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ABSTRACT

Gliomas are malignant brain tumors responsible for 50% of primary human brain cancer cases. They have a combination

of rapid growth and invasiveness, and high fatality rates with a median survival time of one year. Mathematical models

that describe its growth have helped to improve treatment. In this paper, a combined model formed by terms of two other

models known in the literature is analyzed. The combined model is a Reactive-Advective-Diffusive partial differential

equation, which is solved by combining the finite difference method, the Crank-Nicolson method and the upwind

method. Logistic growth is used for cell proliferation ensuring a saturation threshold for glioma growth, which is crucial

to properly estimate patient survival time. The well-known linear-quadratic radiobiological model is used to describe

cell death due to radiotherapy treatment. Two initial conditions are compared in the simulations, indicating the need

for further studies to have a model as close as possible to reality. Simulation results are shown for four scenarios: no

radiotherapy, application of a single dose, and two dose fractionation schemes.
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RESUMO

Os gliomas são tumores cancerígenos malignos responsáveis por 50% dos casos de câncer primário no cérebro humano,

apresentando uma combinação de rápido crescimento e invasibilidade, e altas taxas de fatalidade sendo um ano o tempo

médio de sobrevida. Modelos matemáticos que descrevem o crescimento tem ajudado na melhoria do tratamento.

Assim, neste trabalho é analisado um modelo combinado formado por termos de outros dois modelos conhecidos

da literatura. O modelo combinado é uma equação diferencial parcial do tipo Reativa-Advectiva-Difusiva, a qual é

resolvida combinando o método de diferenças finitas, o método de Crank-Nicolson e o método upwind. Um crescimento

logístico é usado para a proliferação celular garantindo um limite de saturação para o crescimento do glioma, o qual

é crucial para estimar adequadamente o tempo de sobrevivência do paciente. O conhecido modelo radiobiológico

linear-quadrático é usado para descrever a morte celular devido ao tratamento com radioterapia. Duas condições iniciais

são comparadas nas simulações, indicando a necessidade de estudos mais aprofundados, em busca de um modelo

mais próximo possível da realidade. Resultados das simulações são mostrados para quatro cenários: sem radioterapia,

aplicação de uma única dose, e dois esquemas de fracionamento da dose.
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Introduction

Gliomas are diffuse and highly invasive brain tumors that

represent about 50% of all primary brain tumors (Swan-

son et al., 2003), and 23% of this percentage are the most

malignant form: Glioblastoma Multiforme (Stein et al.,

2007). The diagnosis of this disease depends on several

factors, including the histological type and degree of ma-

lignancy, the age, and the functional neurological level of

the patient. Glioma cells, in addition to rapidly proliferat-

ing, can migrate (Swanson et al., 2003). This invasiveness

differentiates it from solid tumors, making it difficult to

define the classic growth rate as the doubling of volume

over time. Furthermore, the boundary between tumor and

healthy tissue is not sharpened, and the number of malig-

nant cells in healthy tissue is still undetermined. Median

survival time ranges from 6 months to 1 year for patients

with untreated high-grade glioma (Silva et al., 2016; Stein

et al., 2007). Even slow-growing gliomas can rarely be

cured by radical surgical resection. In general, they are

not encapsulated, and even apparently encapsulated ones

such as ependymomas are not treatable by simple surgical

resection (Shuman et al., 1975). Furthermore, gliomas can

show very high proliferation rates, with doubling times

ranging up to 1 week in vivo.

The processes that govern glioma invasion and aggres-

siveness are poorly understood. Also, conventional thera-

pies (surgery, radiotherapy and/or chemotherapy) have

offered little improvement in patient lifespan. All of

this has motivated the emergence of mathematical mod-

els to help with treatment planning (Silva et al., 2016).

Two mathematical models that describe the growth of

gliomas were proposed in Leder et al. (2014), Rockne

et al. (2009) and Swanson et al. (2003). Both models

were analyzed in Barbosa et al. (2019), Silva et al. (2016)

and Souza et al. (2015), and new approaches based on

time series were suggested in Jesus et al. (2014) and

Silva et al. (2021).

