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Alguns comentários sobre modelos radiobiológicos e o modelo consistente da série de Taylor
Resumo: Aqui é demonstrado matematicamente que polinômios de ordem superior são
necessários para ter uma única fórmula que descreva a sobrevivência de todas as linhagens
celulares em todas as faixas de dose, que o modelo Linear Quadrático é insuficiente, e que o
parâmetro β deste modelo depende da faixa de dose usada para o ajuste da curva. Com base
na série de Taylor e em duas hipóteses matemáticas, é possı́vel mostrar que os parâmetros
livres são dependentes entre si, e uma nova abordagem é proposta. Dados experimentais
de sobrevivência celular indicam que existem pelo menos três comportamentos diferentes.
A análise teórica é testada para esses três comportamentos, incluindo também cinco mod-
elos conhecidos não baseados em séries de Taylor. Com base nos dados experimentais de
sobrevivência celular é possı́vel gerar gráficos da dose total isoefetiva no fracionamento. É
realizado um estudo comparativo entre os dados experimentais e os modelos em diferentes
esquemas de fracionamento. Dados experimentais mostram que o fracionamento nas faixas
de dose baixa e média pode apresentar um comportamento não monotônico diferente do
comportamento da maioria dos modelos. Por fim, mostra-se que para algumas linhagens
celulares o hiperfracionamento apresenta um ganho terapêutico considerável, pois há casos
em que a dose total isoefetiva é muito menor que a dose total no fracionamento conven-
cional.
Palavras-chave: Radioterapia, Modelos radiobiológicos, Fracionamento de dose, Série de
Taylor, Modelo LQ
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Abstract: Here it is mathematically shown that higher-order polynomials are needed to have
a single formula that describes the survival of all cell lines at all dose ranges, that the Linear
Quadratic model is insufficient, and that the β parameter of this model is dependent on the dose
range used for curve fitting. Based on the Taylor series and two mathematical hypotheses, it
is possible to show that the free parameters are dependent on each other, and a new approach
is proposed. Experimental cell survival data indicate that there are at least three different be-
haviors. The theoretical analysis is tested for these three behaviors, including also five known
models not based on Taylor series. Based on experimental cell survival data it is possible to gen-
erate charts on the isoeffective total dose in fractionation. A comparative study is carried out
between experimental data and models in different fractionation schemes. Experimental data
show that the fractionation in the low and medium dose ranges can present a non-monotonic be-
havior different from the behavior of most models. Finally, it is shown that for some cell lines,
hyperfractionation presents a considerable therapeutic gain, since there are cases in which the
isoeffective total dose is much lower than the total dose in conventional fractionation.
Key words: Radiotherapy, Radiobiological models, Dose fractionation, Taylor series, LQ
model

Introduction
This paper deals with radiobiological models that describe the survival curves of cells sub-

jected to photon irradiation. In radiation oncology, radiobiological models are important in the
search for an increasingly better radiotherapy. All existing models need to determine a certain
amount of free parameters by curve fitting with experimental data. Therefore, they can be seen
in some ways as phenomenological models, although some use mechanistic-radiobiologic ar-
guments to explain the shape of the survival curve S. To date, there is no model based solely
on “First Principles” that describes well the experimental data in all dose ranges: low, medium
and high (Andisheh et al., 2013; Joiner & van der Kogel, 2018). Thus, all models attempt to
approximately describe the mathematical relationship between S and the dose D. Furthermore,
in a way all the proposed models implicitly assume that the mathematical expression for S(D)
must be the same for all cell lines. However, experimental data indicate that there are at least
three different types of cell response to radiation that will be described in the next section.

In mathematical terms, a model with a greater number of free parameters should better fit
the experimental data. The existing models can be divided into two groups: those based on
Taylor series expansion (TSE) and those that deviate from it. However, models that deviate
from TSE seek to hit a part of the unknown function S(D), and therefore should have fewer free
parameters than those based solely on TSE. If, for these models to approximate this function
with accuracy similar to TSE, it is necessary that they have the same number of free parameters
as TSE, then the choice of TSE is mathematically preferable, since it has a consistent and
robust mathematical foundation, which makes it possible to take advantage of the relationship
between the free parameters as new expansion terms are added according to the need imposed
by the precision of the experimental data.

The Linear Quadratic (LQ) model is based on TSE (McMahon, 2019; Garcia et al., 2006),
and has been the most used in decades. All the models proposed so far are important for several
reasons. Perhaps the most important reason is that they highlight two limitations of the LQ
model. First, the approximation

S(D) = e−[αD+βD2] (1)
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with α and β as free parameters is insufficient to properly describe S(D) ∀D ∈ [0,Dmax], where
Dmax is the highest dose that can be applied in a cell survival experiment at a particular cell line
(McMahon, 2019; Bender & Gooch, 1962; Hug & Kellerer, 1963; Scholz & Kraft, 1994; Lind
et al., 2003; Guerrero & Li, 2004; Park et al., 2008; Kavanagh & Newman, 2008; McKenna &
Ahmad, 2009; Ekstrand, 2010; Wang et al., 2010; Belkić & Belkić, 2011; Andisheh et al., 2013;
Shuryak & Cornforth, 2021). Second, the LQ model is also insufficient to describe S(D) for
all cell lines, although it presents adequate accuracy when restricted only to certain dose ranges
contained in [0,Dmax], as verified by several researchers.

In many existing models it is common to assume that this relation is of type S(D) = e− f (D),
in addition to requiring that S(D) and its derivatives up to order m, denoted by S(m)(D) = dmS

dDm ,
be continuous over the entire dose interval [0,Dmax]. Therefore, these will be the only two
mathematical hypotheses assumed in this work. With the experimental data available so far, it
is not possible to perceive that there is any physico-chemical-biological phenomenon or process
that indicates the discontinuity of derivatives up to order m, nor that there is any dose threshold
for survival (Joiner & van der Kogel, 2018). Therefore, all models that use transition dose
to mathematically break the function into dose intervals imply discontinuity of the derivatives
from some value m, even if S is continuous. But this does not mean that these models do not
have theoretical and practical relevance.

It seems to be consensual that radiation oncology is an interdisciplinary field, where several
areas of knowledge (physics, medicine, biology, chemistry, mathematics, computing, engineer-
ing, etc.) contribute to the construction of a more complete approach with a multidisciplinary
profile. Here we present an approach from a physical, mathematical and computational point of
view that seeks a precise formula for f (D) with the fewest possible terms in the TSE. In honor
of all the importance that the LQ model had until today, and the efforts of many researchers to
improve this model, we suggest calling our development the Consistent Taylor Series Model
(CTS). In addition to the mathematical advantages of using the TSE mentioned above, the CTS
model also has practical advantages. The first is that it would be easy to manipulate for clinical
use, since it only uses polynomials. The second is that all the knowledge accumulated about the
free parameters α and β of the LQ model can be used.

Other important advantages of the CTS model are the following. Instead of fitting free
generic α, β and γ parameters as is done for existing models, the CTS model fits the values of
the derivatives of S(D) at the point D0, where D0 is the center of the neighborhood with radius
R containing all D values for which the Taylor series converges. As the TSE can accurately
represent f (D), as new terms are added to the series, the values of the derivatives of S(D) at the
point D0 must be better determined. This makes it possible to create an increasingly accurate
and reliable database of these derivatives for each type of tissue. In contrast, the free parameters
of non-TSE based models require building a new database for each model, as the α and β of
the LQ model is different from the α and β from the Padé Linear Quadratic (PLQ) model for
example (Belkić & Belkić, 2011; Andisheh et al., 2013). The derivatives of S(D) at D0 have a
well-known mathematical interpretation, which in the future may be placed in correspondence
with an interpretation in the context of the kinetics and/or dynamics of the cellular response to
radiotherapy. Differently, for the free parameters of the other models it will be more laborious to
make this interpretation, since each model proposes a different mathematical formula for S(D).
Finally, since the exact f (D) is unknown it will be very difficult to guess its correct mathemat-
ical expression. In contrast, the CTS model allows one to approximate f (D) with increasing
precision as new terms are added to the series. For this, it is crucial that the experimental data
from cell survival assays are increasingly accurate, and this is possible to be achieved with the
advancement of experimental techniques and technology.
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The consistent Taylor series model
To develop the CTS model it is necessary to make two mathematical hypotheses. The first

