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Abstract: The Galerkin Projected Residual 
Method (GPR) is applied to Helmholtz 
equation and to the diffusion-reaction 
singularly perturbed equation. The GPR 
method introduces an appropriate number of 
free stabilization parameters in the element 
matrix. A methodology to determine the free 
stabilization parameters is presented. Some 
numerical tests show the good performance of 
the GPR formulation for both equations. 

 
1. Introduction 

 
Boundary-value problems governed 

by second-order linear partial differential 
equations (PDE) model several physical 
phenomena. Usually, the Galerkin Finite 
Element Method (FEM) is used to numerically 
solve these boundary value problems. 
However, only for purely diffusive problems 
does the Galerkin method provide the optimal 
solution. In many other problems the Galerkin 
FEM is unstable and inaccurate, producing 
spurious oscillations that are not present in the 
actual solution of the problem. Stable and 
accuracy numerical solution via FEM for these 
problems has been a great challenge. The 
Helmholtz and reaction-diffusion equations 
are representative examples of the great effort 
that has been devoted to obtain stable and 
accurate FEM. Some representative works are 
[1-18]. 

Recently, a new continuous stable 
FEM was developed for scalar and linear 

second-order boundary value problems: the 
Galerkin Projected Residual Method [5,6]. 
The method is obtained by adding to the 
Galerkin formulation an appropriate number 
of projections of the residual of PDE within 
each element. These multiple projections 
allow the generation of an appropriate number 
of free stabilization parameters in the element 
matrix depending on the local space of 
approximation and on the differential operator. 
The free parameters can be determined by 
imposing some convergence and/or stability 
criteria or by postulating the element matrix 
with the desired stability properties. The 
element matrix of most stabilized methods 
(such as, GLS and GGLS methods [7,13,17]) 
can be obtained from this new method with 
appropriate choices of the stabilization 
parameters.  

The GPR formulation has been 
applied with success to the Helmholtz problem 
[6] and to the diffusion-reaction singularly 
perturbed problem [5]. The same methodology 
for choosing the free parameters can be used 
on both problems. It consists in postulating an 
element matrix with the desired stability 
properties (GPR-generating matrix) and the 
free parameters are determined through the 
solution of a least square problem at element 
level.  

In this work we concisely introduce 
the GPR formulations for both PDE. Section 2 
states the model problem. The Galerkin FEM 
and GPR formulations are presented in 



Section 3. In Section 4 we detail the element 
matrix of GPR formulation for each PDE and 
the methodology to determine the free 
parameters of GPR method. Some numerical 
experiments are presented in Section 5. 
Finally, Section 6 contains some conclusions 
and final remarks. 

 
2. The model problem 

 
Let nR⊂Ω  be an open bounded 

domain with a Lipschitz continuous smooth 
piecewise boundary Γ . Let gΓ , qΓ  and rΓ  
be three disjoint subsets of Γ where boundary 
conditions are specified, such that 

Γ=Γ∪Γ∪Γ rqg . We shall consider 

     Ω=+∇⋅−∇= in)()( fuuDuL σ ,  (1) 
 ggu Γ= on ,                                  (2) 

 qqnuD Γ=⋅∇ onˆ ,                        (3) 

 rrunuD Γ=+⋅∇ onˆ α ,                (4) 
where u  denotes a unknown scalar field, f is 
the source term, g, q and r are the prescribed 
boundary conditions. The coefficient α is 
positive on rΓ  and n̂  denotes the outward 
normal unit vector defined almost everywhere 
on Γ . If 2k−=σ and 1=D , then Eq. (1) is 
known as Helmholtz equation. The solution of 
Eq. (1) has oscillatory behavior and the 
coefficient k can be interpreted as the wave 
number. When the coefficients σσ =  
(reactive) and D (diffusive) are positive 
coefficients and “ σ<<D ”, then Eq. (1) is 
named diffusion-reaction singularly perturbed 
equation or diffusion-reaction dominated 
equation. 
 
3. Finite element method for model problem 
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where )( eP Ωκ  is the space of polynomials of 

degree less than or equal to κ , hg  denotes 

the interpolation of g  and h
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restriction of hu  to eΩ . 
The Galerkin FEM for the model 

problem Eq. (1-4) consists on finding 
κ
h

h Su ∈  that satisfies κ
h

h Vv ∈∀ , 

)(),( h
G

hh
G vFvuA = ,                                (5) 

∑ ∫
= Ω

+Ω+∇⋅∇=
ne

e

hhhh
G

e

dvuvuDA
1

][ σ  

,∫
Γ

Γ+
r

dvu hhα  

∫ ∫∑ ∫
Γ Γ= Ω

Γ+Γ+Ω=
q re

drvdqvdvfF hh
ne

e

h
G

1

. 

