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Metodos de ordem m de Jacobi e Gauss–Seidel e métodos simétricos de Gauss–Seidel
Resumo: Aqui, são desenvolvidos métodos de ordem m que conservam a forma dos métodos de
primeira ordem. Métodos de ordem m têm uma taxa de convergência maior que sua versão de primeira
ordem. Esses métodos de ordem m são subsequências de seu método precursor, onde alguns benefı́cios
do uso de processadores vetoriais e paralelos podem ser explorados. Os resultados numéricos obtidos
com as implementações vetoriais mostram vantagens computacionais quando comparadas às versões de
primeira ordem.
Palavras-chave: Métodos iterativos de ordem m, Taxa media de convergência, Sistema linear de equações,
Aceleradores.

Abstract: Here, m-order methods are developed that conserve the form of the first-order methods. The
m-order methods have a higher rate of convergence than their first-order version. These m-order methods
are subsequences of its precursor method, where some benefits of using vector and parallel processors
can be explored. The numerical results obtained with vector implementations show computational ad-
vantages when compared to the first-order versions.
Key words: m-order iterative methods, Average rate of convergence, Linear system of equations, Ac-
celerators.
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The m-order Jacobi and Gauss–Seidel methods

Introduction
Iterative methods for solving linear systems emerged in the 19th century (Young,

1989; Saad, 2019). Since then, many researchers have contributed to the development,
improvement and understanding of these methods until today. It would be impossible to
mention all the articles and books dedicated to this topic, and in this article we would
like to pay tribute to all these researchers. For example, a historical review with the state
of the art in different decades can be found in Young (1989) and Saad (2019). These
methods are used in several areas of science and technology, among which we highlight:
mathematics, physics, chemistry, engineering and scientific computing. As an example,
when a linear partial differential equation is solved by finite difference method, finite ele-
ment method or finite volume method, the problem is transformed into a system of linear
algebraic equations (Young, 1989).

Consider the square system of linear algebraic equations of order n and its equivalent
defined as

Ax = b or GAx = Gb, (1)

where the matrix A and the vector b are known data for the problem. For simplicity,
assume that the entries of all matrices and vectors are real numbers. If the matrix G is
non-singular, each matrix G chosen determines an equivalent system where a different
iterative method can be deduced. If the matrix A is non-singular, its inverse A−1 exists,
and the matrix equation (1) has a unique solution x = A−1b or x = [AG]−1b (Forsythe
and Moler, 1967; Varga, 2000; Golub and Van Loan, 2013). We are interested in solving
equation (1) with iterative methods that can be represented in the form

xk+1 = T xk +d, (2)

where T = I −GA is called the iteration matrix, d = Gb is a vector, and xk+1 denotes
the approximate solution in the k+ 1 iteration (Forsythe and Moler, 1967; Varga, 2000;
Young, 1971; Saad, 2003; Quarteroni et al., 2006). It is well known that the iterative
process given by equation (2) is convergent if ρ(T )< 1, where ρ(T ) denotes the spectral
radius of the iteration matrix T (Young, 1989; Varga, 2000; Saad, 2003; Quarteroni et al.,
2006). The spectral radius of T is defined as the largest eigenvalue λ of T in module. That
is, ρ(T ) = max

1≤i≤n
{|λi|}.

The Jacobi, Gauss–Seidel and symmetric Gauss–Seidel methods are iterative methods
described by the equation (2). These methods are still being researched as can be founded
in the following references: Saad (2019), Varga (2000), Golub and Van Loan (2013), Saad
(2003), Quarteroni et al. (2006), Bertaccini and Durastante (2018), Nägel et al. (2015),
Antuono and Colicchio (2016), Bai and Miao (2017), Kong et al. (2019) and Mazza et al.
(2019). The main goal of the present work is to increase the rate of convergence of these
methods without modifying the form of a first-order method. This is done by generating
the m-order versions of these methods. The m-order methods generate subsequences of
their precursor method, where some benefits of using vector and parallel processors can
be explored.