(H1) consists of assuming that the dose–survival relationship is of the type

S(D) = e− f (D) or f (D) =−loge(S(D)) ∀D ∈ [0,Dmax]. (2)

This hypothesis is plausible, since several existing models have this form, although this form
for S(D) can be derived by applying Poisson statistics (Joiner & van der Kogel, 2018). The
second hypothesis (H2) is to assume that S(D) and all its derivatives up to order m are con-
tinuous functions of dose. There are intense debates about the need for continuity of S(D)
and its derivatives, which has motivated even the emergence of new radiobiological models
(Scholz & Kraft, 1994; Guerrero & Li, 2004; Park et al., 2008; Kavanagh & Newman, 2008;
McKenna & Ahmad, 2009). The second hypothesis is justified because to date there is no
experimental evidence to deny this continuity. Consequently, f (D) and all its derivatives up

to order m are also continuous functions. In other words, the derivatives f (1)(D) = −S(1)(D)
S(D) ,

f (2)(D) = −S(2)(D)S(D)−S(1)(D)S(1)(D)
[S(D)]2

, f (3)(D) = −S(3)(D)[S(D)]2−3S(2)(D)S(1)(D)S(D)+2[S(1)(D)]3

[S(D)]3
and

so on are continuous functions ∀D ∈ [0,Dmax].
As f (D) is unknown (Joiner & van der Kogel, 2018), and since f (D) is continuously dif-

ferentiable, then it can be approximated by the Taylor series around the point D0 ∈ [0,Dmax]
as

f (D) =
∞

∑
k=0

f (k)(D0)

k!
(D−D0)

k ∀D ∈ [0,Dmax]. (3)

This TSE had already been proposed by other authors (McMahon, 2019). In this version, the
exact function f (D) requires determining an infinite number of coefficients that are related to
the derivatives f (k)(D0) (Belkić & Belkić, 2011). These coefficients are the free parameters
to be determined by curve fitting with the experimental data. The greater the number of free
parameters, the better the fit with the experimental data. On the other hand, the Taylor series
can be represented exactly with a finite number m of terms as

f (D) =
m−1

∑
k=0

f (k)(D0)

k!
(D−D0)

k +
f (m)(Dx)

m!
(D−D0)

m ∀D ∈ [0,Dmax], (4)

where Dx ∈ [D0,D] and depends on the value of D (Burden et al., 2016). Note that in this version
of the Taylor series the set of infinite free parameters f (k)(D0) with k ≥m is replaced by a single
unknown f (m)(Dx). This unknown requires knowledge of the derivative f (m)(D) evaluated at
the unknown point Dx, that is, it is necessary to know the exact mathematical expression for
f (m)(D) and the exact value of Dx. Otherwise, we will always have an approximation of f (D)
whose accuracy will depend on the degree of regularity of this function and the number of free
parameters. Equation (4) allows us to obtain a mathematically accurate formula for f (D) with
few terms of the Taylor series and consequently few free parameters, in addition to enabling our
mathematical analysis of radiobiological models.

It is important to highlight that the Taylor series convergence is guaranteed by mathematical
theorems (Apostol, 1967). Therefore, it is not necessary to carry out any statistical test to verify
the convergence of the Taylor series, just verify the hypotheses of the theorems. However, those
models whose convergence is not mathematically demonstrated need some kind of convergence
guarantee, such as statistical tests. This research work uses the Taylor series to adequately
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approximate S(D), and the terms of the series that have been implemented so far show the need
for polynomials of degree greater than six.

When D0 = 0 Gy and a second order polynomial are chosen, then f (D) is

f (D) =−S(1)(0)D− [S(2)(Dx)S(Dx)−S(1)(Dx)S(1)(Dx)]

2[S(Dx)]2
D2 (5)

because S(D = 0) = 1, since no dose threshold for cell survival has yet been observed (Joiner
& van der Kogel, 2018). Consequently, f (0) = f (0)(0) = 0 and f (1)(0) = −S(1)(0). Equation
(5) is an exact formula if the values of S(1)(0), S(Dx), S(1)(Dx) and S(2)(Dx) are known ex-
actly. It should be noted that S(1)(0) is a constant value, and unlike the values S(Dx), S(1)(Dx)
and S(2)(Dx) are non-constants that depend on the value of D. Since the exact mathematical
expression for S(D) is unknown, these values will be approximated by curve fitting with the
experimental data. Consequently, the equation (5) becomes an approximation. This approx-
imation is mathematically equivalent to the LQ model (1), where α = f (1)(0) = −S(1)(0) e
2β = f (2)(Dx). Thus, the mathematical interpretation of the parameter α is the derivative of the
survival curve evaluated at D = 0 Gy with a negative sign. The sign of α depends on the sign of
S(1)(0).

The experimental evidence available to date indicates that the S(D) function exhibits at least
three different behaviors depending on the type of cancer cell line. Long known and occurring
in most cell types, in the first behavior S(D) is a monotone decreasing function over the entire
dose range. Several human lung cancer cell lines can be mentioned as examples of this behavior
(Carmichael et al., 1989), in addition to the 12 human tumour cell lines studied in Steel et al.
(1987), and some others reanalyzed in Guerrero & Li (2004) and Andisheh et al. (2013). In the
second behavior initially at low doses S(D) increases until reaching its absolute maximum at
the point Dc, later for D > Dc it becomes monotonous decreasing. Human prostate cancer cells
such as CP3 cell lines (Garcia et al., 2006) are an example of this behavior. This means that
for these cells low doses contribute to increase the survival of cancer cells. Third, at low doses
initially S(D) decreases until reaching a relative minimum at Dc1, from dose Dc1 there is an
increase until reaching a relative maximum at point Dc2, and later the function becomes mono-
tone decreasing. This type of behavior is known as low-dose hyper-radiosensitivity (HRS) and
increased radioresistance (IRR) (Krueger et al., 2007; Fernandez-Palomo et al., 2016). Among
the cell lines with this behavior are: hamster fibroblast cells as CHOAA8 cell line (Garcia et al.,
2006), human glioma cells as U373MG cell line (Garcia et al., 2006), human prostate cancer
cells as DU145 cell lines (Garcia et al., 2006) and human glioma cell line as T98G (Fernandez-
Palomo et al., 2016). Theoretically, the first and second behavior of the S(D) function could
be adequately described by approximating f (D) by a second-order polynomial (LQ model).
However, the third behavior requires at least third-order polynomials. Moreover, in the first
behavior there is no experimental evidence of the existence of relative extremes, so S(1)(D) ̸= 0
∀D ∈ [0,Dmax]. For cells that exhibit the second behavior, the experimental data indicate the ex-
istence of a relative/absolute maximum at the point Dc, so S(1)(Dc) = 0 and S(2)(Dc) < 0. For
cells that exhibit the third behavior, the experimental data indicate the existence of a relative
minimum at the point Dc1 (S(1)(Dc1) = 0 and S(2)(Dc1) > 0) and a relative maximum at point
Dc2. These relative extreme points should be understood as transition points in the radiobiolog-
ical context, where the S(D) can change its behavior. In other words, they are dose values at
which cells for some reason change their response to radiation.

