximation in the macro mesh. In fact the 
subgrid degrees of freedom are eliminated at 
macroelement level, and the condensed global 
system is obtained by adding the 
corresponding macroelement contributions 

EEEEE CDBAA 1* )~,~()~( −−= βλλ ,    

EbEEEaE FDBFF ,
1

,
* )~,~()~( −−= βλλ . 

If we adopted the dispersion analysis 
criteria to choose of free parameters λ~  and 
β~ , then the DGB formulation generates an 
interior stencil identical to the Quasi 
Stabilized Finite Element Method (QS) with 
minimal pollution error compared to any nine 
point stencil (or any four node element) as 
presented in [3]. 

 
The Galerkin projected residual method 

 
The fundamental idea of GPR method 

consists of adding to the Galerkin FEM 
multiple projections of the residual with one 
free parameter associated to each projection 
[5,6]. The maximum number of free 
parameters depends on the differential 
operator and the local approach space. It is to 
say, the maximum number of linearly 
independent projections of residual will 

depend on properties of operator (such as 
symmetry, etc) and on order of interpolant 
polynomials. These free parameters would be 
then determined by appropriate criteria for 
each specific problem, seeking to obtain more 
accuracy and stable approximate solutions.  

Then, consider for each fixed element 
EΩ  the space )( EGPRE Ω  defined as: 
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where )(⋅L  is the differential operator defined 
by Eq. (1), npel  denotes the number of nodal 
points of the element EΩ  and 

),,1( npelii K=η  denotes the usual local 
shape functions associated to nodal point i. 
That is, )( EGPRE Ω  is the space with 
dimension GPRd  generated by a local base: 
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where Ef  denote the restriction of f  to EΩ  
and 

GPRdττ ,,1 K  are free parameters 
associated to each projection of residual. Note 
that, the GPR formulation is consistent, in 
sense that the exact solution of Eq. (1-4) is 
also solution of Eq. (10). 
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where liC ,  and j are given by Eq. (12). We can 
notice that the element matrix is formed by the 
usual part of Galerkin more GPRd  projections 
of residual of the differential equation at 
element level. The free parameters 

GPRdττ ,,1 K , corresponding to each projection 
of residual, can be determined through some 
criterion adopted to improve the accuracy 
and/or stability of the approximate solution for 
each specific problem. For Helmholtz 
equation with uniform mesh and bilinear 
quadrilateral elements we have 9=GPRd , 
because: 
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Notice that due to symmetry of the 
Helmholtz operator and that is using first-
order interpolant polynomials we have 

)( EGPRE Ω  space with dimension 9=GPRd  
(nine projections) and therefore nine free 
parameters. Here, for a uniform mesh we 
adopted the dispersion analysis criteria to 
determine the free parameters **

1 ,,
GPRdττ K  

that compose the element matrix EM  given 
by Eq. (19), through the following steps: 

Step 1) Using an uniform mesh with 
bilinear quadrilateral elements, the interior 
stencil is obtained for a plane wave 

)sincos(~ θθ yxkie +  )0,1( πθ ≤≤−=i  as a function 
of the components of the matrix EM , given 
by: 
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Notice that the parameters 210 ,, τττ  

and 3τ  depend on k  but not on discrete 

wavelength k~ . The stencil Eq. (20) is an 
equation with four unknowns 210 ,, τττ  and 3τ . 
Choosing two different directions 1θ  and 2θ  
for the plane wave follows that the interior 
stencil becomes two linearly independent 
equations. Therefore, two unknowns will be 
undetermined if we used the dispersion 
analysis criteria. 

Step 2) Let us assume the following 
restrictions for the free parameters: 
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We should emphasize that for a non-
uniform meshes these restrictions should not 
necessarily be assumed. Then the interior 
stencil is: 
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Step 3) To minimize the phase error 

of the approximate solution, following the 
work [3] has: 
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Therefore, the matrix EM  
corresponds with the matrix given by [3], the 
condensate matrix of DGB method and it has 
the following form: 
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This way, *
lτ  are determined by Eqs. 

(25-27). Finally, μτ  are determined by Eq. 

(18). The determination of μτ  becomes 
fundamental for problems that possess source 

term. We should highlight that it was not 
necessary any consideration as made in the 
reference [10], besides not needing of any 
term in boundary of element [11]. Beyond, we 
should emphasize that the GPR formulation 
possesses a general methodology, that it is 
valid for any geometry and dimension of the 
domain, as well as, for any local approach 
space. 

 
Fig. 1 Continuous interpolant CI, GPR and 
GLS solutions of homogeneous problem in 

two dimension at sections x=0.5: 
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Figures 1 and 2 present the solution of 

homogeneous Helmholtz equation for 
100=k  in a unity square domain. The 

Dirichlet boundary conditions are such that the 
exact solution is a superposition of n mono-



energetic plane-waves propagating in n 
directions:  

∑
=

+=
n

i
ii yxkyxu

1
))sincos(cos(),( θθ . The 

solution of DGB and GPR methods are equal. 
Both present minimum pollution.  
 

CONCLUSION 
 

Herein, we present concisely two 
consistent finite element formulations for 
Helmholtz equation with minimal pollution 
effect. The formulations are valid for any 
dimension of the domain and any order of 
local basis functions. 

The GPR method introduces a 
maximum number of free parameters via 
multiple projections of the residual for each 
local approach space. These free parameters 
can be determined by appropriate criteria 
allowing to find the continuous finite 
dimensional space hS  that best approximates 
the infinite dimensional space S .  

For bilinear shape functions the 
GMPR method need 3x3 Gaussian integration, 
since the local base of )( eGPRE Ω  are 
quadratic polynomial functions. Even so, the 
GPR method only has volume terms. The 
RBFEM formulation and DGB method have 
surface terms besides the volume terms. 
Therefore, the extra computational effort of 
GPR method is minor that the extra 
computational effort of RBFEM and DGB 
methods. 

For both DGB and GPR formulation 
explicit values of the free parameters 
minimizing the phase error are presented via a 
dispersion analysis. 
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