This paper is organized as follows. In next Section the Jacobi, Gauss–Seidel, sym-
metric Gauss–Seidel iterative methods and an alternative symmetric Gauss–Seidel will
be presented. In the following Section are deduced m-order methods and a new method
of type symmetric Gauss–Seidel. Later, the new methods are confronted with their pre-
cursors in numerical experiments. Finally, some conclusions are presented in the last
Section.
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The Jacobi, Gauss–Seidel and symmetric Gauss–Seidel
methods

The matrix A of the equation (1) is splitted as A = D+L+U , where D is the diagonal
matrix of the diagonal entries of A, L is the strict lower triangular matrix of A, and U is
the strict upper triangular matrix of A. The well-known Jacobi method (J) is defined as

xk+1 = (I −D−1A)xk +D−1b, (3)

whose TJ = I −D−1A. It is known that if A is diagonally dominant the method will be
convergent (Forsythe and Moler, 1967; Varga, 2000; Young, 1971; Saad, 2003). This is a
sufficient condition but not necessary.

The Gauss–Seidel method or forward Gauss–Seidel method (fGS) is defined as

xk+1 =−(D+L)−1Uxk +(D+L)−1b, (4)

whose Tf GS =−(D+L)−1U and d f GS = (D+L)−1b. Also, it is known that convergence
is guaranteed if the matrix A is diagonally dominant. There is a method similar to the
equation (4) known as backward Gauss–Seidel method (bGS) (Quarteroni et al., 2006;
Bertaccini and Durastante, 2018). This method is defined by the equation (5).

xk+1 =−(D+U)−1Lxk +(D+U)−1b, (5)

whose TbGS =−(D+U)−1L and dbGS = (D+U)−1b. Note that to obtain the solution in
equation (4) the unknowns are ordered from 1 to n, and in equation (5) the unknowns are
ordered from n to 1. Generally, Tf GS ̸= TbGS, and consequently the approximate solutions
of both methods are different. Therefore, this motivated the development of a method
that takes into account the two forms of ordering the unknowns. This method was called
the symmetric Gauss–Seidel method (Quarteroni et al., 2006; Bertaccini and Durastante,
2018).

The well-known symmetric Gauss–Seidel method (sGS) is obtained by combining
the forward and backward variants of the Gauss–Seidel method (Young, 1989; Quarteroni
et al., 2006; Bertaccini and Durastante, 2018).

forward (D+L)xk+1/2
f =−Uxk

f +b, (6)

backward (D+U)xk+1
b =−Lxk+1/2

b +b. (7)

Frequently, the method is obtained if in the above equations xk+1/2
f and xk+1/2

b are elim-

inated assuming that xk+1/2
f = xk+1/2

b . Furthermore, it is assumed that xk+1 = xk+1
b and

xk = xk
f to obtain

xk+1 =(D+U)−1L(D+L)−1Uxk +(D+U)−1[I −L(D+L)−1]b

=TbGSTf GSxk +dbGS +TbGSd f GS. (8)

On the other hand, starting from the alternative system (9-10) it is possible to deduce
a new symmetric Gauss–Seidel method (nsGS).

forward (D+L)xk+1
f =−Uxk+1/2

f +b, (9)

backward (D+U)xk+1/2
b =−Lxk

b +b. (10)
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Analogously it is possible to assume that xk+1/2
f = xk+1/2

b , and solving the system is ob-
tained

xk+1 =(D+L)−1U(D+U)−1Lxk +(D+L)−1[I −U(D+U)−1]b

=Tf GSTbGSxk +d f GS +Tf GSdbGS. (11)

Note that TsGS = (D+U)−1L(D+L)−1U and TnsGS = (D+L)−1U(D+U)−1L. Fur-
thermore, both methods have an equivalent computational cost. In general, TsGS ̸= TnsGS
because the product of matrices is not commutative.

However, in general xk+1/2
f ̸= xk+1/2

b , and this allows to deduce new methods of the
symmetric type. In fact, in the two combinations of forward and backward Gauss–Seidel
methods performed above, an intermediate step xk+1/2 is introduced, which is later elim-
inated. For this reason, the rate of convergence of the methods generated with these
combinations should be equal to or greater than each Gauss–Seidel separately. Based on
this idea of combining forward and backward Gauss–Seidel methods, m-order methods
can be deduced, which have a higher rate of convergence.