It should be noted that our approach shows that in the LQ model, unlike α, the parameter
β depends on the unknown point Dx. This means that β is not a constant and its value will
depend on the dose range that corresponds to the experimental data being analyzed. In Garcia
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et al. (2006) an equivalent conclusion is reached by performing curve fitting experiments at
different dose intervals for various cell lines. Often, in clinical practice for each tissue type
it is common to assume β as being constant, and even more α

β
a fixed value that is related to

the early or late response of the cells tissue to radiation regardless of the dose range under
analysis (Joiner & van der Kogel, 2018; Garcia et al., 2006, 2007). Our mathematical analysis
shows that these radiobiological claims are not completely verified by the LQ model, since
α

β
= 2S(1)(0)[S(Dx)]

2

[S(2)(Dx)S(Dx)−S(1)(Dx)S(1)(Dx)]
depends on Dx. In Steel et al. (1987), using the LQ model,

the expression for split-dose recovery ratio e(2βd2) for 12 human tumour cell lines is studied.
In three cell lines this expression greatly underestimates the observed recovery, and in another
cell line this expression considerably overestimates. As an explanation the authors say that “the
scatter in these results may be due to the fact that recovery ratio in the equation given above
depends steeply on the value of β (which is often poorly defined by cell survival data)”. In
addition, one of the conclusions obtained in Garcia et al. (2007) is that the α and β parameters
depend on the dose range used to perform the curve fitting, and that this strongly impacts the
α

β
ratio. Subsequently, our analysis will show that the β parameter, in addition to being dose

dependent (Dx) in the LQ model, also depends on the α parameter.
To have a parameter β independent of the dose Dx it is necessary to choose a third order

polynomial. In this way, if D0 = 0 Gy is obtained

f (D) = f (1)(0)D+
1
2

f (2)(0)D2 +
1
6

f (3)(Dx)D3, (6)

where f (1)(0), f (2)(0) and f (3)(Dx) must be determined by fitting the experimental data. Note
that now f (1)(0) = α, f (2)(0) = 2β and f (3)(Dx) = 6γ. The α parameter remains the same,
but the β parameter is different from the LQ model as it is not dose dependent Dx. That is,

β = − [S(2)(0)−S(1)(0)S(1)(0)]
2 . Only the γ parameter depends on the unknown point Dx. Always

the parameter corresponding to the highest power of the polynomial will be dependent on the
dose range used in the experiment so that f (D) is exact, since it depends on finding f (m)(Dx).
Determining a good bound for f (m)(Dx) on a given interval is considered a difficult problem in
numerical analysis (Burden et al., 2016). This analysis shows that the free parameters obtained
via curve fitting in a certain dose range should not be used to estimate S(D) in doses that
extrapolate this dose range, since the last free parameter explicitly depends on the range used in
the curve fitting.

To fit the S(D) curve, taking advantage of the implications of hypotheses H1 and H2, it is
convenient to define β̂ =−S(2)(0) and γ̌ = f (3)(Dx). In this way β = 1

2(β̂+α2), γ = γ̌

6 and

S(D) = e−[αD+ 1
2 (β̂+α2)D2+ 1

6 γ̌D3], (7)

where α, β̂ and γ̌ are the free parameters to be determined by fitting the experimental data. It

should be noted that α influences the value of β, but not of β̂. Also, now α

β
= 2S(1)(0)

[S(2)(0)−S(1)(0)S(1)(0)]
=

2α

[β̂+α2]
=

2 α

β̂

[1+α
α

β̂
]

is a fixed value that does not depend on the dose range being analyzed (Dx), and

this must be its mathematical interpretation because it remains the same when f (D) is approxi-

mated by a higher order polynomial than three. It is interesting to note that α

β̂
= S(1)(0)

S(2)(0)
, that is,

the ratio of the first two derivatives of the survival curve in D0 = 0 Gy.
Furthermore, as a consequence of hypothesis H1 it is possible to show mathematically that

the curvature of S(D) is related to β̂ and not to β. Considering a two-dimensional space, the
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curvature of S(D) is defined for each dose value D as κ =
|S(2)(D)|

[1+[S(1)(D)]2]3/2 , and its corresponding

radius of curvature at this point is ρ = 1
κ

(Apostol, 1967). The sign of S(2)(D) determines the
type of concavity of the graph. If S(2)(D)> 0 the graph has an upward concavity. If S(2)(D)< 0
the graph has a downward concavity. If S(2)(D) = 0, then there exists for this value D an
inflection point of the curve or a relative extreme. Our development indicates that at the point

D = 0 Gy the curvature of S(D) is κ =
|β̂|

[1+α2]3/2 , and the concavity of the graph is determined

by the sign of β̂. In other words, the slope of S(D) at the point D = 0 Gy and its curvature are
determined by the free parameters α and β̂. If only a second order polynomial is used, then the
second free parameter β becomes dependent on the dose range used for the curve fitting. This
justifies the need for a higher order polynomial. In the future, with this mathematical basis, it
will be possible to assign to the free parameters a radiobiological interpretation in context of
the kinetics and/or dynamics of the cellular response to radiotherapy.

If the free parameters are not redefined as above to take advantage of hypotheses H1 and
H2, then the standard TSE model for third order polynomial would be

S(D) = e−[αD+βD2+γD3]. (8)

This model is similar to the Linear-Quadratic-Cubic model (Joiner & van der Kogel, 2018),
but with the difference that our approach does not impose any restrictions on the sign of the
third-order coefficient. Often in the literature constraints are imposed on the signs of the free
parameters to avoid ‘misestimated’ α

β
ratios (Guerrero & Li, 2004). The signs of the free param-

eters must naturally arise from the curve fitting, and they are related to the sign of the different
derivatives of S(D) at the point D0.

Similarly, the procedure can be repeated for D0 = 0 Gy and a fourth order polynomial. Thus
α =−S(1)(0), β̂ =−S(2)(0), β = 1

2(β̂+α2), γ̂ =−S(3)(0), γ = 1
6(γ̂+3αβ̂+2α3), λ̌ = f (4)(Dx),

λ = 1
24 λ̌ and

S(D) = e−[αD+ 1
2 (β̂+α2)D2+ 1

6 (γ̂+3αβ̂+2α3)D3+ 1
24 λ̌D4], (9)

where α, β̂, γ̂ and λ̌ are the free parameters to be determined by fitting the experimental data.
Now γ depends on α and β̂, but not γ̂. This interdependence between the model parameters
implies that their values determined by the fit with the experimental data will have small changes
as the higher order terms of the series are added. However, these small modifications tend to
have a limit, since the Taylor series is convergent. Therefore, starting from some specific value
of k it is to be expected that

∣∣∣ f (k)(0)
∣∣∣ > ∣∣∣ f (k+1)(0)

∣∣∣ > ∣∣∣ f (k+2)(0)
∣∣∣ >>

∣∣∣ f (m)(Dx)
∣∣∣, indicating

that higher order terms contribute less and less. In other words, the more terms in the series,
the more accurate these parameters will be, and this will be shown in Tables 1, 2 and 3. The
ratio α

β
remains the same, and new ratios arise that do not depend on Dx like β

γ
and α2

γ
. All of

these ratios are dose specific values that may have radiobiological significance. In this case the
standard TSE model would be

S(D) = e−[αD+βD2+γD3+λD4]. (10)

In this way, the standard CTS and TSE models for polynomials of degree five and six are
obtained.

S(D) = e−[αD+ 1
2 (β̂+α2)D2+ 1

6 (γ̂+3αβ̂+2α3)D3+ 1
24 (λ̂+4γ̂α+3β̂2+12α2β̂+6α4)D4+ 1

120 µ̌D5], (11)
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where λ̂ =−S(4)(0), f (4)(0) = λ̂+4αγ̂+3β̂2 +12α2β̂+6α4, µ̌ = f (5)(Dx) and µ = 1
120 µ̌.

S(D) = e−[αD+βD2+γD3+λD4+µD5]. (12)

S(D) = e−[αD+ 1
2 (β̂+α2)D2+ 1

6 (γ̂+3αβ̂+2α3)D3+ 1
24 (λ̂+4γ̂α+3β̂2+12α2β̂+6α4)D4+ 1

120 µ̌D5+ 1
720 η̌D6], (13)

where µ̂ = −S(5)(0), f (5)(0) = µ̌ = µ̂+ 5αλ̂+ 10β̂γ̂+ 20α2γ̂+ 30αβ̂2 + 60α3β̂+ 24α5, η̌ =
f (6)(Dx) and η = 1

720 η̌.

S(D) = e−[αD+βD2+γD3+λD4+µD5+ηD6]. (14)

Finally, the standard TSE model for a polynomial of degree seven is given by equation (15)

S(D) = e−[αD+βD2+γD3+λD4+µD5+ηD6+νD7]. (15)

Thus, what is being estimated by the least squares fit when using CTS models are the deriva-
tives of S(D) evaluated at the point D = 0 Gy. However, when the standard TSE model is used,
we are estimating mathematical relationships between the derivatives of S(D) evaluated at the
point D = 0 Gy. In other words, the parameters α, β̂, γ̂, . . . are independent of each other, while
the parameters α, β, γ, . . . are dependent on each other. In Garcia et al. (2007), it was shown
through numerical experiments of curve fitting for different dose ranges that in the region of
low doses the parameters α and β present large uncertainties, and that they are highly nega-
tively correlated. Finally, it must be said that the more accurate the experimental data is, it will
be necessary to increase the degree of the polynomial. However, this analysis predicts that if
exact f (D) is a polynomial of finite order m, then f (m+1)(Dx) = 0, otherwise higher order terms
must be entered from the series.