However, our previous analyses do not include the non-

linear term that saturates cell growth for the model pro-

posed in Rockne et al. (2009). Here, the non-linear term

and a new term suggested in Stein et al. (2007) are included.

Thus, a combined model based on Rockne et al. (2009)

and Stein et al. (2007) is analyzed. This model is of the

Reactive-Advective-Diffusive type for cell proliferation,

invasion, and migration (Stein et al., 2007), and contains

the term that describes the effect of radiotherapy (Rockne

et al., 2009).

The main objective of this work is to apply the finite

difference method to solve the combined model, and to

analyze the response of this glioma model to radiother-

apy with different dose fractional schemes. That is, there

are no results for the combined model in the literature.

This is one of the main novelties of our work. The model

described in Rockne et al. (2009) does not consider an

advective term for invasive cells. The model described

in Stein et al. (2007) does not consider the radiotherapy

response term. As far as the authors are aware, this is

the first time that all these terms are combined in a single

framework. Furthermore, an initial condition different

from the one proposed in Rockne et al. (2009) is explored.

The shape of the two considered initial conditions is very

similar. The main difference between these two initial

conditions lies in the mathematical properties of the func-

tions, since one initial condition is continuously differ-

entiable and the other is a continuous function with the

first derivative discontinuous at three points. The initial

condition is an initial picture of the tumor, which must

evolve over time according to the characteristics of the

mathematical model. In general, this picture is constructed

based on non-invasive images generated by various di-

agnostic techniques, such as computed tomography and

magnetic resonance imaging. Even with today’s advanced

technology, there are great uncertainties in defining the

boundary between tumor and healthy tissue. For this rea-

son, it is common to use a safety margin in radiother-

apy. Our study shows that two very similar initial pictures

develop over time with significant differences. This is

another contribution of this work, as it shows that two

very similar initial conditions can produce very different

results.

The rest of the paper is organized as follows. In the next

section, the combined model is presented together with

the two initial conditions studied. The Methodology sec-

tion describes the combination of finite difference, Crank-

Nicolson and upwind methods used to solve the models.

Simulation results are shown for four scenarios in the

Results and discussion section. Our final comments are

presented in the Conclusions.

Combined model of tumor
growth

Most continuous models consist of differential equations

that describe the dynamics of cancer cells based on rates

of change of quantities of interest. The combined model

analyzed here is composed of some terms from two contin-

uous models presented in Stein et al. (2007) and Rockne

et al. (2009) that simulate glioma as a spheroid tumor.

Both models consider a reactive term to describe cell

proliferation and a diffusive term to describe cell migra-

tion, as shown in equation (1):

∂u(r, t)

∂t
= D∇2u︸ ︷︷ ︸

Diffusion

+ gu

(
1− u

umax

)
︸ ︷︷ ︸

Proliferation

, (1)
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where u(r, t) is the concentration of tumor cells

(cells/cm3) in the spatial position r = (x, y, z) at the

instant of time t,D is the diffusion coefficient with dimen-

sions (cm2/day), g is the proliferation rate in (1/day),

and umax is the maximum concentration of tumor cells

in (cells/cm3). Cell proliferation is modeled assuming

logistic growth, where the non-linear term guarantees sat-

uration of cell growth. That is, the concentration of tumor

cells will never be greater than umax or the tumor stops

growing when u(r, t) = umax. The maximum concentra-

tion is estimated as umax = 4.2 108 cells/cm3 assuming

that the volume of a typical cell is 1200 µm3 and that half

the volume of the spheroid is composed of tumor cells

(Stein et al., 2007).

Experimental data show that the model, equation (1),

fails for tumors with a radius smaller than 1mm3 (Stein

et al., 2007). So, in Stein et al. (2007) it is suggested

that small tumors are formed by two cell populations that

present different proliferative and dispersive behaviors: a

central core and an invasive border. Core cells proliferate

rapidly and move slowly. Invasive border cells proliferate

slowly and move quickly. Thus, in addition to the two

terms in the equation (1), an advective term is added to

the dispersion of invasive cells

∂u(r, t)

∂t
= D∇2u︸ ︷︷ ︸

Diffusion

+ gu

(
1− u

umax

)
︸ ︷︷ ︸

Proliferation

− v · ∇u︸ ︷︷ ︸
Advection

, (2)

where v is the average velocity with which the inva-

sive cells move away from the core (Stein et al., 2007).