The m-order methods and new symmetric Gauss–Seidel
methods

Consider a new way to combine forward and backward Gauss–Seidel methods like

forward (D+L)xk+1
f =−Uxk+1/2

f +b, (12)

forward (D+L)xk+1/2
f =−Uxk

f +b, (13)

backward (D+U)xk+1
b =−Lxk+1/2

b +b, (14)

backward (D+U)xk+1/2
b =−Lxk

b +b. (15)

Thus, three new methods can be obtained. The first method, described by equation (16),
is obtained by eliminating xk+1/2

f in the equations (12) and (13). The second method,

described by the equation (17), is obtained by eliminating xk+1/2
b in the equations (14)

and (15).

forward xk+1
f = [(D+L)−1U ]2xk

f +[−(D+L)−1U + I](D+L)−1b. (16)

backward xk+1
b = [(D+U)−1L]2xk

b +[−(D+U)−1L+ I](D+U)−1b. (17)

These two new methods can be called 2-order forward and backward Gauss–Seidel, be-
cause their iteration matrices are defined by Tf GSo2 = [(D + L)−1U ]2 = Tf GSTf GS and
TbGSo2 = [(D+U)−1L]2 = TbGSTbGS. Note that the number of steps which the current it-
eration depends on is one, as the contribution of the intermediate step is transferred to the
iteration matrix and vector d. Thus, these methods retain the form of a first-order method,
but with a rate of convergence greater than its precursor methods given equations (4) and
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(5). The third method is obtained as a linear combination of the equations (16) and (17).

xk+1 =µxk+1
f +(1−µ)xk+1

b

={µ[(D+L)−1U ]2 +(1−µ)[(D+U)−1L]2}xk

+{µ[−(D+L)−1U + I](D+L)−1 +(1−µ)[−(D+U)−1L+ I](D+U)−1}b,
(18)

where xk
f = xk

b was assumed, and the free parameter µ ∈ [0,1].
Considering all of the above, it is possible to deduce another method such as

xk+1 =µxk+1
f +(1−µ)xk+1

b

=− [µ(D+L)−1U +(1−µ)(D+U)−1L]xk

+[µ(D+L)−1 +(1−µ)(D+U)−1]b, (19)

where xk+1
f and xk+1

b are given by the equations (4) and (5) respectively. This new sym-
metrical method has as its particular case the methods determined by the equations (4)
(µ = 1) and (5) (µ = 0). However, this method should not be called an 2-order method
because its iteration matrix is not the product of two iteration matrices.

This procedure can also be used to obtain higher order Jacobi methods, and with
this it is possible to increase the rate of convergence. Consider Jacobi method with m
intermediate steps that will be eliminated

xk+1 =(I −D−1A)xk+(m−1)/m +D−1b

xk+(m−1)/m =(I −D−1A)xk+(m−2)/m +D−1b
... =

...

xk+1/m =+(I −D−1A)xk +D−1b. (20)

After eliminating all the intermediate steps, the m-order Jacobi method is obtained and
given by

xk+1 = [I −D−1A]mxk +
[
I +

m−1

∑
l=1

(I −D−1A)m−l
]
D−1b. (21)

Note that m-order Jacobi methods have practical utility, since they have a higher rate of
convergence than the Jacobi method and retain the property of being parallelizable.

In general, from a generic method defined by the equation (2) its m-order method is
determined by

xk+1 = [T ]mxk +
[
I +

m−1

∑
l=1

[T ]m−l
]
d. (22)

In the particular case of the Gauss-Seidel methods, we obtain its forward and backward
m-order methods determined by the equations (23) and (24).

xk+1 = [−(D+L)−1U ]mxk +
[
I +

m−1

∑
l=1

[−(D+L)−1U ]m−l
]
(D+L)−1b. (23)

xk+1 = [−(D+U)−1L]mxk +
[
I +

m−1

∑
l=1

[−(D+U)−1L]m−l
]
(D+U)−1b. (24)

Alvarez et al. (2022) / Pesquisa e Ensino em Ciências Exatas e da Natureza, 6: 5



The m-order Jacobi and Gauss–Seidel methods

Even though the forward and backward Gauss–Seidel methods are not easily paralleliz-
able, their m-order methods have some benefits for parallelization. This is because the
iteration matrix of the m-order methods is the product of m matrices of the precursor
method, and the matrix product can be parallelized.