Dose fractionation, isoeffect and entire survival curve
The isoeffect E of a fractionation with n equal doses d such that the isoeffective total dose

D = nd is E = −n loge(S(d)) = n f (d), where S(d) is the entire survival curve ∀d ∈ [0,Dmax]
(Joiner & van der Kogel, 2018). If f (d) is known exactly, then for two fractionation schemes
D1 = n1d1 and D2 = n2d2 the same isoeffect is E = n1 f (d1) = n2 f (d2). Thus,

D1

D2
=

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
2

]
+ f (m)(dx2)

m! d(m−1)
2

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
1

]
+ f (m)(dx1)

m! d(m−1)
1

, (16)

where the unknown values dx1 ∈ [0,d1] and dx2 ∈ [0,d2]. Here, it is assumed that all free param-
eters f (k)(0) were obtained with the same curve fit performed in the dose range [0,Dmax]. For
this reason, the same values can be considered for the f (k)(0) appearing in the numerator and
denominator of (16). However, this is not valid for the last free parameter obtained in the curve
fitting, since this parameter depends on unknown value of dose. That is, the last free parameter
obtained from curve fitting is f (m)(Dx), and in general f (m)(Dx) ̸= f (m)(dx1) ̸= f (m)(dx2).

In practice, when f (d) is approximated by a polynomial of degree m ∀d ∈ [0,Dmax], then
E1 = n1 f (d1)≈ n2 f (d2) = E2. In this case, the same isoeffect is guaranteed if the fractions d1
and d2 belong to the same dose range used to determine the free parameters in the curve fitting.
So, equation (16) which is exact will be approximated by

D1

D2
∼=

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
2

]
+ f (m)(Dx)

m! d(m−1)
2

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
1

]
+ f (m)(Dx)

m! d(m−1)
1

. (17)
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The error to assume f (m)(dx1) = f (m)(dx2) = f (m)(Dx) should not be very large, since when
there is convergence the higher order terms tend to contribute less to the series. Therefore,
when making comparisons between two different fractionation schemes, it is necessary that the
two fractions d1 and d2 belong to the same dose range in which the data fit was performed. This
is because the determination of free parameters depends on the dose range in which the fit is
being made (Joiner & van der Kogel, 2018). This is one of the reasons for the need to have
an S(D) that describes survival over the entire dose range [0,Dmax] to which a given cell line
can be subjected. In other words, if d1 corresponds to low doses and d2 to high doses, and if
the experimental data for the fit of f (D) do not contain values in these two dose ranges, then
great care must be taken because the free parameters obtained for each range may be different.
Similar recommendations are made in Joiner & van der Kogel (2018) when it is said that α

β
is

dose dependent.
In addition, the Biological Effective Dose (BED) defined as BED = E

α
will be

BED(dx) = D
[
1+

m−1

∑
k=2

f (k)(0)
αk!

d(k−1)+
f (m)(dx)

αm!
d(m−1)

]
, (18)

where dx ∈ [0,d]. In the particular case that m = 2, the well-known formula for the BED of the
LQ model is obtained. For m = 3 and m = 4 the CTS and TSE models generate the equations
(19) and (20)

BED(dx) = D
[
1+

1
2

(
β̂

α
+α

)
d +

γ̌(dx)

6α
d2
]
= D

[
1+

β

α
d +

γ(dx)

α
d2
]
. (19)

BED(dx) = D
[
1+

1
2

(
β̂

α
+α

)
d +

1
6

(
γ̂

α
+3β̂+2α

2
)

d2 +
λ̌(dx)

24α
d3
]

= D
[
1+

β

α
d +

γ

α
d2 +

λ(dx)

α
d3
]
. (20)

In a similar way formulas for Equivalent Dose in 2 Gy Fractions (EQD2) and Total Effect
(TE) can be obtained. Note that BED, EQD2 and TE depend on the fraction d and the value dx.
Therefore, they depend on the dose range used to determine the free parameters. Furthermore,
BED = E

α
and T E = E

β
explicitly use free parameters α and β in their definition, so this implies

possible extra errors when compared to another definition that does not explicitly use any free
parameters like the equation (16).

Analysis of experimental data
Our approach is applied to the three cell survival behaviors mentioned above. As an exam-

ple for each behavior were chosen: H460 non-small cell lung cancer cell line (Andisheh et al.,
2013), CP3 human prostate cancer cells line (Garcia et al., 2006), and CHOAA8 hamster fi-
broblast cells line (Garcia et al., 2006). The CTS model using polynomials of order 3, 4, 5 and
6 are analyzed. In addition, the standard TSE model using polynomials of order 2, 3, 4, 5, 6 and
7 are analyzed. Also, by way of comparison, the results of curve fittings are presented for four
other known models whose functions S(D) and their derivatives are continuous up to order m.
The first is the PLQ model (Belkić & Belkić, 2011; Andisheh et al., 2013) described by (21).
The other two are the McKenna and Ahmad (MA) (McKenna & Ahmad, 2009) and Hug and
Kellerer (HK) (Hug & Kellerer, 1963; Ekstrand, 2010) models described by (22) and (23). The
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last model are two versions proposed by Kavanagh and Newman (Kavanagh & Newman, 2008).
Equation (24) is the initial model with two free parameters, and (25) introduces two other free
parameters to account for the repair effects that occur in the low-dose hypersensitivity region.

S(D) = e−
(αD+βD2)
(1+γD) PLQ model. (21)

S(D) = e−[αD+ βD2
(1+βD/γ)

] MA model. (22)

S(D) = e[−αD+β(1−e−γD)] HK model. (23)

S(D) = e[−αD(1−e−βD)] KN-1 model. (24)

S(D) = e[−αD(1−e−βD)−γDe−λD] KN-2 model. (25)

It must be said that there are significant mathematical differences to determine the free pa-
rameters of the models by the method of least squares. For TSE models the problem can be
transformed into finding the solution of a linear system of algebraic equations, while for CTS
models it is necessary to solve a nonlinear system of algebraic equations. The dimension of the
linear and nonlinear system increases when the order of the Taylor polynomial increases. The
linear system will have a unique solution if the matrix is non-singular. However, the nonlinear
system can have more than one unique solution. Furthermore, solving the nonlinear system can
be more complicated than solving the linear system, since numerical challenges can arise that
affect the convergence of the solution of the nonlinear system. In future works, a more in-depth
study on this should be carried out.

On the other hand, the CTS model becomes the TSE model if the free parameters are de-
termined as follows. First the free parameters of the TSE model are determined by the least
squares method, and later the parameters of the CTS model are determined by solving the equa-
tions that establish the relationship between the derivatives of S(D). That is, αT SE = αCT S,
βT SE = 1

2(βCT S +α2
T SE), γT SE = 1

6(γCT S +3αT SEβCT S +2α3
T SE) and so on. However, here the

free parameters of the CTS model are determined directly by the least squares method. Two
computational codes were developed using the MATLAB® software. Similar results for curve
fitting were obtained using the MATLAB® functions ‘fminsearch’ and ‘lsqnonlin’. In Tables 1,
2 and 3 are presented the results obtained with the ‘lsqnonlin’ function that solves a nonlinear
least-squares problem. Default options of the ‘lsqnonlin’ function were used and the data was
not weighted, that is, curve fittings were performed assuming that all data have the same weight
equal to 1. As can be seen in Tables 1, 2 and 3, the solutions of the CTS and TSE models shown
here are different. The computational codes were executed on a PC 64-bit Operating System
Windows 7 Ultimate with an Intel(R) Core(TM) i7 CPU 860 @ 2.80 GHz and 8 GB of RAM.
It can be stated that the computational effort (memory + time) demanded by the code is low.
Memory usage is less than 30% of available resources on used PC. The time needed to run all
the calculations of all the models and build the figures is less than 10 seconds.

It should be remembered that the derivative of S(D) vanishes at critical points Dc (S(1)(Dc)=
0), which are called transition points in the radiobiological context. The TSE and CTS models
have a similar condition for the existence of critical points determined by

α+2βDc +3γD2
c +4λD3

c +5µD4
c +6ηD5

c +7νD6
c = 0. (26)

The other models present the following constraints for the critical points.