Furthermore, in Stein et al. (2007) a source term of the type

Dirac delta function is introduced to model the growth of

the core. However, this source term will not be consid-

ered in the combined model. This is because this term is

important to describe the growth of small tumors with a

radius between 0.1mm and 0.5mm, and in all our sim-

ulations, tumors with an initial radius of 1.41 cm were

considered.

On the other hand, the model, equation (2), does not

consider cell death due to radiotherapy treatment.

As presented in Rockne et al. (2009), radiotherapy in-

troduces a new term to the equation (2), resulting in:

∂u

∂t
= D∇2u+gu

(
1− u

umax

)
−v ·∇u−A(d(r, t))u,

(3)

where

A(d(r, t)) =

{
0 t /∈ therapy

1− S(d(r, t)) t ∈ therapy
, (4)

and S(d(r, t)) is the probability of cell survival after ap-

plying the dose per fraction d(r, t).

Considering the Linear-Quadratic (LQ) radiobiological

model (Hall, 2000; Joiner & van der Kogel, 2009), the

fraction of surviving cells S(D) after radiotherapy with a

single total dose D in Gray units (Gy) is

S(D) = e
(
−αD−βD2

)
, (5)

whereα and β are cell line-specific parameters determined

by cell survival experiments. It is frequent to assume con-

stant α/β, and in the case of gliomas α/β = 10. In

radiation oncology, dose fractionation is preferable to a

single dose, as there is experimental evidence showing

therapeutic gain. In addition, fractionation seeks to reduce

the toxic effect of radiation on healthy tissue. Thus, a total

dose D = nd is divided into n equal doses d = d(r, t)

which are applied maintaining the same time interval be-

tween fractions. Therefore, the probability of cell survival

after delivering the dose per fraction d is

S(d(r, t)) = e
(
−αd−βd2

)
. (6)

The partial differential equation (PDE), given in

equation (3), is of the reaction-advection-diffusion (RAD)

type, and represents the combined model that will be

analyzed here. This equation needs an initial condition

u(r, 0) = u0(r) and boundary conditions for the model to

be mathematically well-posed. As presented in Rockne

et al. (2009), gliomas rarely metastasize which justifies

a Neumann-type boundary condition n̂ · ∇u = 0 for

all points on the brain border, where n̂ denotes the unit

normal vector exiting the boundary. This boundary con-

dition means that there are no cancer cells coming out of

the brain.

One-dimensional dimensionless model

For simplicity, our analysis will be carried out only for

the one-dimensional case, where the spatial domain is

defined by x ∈ [0, L], and L = 20 cm is the length of

the domain. In the one-dimensional case the combined

model is described as

∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
+ gu

(
1− u

umax

)
−A(d(x, t))u,

(7)

with initial and boundary conditions given by

u1(x, 0) = u0e
−100(x/L)2 , (8)

∂u

∂x
= 0 if x = 0 or x = L, (9)

u0 is the initial maximum concentration of tumor cells

whose value is u0 = 8000 cells/cm3.
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The initial condition, equation (8), is introduced in

Rockne et al. (2009), which is a continuously differen-

tiable function. Our analysis includes a new initial condi-

tion defined as

u2(x, 0) =


U0 ∀x ∈ [0, xm]

m1(x− xm) + U0 ∀x ∈ ]xm, xl]

m2(x− xl) + Uthr ∀x ∈ ]xl, xz]

0 ∀x ∈ ]xz, L]

,

(10)

where U0 = u0, Uthr = 0.6126U0 is the detectable mar-

gin, Uz = 0, m1 =
U0 − Uthr

xm − xl
, m2 =

Uthr − Uz

xl − xz
,

xm = 0.6 cm, xl = 1.41 cm and xz = 2 cm. This

new initial condition is a continuous function with the first

derivative discontinuous at three points: xm, xl and xz .