In addition, m-order methods can be interpreted as methods that generate subse-
quences of their precursors. For this reason a faster convergence can be proved for the
m-order methods if their precursors are convergent. Before, it is necessary to define the
rate of convergence for the precursor iterative method described by the equation (2). Let
εk := x− xk be the error vector after k iterations. Thus, εk = T εk−1 = · · · = T kε0. Con-

sider the average rate of convergence for k iterations defined by Kahan as RK :=−
ln( ∥εk∥

∥ε0∥
)

k

(Kahan, 1958), and by Varga as RV :=− ln(∥T k∥)
k (Varga, 2000).

Theorem 1 Let an iterative method defined by the equation (2) and its corresponding
m-order method determined by the equation (22). Let x0 be the same initial guess for
both iterative methods. If the precursor method (2) is convergent with rate of convergence
RK and RV , then the m-order method is convergent with rate of convergence R̄K ≥ (m−
1)RV +RK .

Proof 1 The proof uses the following theorem from mathematical analysis. A sequence
{xk} is convergent if, and only if, every its subsequences {xl(k)} are convergent (Apostol,
1981). If x0 is the same initial guess for both iterative methods, then the convergent
precursor method defined by equation (2) generates the sequence {xk}, and its m-order
method defined by the equation (22) generates a subsequence {x̄l = xl(k)} such that x̄l = xk

if k = ml with l = 1,2, . . .. Therefore, the subsequence {x̄l} is convergent, and represents
an acceleration in the rate of convergence.

Note that for the m-order method we have ε̄k := x− x̄k, ε̄k = [T m]kε̄0. If x̄0 = x0 it
follows that ε̄0 = ε0 and ε̄k = [T k]m−1εk. Therefore,

∥ε̄
k∥ ≤ ∥[T k]m−1∥∥ε

k∥ ≤ ∥T k∥m−1∥ε
k∥ ≤ ∥T∥k(m−1)∥ε

k∥. (25)

Analogously to the definition of Kahan it is possible to define R̄K := −
ln( ∥ε̄k∥

∥ε̄0∥
)

k for the
m-order method. Hence, from inequality (25) follows

R̄K ≥− ln(∥[T k]m−1∥)
k

+RK ≥ (m−1)RV +RK ≥−k(m−1)
ln(∥T∥)

k
+RK, (26)

which completes the proof. □

The previous theorem shows that the m-order method is always iteratively faster than
its precursor method for k iterations. It must be said that this process of acceleration of
convergence via subsequence may be more difficult to build in Krylov subspace meth-
ods, among which we highlight Conjugate Gradient (CG), Conjugate Gradient Squared
(CGS), and Generalized Minimum Residual (GMRES). In addition, the m-order methods
presented here are different from the so-called Chebyshev semi-iterative methods, second
order Richardson method and second-degree methods (Golub and Varga, 1961; Young,
1972), but the possibility that there is some relationship between them should not be
ruled out. Furthermore, all the ideas developed here can be applied to other methods such
as successive overrelaxation method (SOR) and symmetrical successive overrelaxation
method (SSOR).

Alvarez et al. (2022) / Pesquisa e Ensino em Ciências Exatas e da Natureza, 6: 6



The m-order Jacobi and Gauss–Seidel methods

On the other hand, it is possible to build a linear combination of different methods
with a parameter µ such that µ ∈ [0,1] (Traub, 1977). For example, combining the Jacobi
and Gauss–Seidel methods as

xk+1 =µ[(I −D−1A)xk +D−1b]+ (1−µ)[−(D+L)−1Uxk +(D+L)−1b]

=[µ(I −D−1A)− (1−µ)(D+L)−1U ]xk +µD−1b+(1−µ)(D+L)−1b, (27)

whose iteration matrix is TJ f GS = µTJ +(1−µ)Tf GS. In addition, it is possible to generate
new methods using the composition of different methods (Traub, 1977).