βγD2
c +2βDc +α = 0 for PLQ model. (27)
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β2

γ
(1+

α

γ
)D2

c +2β(1+
α

γ
)Dc +α = 0 for MA model. (28)

βγe−γDc = α for HK model. (29)

(1−βDc) = eβDc for KN-1 model. (30)

α[−1+(1−βDc)e−βDc] = γ[1−λDc]e−λDc for KN-2 model. (31)

Thus, the PLQ and MA models can describe up to the two critical points. However, if new
critical points arise with the advance in the precision of the experimental data, these models
could not consider these new critical points. The HK and KN-1 models only present one critical
point. The KN-2 model apparently can describe up to two critical points, but it is difficult to
estimate how many points there are since the equation (31) is transcendental with four free
parameters. For example, the NK-2 model has no critical point for H460 and CHOAA8 cells,
and has a single critical point for CP3 cells. It should be noted that only for the KN-1 model
does the critical point depend on a single free parameter. For all other models the critical points
always depend on all free parameters of the model.

Tables 1, 2 and 3 present the values of the free parameters for all models, whose intention
is not to show which is the best model, although it can be noticed that as the number of free
parameters increases (degree of the polynomial) the sum of residuals squared (SRS) decreases
as a trend. For this reason, no statistical test was used to compare the models, and experimental
errors were not considered. Only the results of a mathematical problem of curve fitting using
the least squares method are shown, where the fitting parameters are related to the Taylor series
coefficients.

Behavior 1. In the case of H460 cell line, the function S(D) does not show evidence of
the existence of relative extreme points. Thus, the critical points that exist must be inflection
points of the curve or the relative extremes correspond to negative values of Dc. Table 1 shows
the free parameters for all models. In Tables 1, 2 and 3 the last column always represents the
SRS. In columns with different versions of the parameter, it must be understood that the value
corresponds to the parameter defined in the model equation. For reasons of space, the physical
units of the free parameters are not included in the tables, but it should be understood that the
units of each parameter is a power of (1/Gy)k because the dose is measured in Gy.

Table 1: Least squares fit for the H460 cell line.

Model α β, β̂ γ, γ̂, γ̌ λ, λ̂, λ̌ µ, µ̂, µ̌ η, η̌ ν SRS
LQ (1) 0.222 0.0489 — — — — — 2.073
TSE (8) -0.0712 0.112 -0.00298 — — — — 0.576
TSE (10) 0.105 0.0393 0.00523 -0.000272 — — — 0.405
TSE (12) 0.431 -0.170 0.0463 -0.00341 0.0000818 — — 0.166
TSE (14) 0.146 0.0982 -0.0352 0.00726 -0.000545 0.0000135 — 0.087
TSE (15) -0.192 0.538 -0.224 0.0442 -0.00417 0.000187 -0.00000323 0.042
CTS (7) -0.0712 0.220 -0.0179 — — — — 0.576
CTS (9) 0.105 0.0675 0.00758 -0.00654 — — — 0.405
CTS (11) 0.192 -0.103 0.174 -0.167 0.192 — — 0.253
CTS (13) 0.160 0.147 -0.272 0.225 0.154 0.00947 — 0.087
PLQ (21) -0.115 0.144 0.0771 — — — — 0.853
MA (22) -0.115 0.153 1.984 — — — — 0.853
HK (23) 1.548 9.769 0.169 — — — — 0.787
KN-1 (24) 1.362 0.0794 — — — — — 0.836
KN-2 (25) 1.369 0.0787 0.264 1.227 — — — 0.818
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c) Experimental data and other models
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Figure 1: Surviving fraction S(D) for the H460 cell line.
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For TSE models the SRS decreases as the degree of the polynomial increases. The |α| and
|β| parameters undergo large variations and do not seem to approach a stable value yet. Stable
value means that when the degree of the polynomial increases, the free parameter must vary less
and less, asymptotically approaching the value for which the Taylor series converges. In CTS
models also the SRS decreases as the degree of the polynomial increases. The |α| parameter
does not show large variations when compared to the TSE model and seems to approach a
stable value. Note that the first digit after the decimal point tends to set (0.1). The

∣∣∣β̂∣∣∣ parameter
presents variations, but smaller than the |β| of the TSE model and tends to a stable value. It must
be said that more accurate and stable results will depend on more accurate experimental data.
The experimental data used here were taken from the figures of the aforementioned articles, and
they have two sources of error. The first is the error due to carrying out the experiment itself.
The second is due to the approximation made when collecting the values of the figures, since a
table with the experimental values was not found. In this way, it can be stated that the data used
here are reliable up to the first significant digit.

Models based on Taylor series (TSE and CTS) have lower SRS when compared to other
models with three and four free parameters. This is an argument in favor of these models and
shows a mathematical advantage of using polynomials. The HK model (23) has three free
parameters with SRS greater than TSE model (8) and CTS model (7). The KN-2 model (25)
has four free parameters with SRS greater than TSE model (10) and CTS model (9). This
supports our statement in the Introduction “If, for these models to approximate this function
with accuracy similar to TSE, it is necessary that they have the same number of free parameters
as TSE, then the choice of TSE is mathematically preferable”.

For the TSE models it is verified that |γ|> |λ|> |µ|> |η|> |ν|, which is important because it
indicates that higher order terms contribute less and less, and this is related to the convergence of
the Taylor series. Two remarks must be made to clarify the preceding sentence. First, although
the free parameters have different physical units, in the above comparison only numerical values
were considered. This is possible because f (D) is a function without physical units, and it is
possible to adimensionalize the dose by introducing the variable D̄ = D/D∗. Consequently
the dimensionless free parameters will be ᾱ = αD∗, β̄ = β(D∗)2 and so on. Choosing D∗ = 1
Gy, then the dimensionless free parameters match the numerical value of the parameters with
physical units. The second remark is that the convergence of the Taylor series refers only to
the range of doses used for the curve fitting [0,Dmax], since the Taylor series approximates the
function in the neighborhood of the point D0 and has a radius of convergence R. Therefore,
Taylor series approximation should not be used to extrapolate results beyond Dmax, and even
less if Dmax is greater than the radius of convergence of the power series. For CTS models this
behavior seems to start from the order 6 polynomial (|µ̂| > |η̌|), which may be an indication
that for this cell line polynomials of order greater than 6 or more accurate experimental data
are needed. Figure 1 shows the cell survival curves for all models and the experimental data,
where some differences are noticeable. However, these differences between the models and the
experimental data will be more evident in the study on dose fractionation, where the need to use
higher order polynomials will be more clearly verified.

Behavior 2. In the case of CP3 cell line, the function S(D) shows evidence of the existence
of a relative maximum in the low dose region at the point Dc ≈ 1 Gy. Table 2 shows the free
parameters for all models. For these parameters, the models that predict this relative maximum
are: LQ (1) at Dc ≈−2.11 Gy, TSE (8) at Dc ≈−0.013 Gy, TSE (10) at Dc ≈ 0.21 Gy, TSE (12)
at Dc ≈ 0.45 Gy, TSE (14) at Dc ≈ 0.62 Gy, TSE (15) at Dc ≈ 0.61 Gy, CTS (7) at Dc ≈−0.013
Gy, CTS (9) at Dc ≈ 0.20 Gy, CTS (11) at Dc ≈ 0.032 Gy, CTS (13) at Dc ≈ 0.23 Gy, PLQ
at Dc ≈ 0.33 Gy, MA at Dc ≈ 0.33 Gy, HK at Dc ≈ 0.25 Gy, KN-1 at Dc ≈ 0 Gy and KN-2
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at Dc ≈ 0.44 Gy. It is known that negative doses are not physically realistic, and this is one
more argument against models that present these negative values. For TSE and CTS models,
polynomials of degree greater than or equal to four are needed to describe positive values of
Dc. TSE models estimate this critical point closer to the experimental value as the degree of
the polynomial increases. In the CTS models, there is a reversal of this trend for the degree five
polynomial (CTS (11)), but the trend is again verified for the degree six polynomial CTS (13).

Table 2: Least squares fit for the CP3 cell line.