The Galerkin FEM is unstable and 
inaccurate for many examples of this problem, 
presenting spurious oscillations. A great effort 
has been devoted to alleviate this misbehavior 
[1-18]. Here we concisely introduce a 
stabilized FEM for both PDE, namely the 
Galerkin projected residual method (GPR). 

The GPR method was previously 
introduced in [5,6]. The fundamental idea of 
GPR method consists of adding to the 
Galerkin FEM multiple projections of the 
residual of the PDE within each element, with 
one free parameter associated to each 
projection. The maximum number of free 
parameters depends on the differential 
operator and on the local approach space. That 
is, the maximum number of linearly 
independent projections of residual will 
depend on properties of operator (such as 
symmetry, etc) and on the order of interpolant 
polynomials. The element matrix then has a 
maximum number of free parameters, which 
are determined by appropriate criteria for each 
specific problem, seeking more accurate and 
more stable approximate solutions. 

Other theoretical details on the 
method can be found in [5,6]. The GPR 
method can be formally stated as follows. Find 

κ
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a) Helmholtz equation 
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b) Diffusion-reaction equation 
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where Ν  is the dimension of a local real 
linear space )( eGPRE Ω  generated by functions 

)()( ji LL ηη  with basis denoted by el ,ψ , 
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npel  denotes the number of nodal points of 
the element eΩ   and ),,1( npelii K=η  denotes 
the usual local shape functions associated to 
the i-th nodal point. The free stabilization 
parameters are denoted by e

lτ . More details on 

)( eGPRE Ω  and el ,ψ  can be found in [5,6]. Note 
that, for each case the first and second 
underlined terms correspond to projections of 
the residual and residual gradient of the PDE 
respectively. These two projections are 
necessary to obtain a GPR method with 
uniform convergence properties for Helmholtz 
equation.  
 

4. The element matrix 
 

Let )(ˆ muh
e be the value of h
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node m  of eΩ  and  m
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b) Diffusion-reaction equation 
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Therefore, the element matrix [ ]ije
GPRA of the 

GPR method will be 
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We can notice that the element matrix 
is formed by the usual part of Galerkin plus a 
projected residual of the differential equation 

at element level. In [5] we prove that the 
functions el ,ψ  are linearly independent if and 

only if the Ν  matrices lM are linearly 
independent. This allows choosing an 
appropriate base for the space of matrices 
generated by the GPR method. A particular 
GPR method is derived for each specific 
choice of the set of free parameters 

ee
Νττ ,,1 K , corresponding to each projection 

of residual. A possible criterion to determine 
the free parameters consists on fitting the 
element matrix of GPR method to a given 
matrix determined through some stability 
and/or convergence criteria. We refer to this 
matrix as the GPR-generating matrix and 
denote it by genM . Then the parameters 

ee
Νττ ,,1 K  can be determined, for example, by 

solving the following minimization problem at 
element level: 
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a) Helmholtz equation 
 Due to the symmetry of the Helmholtz 
operator and to the use of first-order 
interpolant polynomials we have 9=Ν , and 
therefore nine free parameters. For uniform 
mesh, bilinear quadrilateral elements and 
Dirichlet boundary condition the element 
matrix that minimizes the phase error QSM is 
associated to the stencil determined though 
standard dispersion analysis [2] 
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where 3λ  is a parameter that should be 
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 Since the mesh is uniform, the 
following restrictions for the free parameters 

e
lτ can be imposed: 
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b) Diffusion-reaction equation 
We build the GPR generating matrix 

by combining the element matrix of two 
successful stabilized FEM: the Gradient 
Galerkin Least Squares (GGLS) [7] and the 
Unusual Stabilization (USFEM) [8,9] 
methods. We have  

eeegen BKM +=, ,          (6) 
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where 1,eχ  and 2,eχ  are dimensionless 
functions, understood as the weights of the 
nontrivial combination given by Eq. (6), 
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and J  is the Jacobian matrix corresponding to 
the mapping between reference and actual 
elements. 