Numerical experiments
Seven matrices were chosen to perform numerical experiments and compare the per-

formance of the methods. The first matrix A1 = A4×4 is the well-known Hilbert matrix
defined as ai, j = (i+ j− 1)−1 (Forsythe and Moler, 1967). In the next four experiments
we use the matrices defined in Example 4.2 of Quarteroni et al. (2006), which are defined
as

A2 =

 3 0 4
7 4 2
−1 1 2

 , A3 =

 −3 3 −6
−4 7 −8
5 7 −9

 ,

A4 =

 4 1 1
2 −9 0
0 −8 −6

 , A5 =

 7 6 9
4 5 −4
−7 −3 8

 . (28)

Matrices A6 = A48×48 and A7 = A153×153 are sparse, and were obtained in the SuiteSparse
Matrix Collection (Kolodziej et al., 2019). The matrix A6 is the file ‘bcsstk01’ from
BCSSTRUC1 set. The matrix A7 is the file ‘bcsstk05’ from BCSSTRUC1 set. For all
experiments the vector b was chosen such that the exact solution is xi = i ∀i = 1, . . . ,n,
and the same initial guess was x0 = 0. However, there are better initial guess for each
method, which are determined by x0 = d. This last choice allows to reduce the number
of iterations necessary to verify the stopping criterion. The stopping criterion used was
max

1≤i≤n
{|xk+1

i − xk
i |}< 10−14.

The algorithms developed and implemented in this work make extensive use of vector
structures, therefore not presenting explicit loops with the exception of the external repeti-
tion structure of the ‘while’ type used to execute the iterative convergence process. Thus,
the computational performance of the Jacobi and Gauss–Seidel methods are optimized
in the Matlab® language environment. With respect to the methods given by equations
(21), (23) and (24) the sum of order m is implemented using a ‘for’ type repetition struc-
ture since in the simulations m was equal to 2 and 10. Therefore, it is good to remember
that vectorized code does not necessarily mean faster code, due to the values of m it was
decided to implement the sum in a serial way without loss of computational efficiency
(Kepner, 2009). Furthermore, the implementation of the algorithm considered that matri-
ces A6 and A7 are sparse. This allows you to save a significant amount of memory and
reduce computation time.

In Tables 1, 2, 3, 4, 5, 6 and 7 the determinant, the condition number κ(T )= ∥T∥2∥T−1∥2,
the spectral radius and the number of iterations for each method are presented. For ma-
trix A1 only the Jacobi methods are divergent. For matrix A2 only the method defined
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by equation (19) is convergent. In the case of matrix A3 only the forward Gauss–Seidel
methods are divergent, and for the matrix A5 only the backward Gauss–Seidel methods
are divergent. The numerical results confirm the Theorem 1.

Table 1: Iteration matrix of each method for the linear system defined by the matrix A1:
determinant, condition number, spectral radius and number of iterations.

Method det(T ) κ(T ) ρ(T ) Iterations
J Eq. (3) -1.5294270 8.4311823 2.5820911 divergent
2-o J Eq. (21) 2.3391472 29.409302 6.6671949 divergent
10-o J Eq. (21) 70.030586 3.417×106 13173.942 divergent
fGS Eq. (4) 0 ∞ 0.9990297 22002
2-o fGS Eq. (16) 0 ∞ 0.9980605 12002
10-o fGS Eq. (23) 0 ∞ 0.9903401 2853
bGS Eq. (5) 0 ∞ 0.9990297 22002
2-o bGS Eq. (17) 0 ∞ 0.9980605 13317
10-o bGS Eq. (24) 0 ∞ 0.9903401 2835
sGS Eq. (8) 0 ∞ 0.9985069 15002
nsGS Eq. (11) 0 ∞ 0.9985069 14002
npsGS µ = 1

2 Eq. (18) -0.0297230 19.554683 0.9984568 12002
psGS µ = 1

2 Eq. (19) -0.0984462 16.596875 0.9992367 26002

Table 2: Iteration matrix of each method for the linear system defined by the matrix A2:
determinant, condition number, spectral radius and number of iterations.