Model α β, β̂ γ, γ̂, γ̌ λ, λ̂, λ̌ µ, µ̂, µ̌ η, η̌ ν SRS
LQ (1) 0.175 0.0416 — — — — — 1.610
TSE (8) 0.00228 0.0822 -0.00213 — — — — 0.922
TSE (10) -0.0410 0.1005 -0.00438 0.0000843 — — — 0.910
TSE (12) -0.135 0.162 -0.0174 0.00119 -0.0000324 — — 0.889
TSE (14) -0.469 0.476 -0.116 0.0152 -0.000936 0.0000218 — 0.779
TSE (15) -0.552 0.580 -0.162 0.0247 -0.00194 0.0000744 -0.00000108 0.776
CTS (7) 0.00228 0.164 -0.0128 — — — — 0.922
CTS (9) -0.0410 0.199 -0.00162 0.00202 — — — 0.910
CTS (11) -0.00540 0.164 -0.00522 -0.0844 0.0113 — — 0.919
CTS (13) -0.0535 0.229 -0.0207 -0.151 0.0902 0.000640 — 0.897
PLQ (21) -0.0813 0.118 0.0819 — — — — 0.901
MA (22) -0.0813 0.125 1.532 — — — — 0.901
HK (23) 1.226 7.558 0.169 — — — — 0.906
KN-1 (24) 1.065 0.0845 — — — — — 0.926
KN-2 (25) 1.059 0.0853 -1.551 1.998 — — — 0.783

For TSE models the SRS decreases as the degree of the polynomial increases. The |α| and
|β| parameters show large variations and do not seem to approach a stable value yet. However,
the α parameter must be negative and the LQ model is unable to predict this behavior. The
TSE and CTS models predict negative α for polynomials from the fourth order. In CTS models
the SRS decreases as the degree of the polynomial increases. The |α| and

∣∣∣β̂∣∣∣ parameters show
smaller variations when compared to the |α| and |β| of the TSE model.

For the TSE models it is verified that |γ|> |λ|> |µ|> |η|> |ν| indicating that higher order
terms contribute less and less. For the CTS models this property seems to start from the order
six polynomial (|µ̂|> |η̌|), which again may be an indication that for this cell line polynomials
of order greater than 6 are needed. The HK model (23) needed a high value for the second
parameter, which differs from the range of values of the other models. Figure 2 shows the cell
survival curves for all models and the experimental data, where some differences are perceptible
that will become more evident in the study on dose fractionation.

Behavior 3. In the CHOAA8 cell line case, for low dose region the function S(D) shows
evidence of the existence of a relative minimum at point Dc1 ≈ 1 Gy and a relative maximum at
point Dc2 ≈ 1.5 Gy. Table 3 shows the free parameters for all models.

For TSE models the SRS decreases as the degree of the polynomial increases. The |α|
and |β| parameters show large variations and do not seem to approach a stable value yet. It is
observed that |γ| > |λ| > |µ| > |η| > |ν| indicating that higher order terms contribute less and
less. However, it appears that polynomials of order greater than 6 are required for this cell line.

In CTS models the SRS decreases as the degree of the polynomial increases. The |α| param-
eter does not show large variations when compared to the TSE model and seems to approach a
stable value. Note that the first digit after the decimal point tends to set (0.1). The

∣∣∣β̂∣∣∣ parameter
presents variations, but smaller than the |β| of the TSE model and tends to a stable value. For
CTS (13) model the |α|,

∣∣∣β̂∣∣∣ and |γ̂| values are similar or
∣∣∣S(1)(0)∣∣∣≈ ∣∣∣S(2)(0)∣∣∣≈ ∣∣∣S(3)(0)∣∣∣, which
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Figure 2: Surviving fraction S(D) for the CP3 cell line.
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Table 3: Least squares fit for the CHOAA8 cell line.

Model α β, β̂ γ, γ̂, γ̌ λ, λ̂, λ̌ µ, µ̂, µ̌ η, η̌ ν SRS
LQ (1) 0.140 0.0230 — — — — — 1.699
TSE (8) 0.278 -0.00519 0.00130 — — — — 1.058
TSE (10) 0.176 0.0326 -0.00277 0.000133 — — — 0.959
TSE (12) 0.554 -0.184 0.0374 -0.00284 0.0000764 — — 0.468
TSE (14) 0.526 -0.164 0.0320 -0.00219 0.0000409 0.00000073 — 0.469
TSE (15) 0.733 -0.396 0.122 -0.0186 0.00156 -0.0000695 0.00000126 0.426
CTS (7) 0.278 -0.0878 0.00781 — — — — 1.058
CTS (9) 0.176 0.0341 -0.0456 0.00321 — — — 0.959
CTS (11) 0.105 0.0826 -0.0419 -0.0160 0.0257 — — 0.950
CTS (13) 0.108 0.108 -0.104 0.0330 0.0593 0.00226 — 0.770
PLQ (21) 0.252 -0.00419 -0.0410 — — — — 0.903
MA (22) 0.140 0.0230 200409.04 — — — — 1.699
HK (23) 2.274 85.0207 0.0253 — — — — 1.900
KN-1 (24) 0.759 0.0680 — — — — — 3.006
KN-2 (25) 5.290 0.00635 0.358 0.234 — — — 1.204

is not the case with the TSE models. In this cell line, to achieve the behavior that higher-order
terms contribute less and less to the Taylor series, it seems to require polynomials of order
greater than 6 (|µ̂|> |η̌|).

The PLQ model (21) has the lowest SRS for three free parameters, but higher order polyno-
mials achieve better performance. The MA model (22) needed a very high value for the third
parameter. The HK model (23) needed a high value for the second parameter. These high values
may deviate from an acceptable radiobiological interpretation, and are out of line with the range
of values used by other models.

As this cell line apparently has two critical points, it is necessary that f (D) is at least a
degree 3 polynomial to predict these transition points. However, considering the curve fitting
it is possible that higher order polynomials are needed to accommodate these points. This is a
mathematical argument that shows the inability of the LQ model to describe this behavior. The
HK and KN-1 models only present one critical point, and it is insufficient to describe the third
behavior (HRS and IRR).

Finally, two curious or interesting observations for the CTS model. First, the α parameter
seems to tend towards similar values (0.1) in the case of H460 and CHOAA8 cell lines. Second,
the β̂ parameter also seems to tend towards similar values (0.1) in the case of these two cell
lines. In addition, the Taylor polynomial performs a local approximation around a point D0.
The construction of the TSE and CTS models is carried out around the point D0 = 0 Gy, but
this value is not a restriction for these models. This value was chosen to make comparisons
with existing models. However, this does not mean that this is the most appropriate value for
expanding the Taylor series. In future works we intend to carry out a study on what would be
the most appropriate D0 value.

Analysis of experimental and theoretical fractionations
Consider a conventional fractionation schedule with isoeffective total dose Dr = 60 Gy. This

dose will be delivered in nr = 30 fractions of dr = 2 Gy, and it will be used as a reference dose
per fraction for comparison with other fractionation schemes. Considering the experimental
cell survival data, it is possible to construct a graph of the experimental fractionation for each
cell line. Since the isoeffect is guaranteed if ni loge(S

exp(di)) = nr loge(S
exp(dr)), then the ex-

perimental isoeffective total dose Dexp
i corresponding to fractionation with dose per fraction di

Alvarez & Lobão (2023) / Pesquisa e Ensino em Ciências Exatas e da Natureza, 7: e1987 37



Some comments on radiobiological models and the consistent Taylor series model

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

10
0

← d
r
= 2 Gy ← d > 7 Gy or

high dose range

medium dose

range

Dose D (Gy)

S
u

rv
iv

in
g

 F
ra

c
ti
o

n
 S

(D
)

a) Experimental data and TSE models

 

 

Data

LQ (1)

TSE (8)

TSE (10)

TSE (12)

TSE (14)

TSE (15)

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

10
0

← d
r
= 2 Gy ← d > 7 Gy or

high dose range

medium dose

range

Dose D (Gy)

S
u

rv
iv

in
g

 F
ra

c
ti
o

n
 S

(D
)

b) Experimental data and CTS models

 

 

Data

CTS (7)

CTS (9)

CTS (11)

CTS (13)

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

10
0

← d
r
= 2 Gy ← d > 7 Gy or

high dose range

medium dose

range

Dose D (Gy)

S
u

rv
iv

in
g

 F
ra

c
ti
o

n
 S

(D
)

c) Experimental data and other models

 

 

Data

PLQ (21)

MA (22)

HK (23)

KN−1 (24)

KN−2 (25)

Figure 3: Surviving fraction S(D) for the CHOAA8 cell line.
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is determined by equation (32)

Dexp
i = Dr

di

dr

loge(S
exp(dr))

loge(Sexp(di))
, (32)

where Sexp(dr) and Sexp(di) denote the experimental cell survival data. As far as the authors
know, this is the first time that equation (32) has been presented, and allows investigating dose
fractionation without the need to use a radiobiological model. This eliminates the approxima-
tion error introduced by every radiological model. Analogously, equation (33) determines the
isoeffective total dose D f it estimated by radiobiological models.