Based on this observation and inspired 
on references [7,9] we accomplished a large 
number   of   computational  experiments with 

bilinear rectangular elements and linear 
triangular elements and conclude that the 
following expressions for the real constant 

0,eς  and the dimensionless function 2,eς  
present very good stability and accuracy 
properties: 
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faceN  is the number of faces of  

eΩ contained in Γ . The  set intΓ  is defined as 

⎟
⎠
⎞

⎜
⎝
⎛ Γ=Γ ∪∪

==

*
'

1'1
int ee

ne

e

ne

e
, 

[ ] [ ] [ ]
[ ] [ ] [ ]⎩

⎨
⎧

===∅

≠≠≠Γ∩Γ
=Γ=Γ

)0  and  0  and  0( if          
)0or    0or    0( if  '*

'
*

'
ee'ee'ee'

ee'ee'ee'ee
eeee Df

Df
σ

σ

which is the union of the external boundary 
with the internal edges between two elements 
presenting discontinuous properties or sources. 
For each eΩ  and for each 'eΩ  we define 
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It should be observed that for diffusive 
reactive problems, sharp layers will only occur 
inside an element eΩ  if ∅≠Γ∪Γ∩Γ )( inte . 

It must be emphasized that, for the 
GPR method with polynomials of degree 
bigger than 1, additional numeric experiments 
need to be accomplished to validate the 
proposed expressions for qe,ς  and te,ς .  
 

5. Numerical results 
 
Two examples to illustrate the great 

potential of GPR method are presented. The 
first deals with inhomogeneous Helmholtz 
equation over a unit square domain subjected 
to Dirichlet boundary conditions. The exact 
solution is a plane wave propagating in θ -
direction plus a polynomial function, i.e., 



))sincos(sin(),(),( θθ yxkyxpyxu ++= , where 
we consider two situations: case 1: 

yxyxp +=),( ; case 2: 22),( yxyxp += . 
Figures 1 and 2 present the errors of the GPR 
method in L2-norm and H1-seminorm relative 
to the continuous bilinear interpolant are 
presented respectively.  

 
Fig. 1 L2-norm error of the GPR solution 
relative to the continuous interpolant, as a 
function of the θ -direction, for the non 

homogeneous Helmholtz equation. 
 

 
Fig. 2 H1-norm error of the GPR solution 
relative to the continuous interpolant, as a 
function of the θ -direction, for the non 

homogeneous Helmholtz equation. 
 
The second example deals with 

reactive dominant problem defined over a 
quadrilateral domain of vertexes (0.5, 0.0), 
(1.5, 0.0), (2.0, 2.0) and (0.0, 1.0) with 

610−=D , 1=σ , 1=f  and homogeneous 
Dirichlet boundary conditions. Results are 
presented in Fig. 3 for a non uniform mesh of 
quadrilateral elements. Similar results 
obtained for a mesh of triangular elements are 
shown in Fig. 4. Results obtained with the 
methods “USFEM” [8,9] and “ASGS” 
[4,10,11] are presented on both Figures 3 and 
4 as well. A convergence  study was  also 
performed for this second problem with 
different     values    of    diffusion   coefficient  

 

 

 

 
Fig. 3 Computed solutions with different 

methods for the reactive dominant problem in 
a non uniform mesh with bilinear quadrilateral 

elements. 
 

( 1=D , 310−=D  and 610−=D ), 1=σ , 
)sin()sin()12( 2 yxDf πππ +=  and boundary 

conditions )sin()sin( yxu ππ=  on Γ . Results 
for quadrilateral elements are presented in 
Figure 5. The GPR method presents optimal 



rates of convergence for all tested values of D. 
Similar results are obtained for the mesh of 
triangular elements. 

 

 

 

 

 
Fig. 4 Computed solutions with different 

methods for the reactive dominant problem in 
a non uniform mesh with linear triangular 

elements. 
 

 

 

 
Fig. 5 A convergence study of the GPR 

method for the reactive dominated problem 
with quadrilateral elements, for different 

values of the diffusive coefficient D: 10-6, 10-3 
and 1. 

 
6. Conclusion 

 
In this work we concisely presented 

the Galerkin projected residual method, a new 
consistent FEM. This methodology allows the 
derivation of a family of methods through the 
choice of the GPR-generating matrix. The 
formulation is valid for any dimension of the 
domain and any order of local basis functions.  

When compared to typical Galerkin 
formulations, the GPR method requires an 
extra computational effort related to the 
elements eΩ  such that ∅≠Γ∪ΓΓ )( inte . 
This extra effort is handled in a pre-processing 
phase and does not represent a real burden.  



The good performance of the GPR 
methodology stimulates its future application 
to other problems, such as the diffusive-
convective problems. 
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