Method det(T ) κ(T ) ρ(T ) Iterations
J Eq. (3) -1.1666666 4.0795444 1.1251473 divergent
2-o J Eq. (21) 1.3611111 4.8365021 1.2659565 divergent
10-o J Eq. (21) 4.6716241 14.294370 3.2515769 divergent
fGS Eq. (4) 0 ∞ 1.5833333 divergent
2-o fGS Eq. (16) 0 ∞ 2.5069444 divergent
10-o fGS Eq. (23) 0 ∞ 99.020142 divergent
bGS Eq. (5) 0 ∞ 1.0801234 divergent
2-o bGS Eq. (17) 0 ∞ 1.1666666 divergent
10-o bGS Eq. (24) 0 ∞ 2.1613940 divergent
sGS Eq. (8) 0 ∞ 1.5833333 divergent
nsGS Eq. (11) 0 ∞ 1.5833333 divergent
npsGS µ = 1

2 Eq. (18) 0.6959153 4.5638159 1.3980206 divergent
psGS µ = 1

2 Eq. (19) -0.3767361 5.4447600 0.7842738 142
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Table 3: Iteration matrix of each method for the linear system defined by the matrix A3:
determinant, condition number, spectral radius and number of iterations.

Method det(T ) κ(T ) ρ(T ) Iterations
J Eq. (3) -0.2539682 28.1625119 0.8133091 167
2-o J Eq. (21) 0.0644998 37.9834491 0.6614717 18
10-o J Eq. (21) 1.1163×10−6 604.18447 0.1266357 18
fGS Eq. (4) 0 ∞ 1.1111111 divergent
2-o fGS Eq. (16) 0 ∞ 1.2345679 divergent
10-o fGS Eq. (23) 0 ∞ 2.8679719 divergent
bGS Eq. (5) 0 ∞ 0.9428090 565
2-o bGS Eq. (17) 0 ∞ 0.8888888 288
10-o bGS Eq. (24) 0 ∞ 0.5549289 60
sGS Eq. (8) 0 ∞ 0.7126966 103
nsGS Eq. (11) 0 ∞ 0.7126966 101
npsGS µ = 1

2 Eq. (18) 0.1854533 12.8438001 0.8232698 165
psGS µ = 1

2 Eq. (19) -0.2968002 6.8249624 0.6993380 96

Table 4: Iteration matrix of each method for the linear system defined by the matrix A4:
determinant, condition number, spectral radius and number of iterations.

Method det(T ) κ(T ) ρ(T ) Iterations
J Eq. (3) 0.0740740 6.1081965 0.4438188 45
2-o J Eq. (21) 0.0054869 6.4441038 0.1969751 7
10-o J Eq. (21) 4.973×10−12 16.129493 0.0002965 7
fGS Eq. (4) 0 ∞ 0.0185185 12
2-o fGS Eq. (16) 0 ∞ 0.0003429 7
10-o fGS Eq. (23) 0 ∞ 0.0000000 3
bGS Eq. (5) 0 ∞ 0.3013571 30
2-o bGS Eq. (17) 0 ∞ 0.0908161 16
10-o bGS Eq. (24) 0 ∞ 0.0000061 5
sGS Eq. (8) 0 ∞ 0.0185185 11
nsGS Eq. (11) 0 ∞ 0.0185185 11
npsGS µ = 1

2 Eq. (18) -1.246×10−5 71.573476 0.0496594 13
psGS µ = 1

2 Eq. (19) 9.087×10−3 5.5394076 0.2388210 25
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Table 5: Iteration matrix of each method for the linear system defined by the matrix A5:
determinant, condition number, spectral radius and number of iterations.