D f it(d) = Dr
d
dr

loge(S
f it(dr))

loge(S f it(d))
= Dr

d
dr

f f it(dr)

f f it(d)
. (33)

For radiobiological models based on the Taylor series, equation (33) becomes

D f it(d) = Dr

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
r

]
+ f (m)(Dx)

m! d(m−1)
r

α+∑
m−1
k=2

[
f (k)(0)

k! d(k−1)
]
+ f (m)(Dx)

m! d(m−1)
, (34)

where the parameters f (k)(0) and f (m)(Dx) are determined by the curve fits for each model.
Equation (34) is equivalent to equation (17). Thus, it is possible to estimate the error considering
the ‘experimental fractionation’ and that predicted by the curve fit as errori =

∣∣∣D f it
i −Dexp

i

∣∣∣. It

is possible to define the relative error RED f it =
∥error∥max, j

|Dexp
j | using the vector norm ∥error∥max, j =

max
1≤i≤np

{errori}, where np is the total number of experimental points, and j denotes the point

where the maximum value is reached. Analogously, the relative error for S f it = S f it(d) is defined
as RES f it . Table 4 presents these relative errors for all radiobiological models in ordered pair
form. That is, the ordered pair (d,RES f it) or (d,RED f it) determines the maximum relative
error point.

Table 4: Relative errors RES f it and RED f it for radiobiological models.

Model H460 cell CP3 cell CHOAA8 cell
( d,RES f it), ( d,RED f it) ( d,RES f it), ( d,RED f it) ( d,RES f it), ( d,RED f it)

LQ (1) (1.0, 0.1889), (1.0, 0.6944) (1.0, 0.3810), (1.0, 2.3531) (1.0, 0.6321), (0.5, 2.8946)
TSE (8) (1.5, 0.4536), (0.5, 4.9056) (1.0, 0.2915), (0.5, 6.8249) (1.0, 0.4614), (0.5, 2.1423)
TSE (10) (1.5, 0.2802), (1.0, 0.6495) (1.0, 0.2720), (0.5, 28.876) (1.0, 0.5648), (0.5, 2.8309)
TSE (12) (1.0, 0.2150), (1.0, 0.7869) (1.0, 0.2389), (1.0, 14.661) (0.5, 0.2348), (0.5, 1.1094)
TSE (14) (1.0, 0.1430), (1.0, 0.6985) (1.0, 0.1533), (3.5, 0.5426) (0.5, 0.2462), (0.5, 1.1729)
TSE (15) (1.5, 0.1625), (0.5, 3.5797) (1.0, 0.1400), (3.5, 0.5310) (1.5, 0.1772), (1.5, 0.3119)
CTS (7) (1.5, 0.4536), (0.5, 4.9056) (1.0, 0.2915), (0.5, 6.8249) (1.0, 0.4614), (0.5, 2.1423)
CTS (9) (1.5, 0.2802), (1.0, 0.6495) (1.0, 0.2720), (0.5, 28.876) (1.0, 0.5648), (0.5, 2.8309)
CTS (11) (1.5, 0.2607), (1.0, 0.7113) (1.0, 0.2866), (0.5, 7.8213) (1.0, 0.6559), (0.5, 3.7000)
CTS (13) (1.0, 0.1479), (1.0, 0.7048) (1.0, 0.2711), (0.5, 98.308) (1.0, 0.6400), (0.5, 3.5576)
PLQ (21) (1.5, 0.4560), (0.5, 2.5267) (1.0, 0.2570), (0.5, 9.1154) (1.0, 0.4845), (0.5, 2.3037)
MA (22) (1.5, 0.4561), (0.5, 2.5246) (1.0, 0.2570), (0.5, 9.1159) (1.0, 0.6321), (0.5, 2.8946)
HK (23) (1.5, 0.4607), (0.5, 2.6775) (1.0, 0.2672), (0.5, 177.68) (1.0, 0.6549), (0.5, 3.1044)
KN-1 (24) (1.5, 0.3247), (1.0, 0.5020) (1.0, 0.2943), (0.5, 6.9324) (1.0, 0.8294), (0.5, 11.079)
KN-2 (25) (1.5, 0.2448), (1.0, 0.6826) (1.0, 0.1296), (3.5, 0.4569) (1.0, 0.4005), (0.5, 1.7526)

For the H460 cell line, all models have RED f it in the dose range between 0.5 Gy and 1.0
Gy. For the CP3 cell line, disregarding the singularity point, most models present RED f it in the
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dose range between 0.5 Gy and 1.0 Gy. Only the TSE (14), TSE (15), KN-2 models present
RED f it at 3.5 Gy. For the CHOAA8 cell line, only the TSE model (15) presents RED f it at
1.5 Gy. All other models have RED f it at 0.5 Gy. Furthermore, for all cases RED f it is always
greater than RES f it , and both errors are significantly large. For the three cell lines, no model
has an error RES f it of less than 12% and an error RED f it of less than 31%.

Figures 4, 5 and 6 show the values estimated by equations (32) and (33) for the total dose
that guarantees the same isoeffect. Theoretically, as the degree of the polynomial used to ap-
proximate f (D) increases, this isoeffective total dose (34) should tend to a limit closer and
closer to the experimental value (32), since higher order polynomials better approximate f (D).
In general, as can be seen in Table 4 and Figure 4, the analyzed radiobiological models better
approximate the experimental data for cell lines such as Behavior 1. This is because S(D) is
a monotonic function for these cell lines, as it is monotonically decreasing function over the
entire dose range. However, the error of the radiobiological models is greater for Behavior 2
and 3, as can be seen in Table 4, Figures 5 and 6. The explanation for this is that S(D) is not
a monotonic function for these cell lines, as it has critical points that delimit regions where the
function is monotonically decreasing and monotonically increasing.

For cells with the first behavior (Figure 4), in the high dose range (d > 7 Gy) the TSE (12)
and CTS (13) models predict a dose fractionation more similar to the experimental one, while
the NK-2 (25) model presents the best performance among models not based on Taylor series.
Among these three models, the closest to the experimental data is the TSE (12) model, although
the CTS (13) model presents a behavior very similar to the TSE (12) model. In the medium
dose range (2 Gy< d < 7 Gy) the models that most resemble the behavior of experimental
data are TSE (15) and CTS (13). The LQ (1) model is very close to the experimental data up
to d = 5 Gy. The models not based on Taylor series present considerable difference with the
experimental data in the medium dose range, with the NK-2 (25) model showing the smallest
difference. For example, for d = 5 Gy the experimental data estimate Dexp

i ≈ 40.5 Gy while
D f it

i ≈ 29.89 for the KN-2 (25) model and D f it
i ≈ 20.54 for PLQ (21), MA (22) and HK (23)

models. These large differences with a relative error that can be up to 50% can affect local
tumour control. In the low dose range (d < 2 Gy) all models show the greatest difference with
experimental data, and for some dose values they underestimate or overestimate total dose. This
can be understood as an indicator that the TSE and CTS models need higher order polynomials
to adequately describe low dose range. The experimental data show a very interesting behavior.
It is often said that in hyperfractionation the total dose should always be greater than that of
conventional fractionation, but at d = 1.5 Gy the experimental data estimate Dexp

i ≈ 42.11 Gy,
which is considerably lower than 60 Gy of conventional fractionation. However, at d = 1.0
Gy the experimental data estimate Dexp

i ≈ 231.7 Gy. This indicates that in order to obtain
therapeutic gain in hyperfractionation, it is necessary to have the entire equipment system well
calibrated and to execute the protocol as accurately as possible. On the other hand, the LQ
model differs more from the experimental data in the low and high dose range for this cell line,
showing good accuracy for the medium dose range.