Method det(T ) κ(T ) ρ(T ) Iterations
J Eq. (3) -0.2142857 17.5108316 0.6411328 79
2-o J Eq. (21) 0.0459183 20.473569 0.4110512 10
10-oJ Eq. (21) 2.041×10−7 79.631459 0.0117349 10
fGS Eq. (4) 0 ∞ 0.7745966 136
2-o fGS Eq. (16) 0 ∞ 0.6000000 70
10-o fGS Eq. (23) 0 ∞ 0.0777599 16
bGS Eq. (5) 0 ∞ 1.0923807 divergent
2-o bGS Eq. (17) 0 ∞ 1.1932958 divergent
10-o bGS Eq. (24) 0 ∞ 2.4195832 divergent
sGS Eq. (8) 0 ∞ 0.4535573 46
nsGS Eq. (11) 0 ∞ 0.4535573 46
npsGS µ = 1

2 Eq. (18) 0.0799683 6.1521714 0.7625609 115
psGS µ = 1

2 Eq. (19) -0.1455420 10.015480 0.5892481 66

Table 6: Iteration matrix of each method for the linear system defined by the matrix A6:
determinant, condition number and spectral radius.

Method det(T ) κ(T ) ρ(T )
J Eq. (3) 3.844×10−18 1.140×105 1.1014522
2-o J Eq. (21) 1.478×10−35 2.149×106 1.2131969
10-o J Eq. (21) 6.958×10−175 3.740×1011 2.6281890
fGS Eq. (4) 0 ∞ 0.9969136
2-o fGS Eq. (16) 0 ∞ 0.9938367
10-o fGS Eq. (23) 0 ∞ 0.9695613
bGS Eq. (5) 0 ∞ 0.9969136
2-o bGS Eq. (17) 0 ∞ 0.9938367
10-o bGS Eq. (24) 0 ∞ 0.9695613
sGS Eq. (8) 0 ∞ 0.9968851
nsGS Eq. (11) 0 ∞ 0.9968851
npsGS µ = 1

2 Eq. (18) 3.367×10−69 5.292×105 0.9946049
psGS µ = 1

2 Eq. (19) -1.035×10−43 1.980×105 0.9976792

Alvarez et al. (2022) / Pesquisa e Ensino em Ciências Exatas e da Natureza, 6: 10



The m-order Jacobi and Gauss–Seidel methods

Table 7: Iteration matrix of each method for the linear system defined by the matrix A7:
determinant, condition number and spectral radius.

Method det(T ) κ(T ) ρ(T )
J Eq. (3) 2.311×10−51 2.521×103 2.0149510
2-o J Eq. (21) 5.342×10−102 1.760×106 4.0600279
10-o J Eq. (21) 0 ∞ 1103.1767
fGS Eq. (4) 0 ∞ 0.9985763
2-o fGS Eq. (16) 0 ∞ 0.9971546
10-o fGS Eq. (23) 0 ∞ 0.9858541
bGS Eq. (5) 0 ∞ 0.9985763
2-o bGS Eq. (17) 0 ∞ 0.9971546
10-o bGS Eq. (24) 0 ∞ 0.9858541
sGS Eq. (8) 0 ∞ 0.9977967
nsGS Eq. (11) 0 ∞ 0.9977967
npsGS µ = 1

2 Eq. (18) -4.112×10−159 6.055×103 0.9974169
psGS µ = 1

2 Eq. (19) -3.445×10−97 1.021×104 0.9987709

In the Tables 8 and 9 three times in seconds for each method are presented. The times
tT and td correspond to the time taken to calculate the iteration matrix T and the vector
d respectively. Time tW corresponds to the time spent in the iterative process of each
method or ‘while’. This time was obtained considering the same initial guess x0 = 0 for
all methods. The total time tt = tT + td + tW should be used to compare the temporal
performance of each method. This is because the larger m, the greater the time tT and td ,
and the smaller the time tW .

Table 8: Times to calculate the iteration matrix tT , the vector td , total time tt for A6 and
the number of iterations.