For cells with the second behavior (Figure 5), there is a mathematical singularity point at
d = 1.5 Gy because Sexp(1.5) = 1. In this cell line, hyperfractionation should not be used, since
doses d ≤ 1.5 Gy increase the proliferation of cancer cells. Experimental data estimate negative
total doses to ensure the same isoeffect as conventional fractionation. For this reason, the low
dose range is not shown in Figure 5. The only models that present a negative total doses close to
the experimental data are: TSE (14), TSE (15) and KN-2 (25). In the medium dose range (2 Gy
< d < 7 Gy) and high dose range (d > 7 Gy) the LQ model better approximates the total dose.
The TSE and CTS models differ more from the experimental data as the degree of the polyno-
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Figure 4: Experimental (32) and theoretical (33) fractionation for the H460 cell line.
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Figure 5: Experimental (32) and theoretical (33) fractionation for the CP3 cell line.
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Figure 6: Experimental (32) and theoretical (33) fractionation for the CHOAA8 cell line.
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mial increases. However, this trend begins to invert from a polynomial of degree seven for the
TSE models (TSE (15)) and of degree six for the CTS models (CTS (13)), indicating the need
for higher order polynomials. Theoretically, a polynomial with degree equal to the number of
experimental points interpolates the experimental data, and consequently its fractionation curve
will be equivalent to the experimental fractionation. The NK-1 (24) model presents the best per-
formance among models not based on Taylor series. Among the TSE (15), CTS (13), PLQ (11)
and KN-2 (25) models, the closest to the experimental data is the CTS (13) model, but still with
considerable error when compared to the LQ model. For cells with this type of behavior, con-
ventional fractionation or hypofractionation should be practiced. Hypofractionation should be
explored with caution, as there appears to be some therapeutic gain. For example, a hypofrac-
tionation with five fractions d = 6.5 Gy guarantees a total dose D = 31.64 Gy, which produces
a superior isoeffect (higher cell mortality) than the isoeffect of conventional fractionation.

For cells with the third behavior (Figure 6), in the high dose range (d > 7 Gy) the TSE
models get closer to the experimental data as the polynomial degree increases. The LQ model
is the one with the highest error among the TSE models. In contrast, CTS models differ more
from the experimental data as the degree of the polynomial increases to degree five. This trend
begins to invert from a polynomial of degree six (CTS (13)), indicating the need for higher
order polynomials. Among the models not based on Taylor series, the PLQ (21) and KN-2
(25) models better approximate the experimental data. The KN-1 (24) model presents greater
deviation with relative error that can be up to 65% for d = 7 Gy. The MA (22) and HK (23)
models show a similar curve with considerable errors. In the medium dose range (2 Gy< d < 7
Gy) the TSE models come closer to the experimental data as the degree of the polynomial
increases, and the LQ model has the largest error. Again, the CTS models differ more from
the experimental data as the degree of the polynomial increases to degree five, reversing this
trend from the degree six polynomial. Among the models not based on Taylor series, the PLQ
(21) and KN-2 (25) models better approximate the experimental data. It is important to note
that in the medium dose range, the experimental data indicate that the fractionation curve is not
monotone, and that the total dose may be higher than that of conventional fractionation to ensure
the same isoeffect. The only models that approach this behavior are: TSE models with order
polynomials starting from five and KN-2 (25). CTS models need higher order polynomials to
describe this behavior. In the low dose range (d < 2 Gy) the TSE models are closer to the
experimental data as the degree of the polynomial increases, requiring a polynomial of order
greater than five to obtain similarity with the experimental data. CTS models overestimate
hyperfractionation, indicating the need for higher-order polynomials. In addition, all models not
based on Taylor series overestimate hyperfractionation except the KN-2 (25) model. However,
the error of the KN-2 (25) model is greater than that of the TSE (12), TSE (14) and TSE (15)
models. It is important to highlight that for this cell line, the experimental data show that
fractionations with very small doses need a total isoeffective dose considerably lower than the
60 Gy of conventional fractionation. For example, in the fractionation scheme with doses by
fraction di = 0.5 Gy the estimated value for the total dose is Dexp

i ≈ 18.9 Gy. This indicates
that hyperfractionation should be practiced in cells with the third radiation response behavior,
as considerable therapeutic gains can be obtained.

In the fractionation analysis, isoeffective total dose Dr = 60 Gy and dose per fraction dr = 2
Gy were chosen because they are values close to the typical values used in several treatment
protocols. However, other values can be chosen to use in equations (32) and (33). To show how
these values influence the fractionation analysis, results are presented for two other fractionation
schemes. Figure 7 shows the fractionation results keeping Dr = 60 Gy fixed and varying the
dose per fraction for the CHOAA8 cell line. In this case, Dr = 60 Gy will be delivered in 12
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fractions of dr = 5 Gy. Thus, it is possible to notice how equations (32) and (33) depend on the
variable dr. In Figure 8 dr = 5 Gy is kept fixed and Dr is decreased for the CHOAA8 cell line. In
this case, Dr = 30 Gy will be delivered in 6 fractions of dr = 5 Gy. The variable Dr influences
equations (32) and (33) only as a proportionality factor. For both fractionations, all models
show the greatest differences with the experimental fractionation in the low dose region. This
is the dose region corresponding to hyperfractionation, where experimental data show evidence
of therapeutic gain. However, only models based on Taylor series with high order polynomials
(TSE (15)) are able to indicate this therapeutic gain.

Conclusions
The Taylor series is a reliable mathematical tool for approximating the survival curve S(D)=

e− f (D). Our mathematical analysis shows that the last Taylor series free parameter for f (D) ex-
plicitly depends on the dose range used in the function fitting, and therefore this fit should not
be used to estimate S(D) in values of D outside this range. Based on the Taylor series and on
two mathematical hypotheses, it is possible to approximate f (D) in two ways: TSE and CTS
models. The free parameters of the TSE model are dependent on each other, while the free
parameters of the CTS model eliminate this interdependence. The free parameters of the CTS
model have a very clear mathematical interpretation, which are the derivatives of S(D) at the
point D = 0 Gy.

Experimental data indicate the existence of at least three different types of cellular response
to radiation. The most common is a monotone decreasing function S(D) (Behavior 1). However,
there are cell lines that exhibit a relative maximum for S(D) (Behavior 2), and other cell lines
that exhibit a relative minimum and maximum (Behavior 3). Our theoretical analysis confirms
the need for polynomials of order greater than 2 to adequately describe all these behaviors. The
analyzed experimental data show that to have the long-awaited ‘entire or unified or universal’
survival curve it is necessary to approximate f (D) with polynomials of order greater than six.
Therefore, higher-order polynomials are needed to have a single formula that describes the
survival of all cell lines at all dose ranges. In a future work we intend to find the degree of the
polynomial that performs this feat.

Based on the currently accepted hypotheses about fractionated radiotherapy and experi-
mental data on cell survival, it is possible to generate charts on the isoeffective total dose in
fractionation. Fractionation analysis shows that for some cell lines (Behavior 1 and 3) hy-
perfractionation can imply a therapeutic gain. Generally, in hyperfractionation the total dose
is increased when compared to conventional fractionation without increasing the risk of late
complications. Experimental data for CHOAA8 cells show the existence of hyperfractionation
with total doses (Dexp

i ≈ 18.9 Gy) much lower than the total dose of conventional fractionation
(60 Gy). This confirms the radiobiological expectation that hyperfractionation can increase lo-
cal tumour control without increasing the risk of late normal tissue damage. Furthermore, in
the medium dose range (2 Gy< d < 7 Gy) this cell line presents a behavior for fractionation
very different from the known uniform monotone behavior, where most radiobiological models
greatly underestimate the value of the total dose. The PLQ (21), MA (22), HK (23) and NK-1
(24) models do not predict this non-monotonic behavior. Only polynomials of higher order
and NK-2 (25) model are able to predict this non-monotonic behavior. For the cell line with
Behavior 2 such as CP3, only hypofractionation can bring some therapeutic gain.
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Data

CTS (7)

CTS (9)

CTS (11)

CTS (13)

0 2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

90

100

110

← d > 2 Gy

← d
r
= 5 Gy

← d > 7 Gy or
high dose range

medium dose
range

Dose per fraction d (Gy)

Is
o

e
ff

e
c
ti
v
e

 t
o

ta
l 
d

o
s
e

 D
 (

G
y
)

c) Experimental data and other models
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Figure 7: Experimental (32) and theoretical (33) fractionation for the CHOAA8 cell line.
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Figure 8: Experimental (32) and theoretical (33) fractionation for the CHOAA8 cell line.
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