Method tT td tt Iterations
J Eq. (3) 4.0800×10−4 3.4040×10−4 — divergent
2-o J Eq. (21) 4.3590×10−4 6.9340×10−4 — divergent
10-o J Eq. (21) 5.4720×10−4 29.6490×10−4 — divergent
fGS Eq. (4) 3.5250×10−4 3.5250×10−4 19.517732 9829
2-o fGS Eq. (16) 5.9830×10−4 8.1300×10−4 5.007476 5115
10-o fGS Eq. (23) 48.542×10−4 433.543×10−4 0.177706 1068
bGS Eq. (5) 3.0350×10−4 3.5380×10−4 17.243418 9140
2-o bGS Eq. (17) 5.9830×10−4 8.7980×10−4 3.950617 4703
10-o bGS Eq. (24) 17.686×10−4 110.108×10−4 0.157725 996
sGS Eq. (8) 6.1640×10−4 6.1090×10−4 18.314291 9564
nsGS Eq. (11) 5.8820×10−4 7.4930×10−4 16.978738 9225
npsGS µ = 1

2 Eq. (18) 12.462×10−4 14.577×10−4 6.007731 5685
psGS µ = 1

2 Eq. (19) 7.2730×10−4 5.5010×10−4 31.678465 12597
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Table 9: Times to calculate the iteration matrix tT , the vector td , total time tt for A7 and
the number of iterations.

Method tT td tt Iterations
J Eq. (3) 9.3470×10−4 3.1560×10−4 — divergent
2-o J Eq. (21) 18.3030×10−4 7.5370×10−4 — divergent
10-o J Eq. (21) 35.0760×10−4 371.2180×10−4 — divergent
fGS Eq. (4) 33.7520×10−4 28.8670×10−4 283.972996 21246
2-o fGS Eq. (16) 74.0830×10−4 96.9050×10−4 76.972961 11020
10-o fGS Eq. (23) 325.071×10−4 1606.472×10−4 10.532080 4002
bGS Eq. (5) 23.8040×10−4 25.1510×10−4 279.075221 21253
2-o bGS Eq. (17) 67.4790×10−4 71.0550×10−4 140.556805 15002
10-o bGS Eq. (24) 326.277×10−4 1725.13×10−4 4.338155 2528
sGS Eq. (8) 105.240×10−4 89.1220×10−4 122.439710 14011
nsGS Eq. (11) 95.7180×10−4 79.4130×10−4 122.298417 14002
npsGS µ = 1

2 Eq. (18) 155.998×10−4 145.274×10−4 88.492540 11817
psGS µ = 1

2 Eq. (19) 60.7230×10−4 62.1690×10−4 392.218996 24913

Conclusions
The m-order methods and new symmetric Gauss–Seidel methods are developed. The

m-order methods have a higher rate of convergence than their first-order methods, but
conserve the form of the first-order version. These m-order methods are subsequences of
its precursor method, where some benefits of using vector and parallel processors can be
explored. This is because the iteration matrix of the m-order methods is the product of m
matrices of the precursor method. The numerical results obtained with vector implemen-
tations show computational advantages when compared to the first-order versions. The
Theorem 1 shows that the m-order method is always iteratively faster than its precursor
method for k iterations.

The well-known symmetric Gauss–Seidel method defined by equation (8) depends
on the order used to combine the forward and backward variants of the Gauss–Seidel
method, since its iteration matrix is obtained by composing these two variants. If the
composition order was reversed, then a new symmetric Gauss–Seidel method defined by
equation (11) is obtained. Furthermore, the computational implementation of these two
symmetric methods requires the determination of the product of the iteration matrices of
the two Gauss–Seidel variants.

On the other hand, the new symmetric Gauss–Seidel method defined by equation (19)
does not depend on the order used to combine the forward and backward variants of the
Gauss–Seidel method, since its iteration matrix is obtained with the linear combination of
these two variants. In addition, it does not require the determination of the product of the
iteration matrices of the two Gauss–Seidel variants, so its computational implementation
is simpler than the methods defined by equations (8) and (11). This method defined
by equation (19) proved to be interesting as it was the only method that converged in
all the numerical experiments presented here. However, a better choice of the linear
combination parameter µ should be further investigated. In all our numerical experiments
we used µ = 1/2. Finally, as far as the authors know, this is the first time that the methods
described by equations (11), (18), (19), (21), (23) and (24) are presented.
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