In order to construct a computational code that numeri-

cally solves the problem described above, it is convenient

to write the equations in dimensionless form. In this paper,

we follow the same dimensionless performed in Rockne

et al. (2009) and Silva (2014). Thus, the combined model

is written in its dimensionless form by introducing the

dimensionless variables x̄ = x/L, t̄ = tg, ū = u/umax.

In this way, x̄ ∈ [0, 1] and t̄ ∈ [0, gtf ] being tf the final

time. After some algebraic manipulations the equation (7)

is transformed as

∂ū

∂t
= D∗ ∂

2ū

∂x2
− v∗

∂ū

∂x
+ ū
(
A∗(d(x̄, t̄))− ū

)
, (11)

where D∗ =
D

gL2
, v∗ =

v

gL
and

A∗(d(x̄, t̄)) =

1 t̄ /∈ therapy

1− 1− S(d(x̄, t̄))

g
t̄ ∈ therapy

.

(12)

Methodology

The equation (11) is solved using the finite difference

method, where the Crank-Nicolson method is applied for

the diffusive-reactive terms with a first order direct dif-

ference for the nonlinear term, and the upwind numerical

differentiation will be used for the advective term.

Crank-Nicolson method for diffusive-reactive
terms

In numerical analysis, the Crank-Nicolson method is used

to solve parabolic partial differential equations numeri-

cally. Using centered differences for space, and the trape-

zoidal rule in time, the method is second-order in space

and implicit in time.

Let us first consider only the diffusive-reactive terms

of the equation (11)

∂ū

∂t
= D∗ ∂

2ū

∂x2
+ ū (A∗ − ū) , (13)

where A∗ is determined by the equation (12).

The equation (13) is precisely the model presented in

Rockne et al. (2009) for tumor growth in response to radio-

therapy. This equation is of the reaction-diffusion (RD)

type, and will be compared with the combined model de-

termined by the equation (11).

Before applying the Crank-Nicolson method a linear

approximation for the non-linear term Y (u) = u(A∗ − u)

is used. According to Aggarwal (1985, p. 420) one can

use the implicit method of linearization in time which,

instead of linearizing Y (u) in iterative space, uses a Tay-

lor series expansion over the known time level. Thus,

applying the Crank-Nicolson method according to the

methodology of Aggarwal (1985) the equation (13) is

approximated as

Uk+1
i − Uk

i

∆t
=

D∗

2∆x2

(
(Uk

i+1 − 2Uk
i + Uk

i−1)

+(Uk+1
i+1 −2Uk+1

i +Uk+1
i−1 )

)
+

1

2

(
Y (Uk+1

i ) + Y (Uk
i )
)
.

(14)

Upwind method for advective term

The upwind scheme is a numerical discretization method

for solving hyperbolic partial differential equations. Con-

sider only the advective term of the equation (11) we get

equation (15)

∂ū

∂t
= −v∗

∂ū

∂x
. (15)

The spatial point approximation i− 1 is used when the

velocity v∗ has a positive sign, i.e.

Uk+1
i − Uk

i

∆t
= −v∗

Uk
i − Uk

i−1

∆x

if v∗ ≥ 0. So the solution propagates to the right of the

point i, where i− 1 is the point “upstream”.

When the velocity has a negative sign, the solution

propagates to the left, i.e.

Uk+1
i − Uk

i

∆t
= −v∗

Uk
i+1 − Uk

i

∆x

if v∗ < 0. So the spatial point i + 1 is the “upstream”

point.
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A compact form of the upwind scheme can be con-

structed by defining two operators

v+ = max(v∗, 0) and v− = min(v∗, 0). (16)

Combining the operators defined in equation (16)

we obtain a compact form for the upwind scheme,

given by

Uk+1
i − Uk

i

∆t
= −v+

(
Uk
i − Uk

i−1

∆x

)
−v−

(
Uk
i+1 − Uk

i

∆x

)
.

(17)

By making a linear combination of the equations (14)

and (17) approximations for the combinedmodel, equation

(11), we obtain

Uk+1
i − Uk

i

∆t
=

D∗

2∆x2

(
(Uk

i+1 − 2Uk
i + Uk

i−1)

+(Uk+1
i+1 − 2Uk+1

i + Uk+1
i−1 )

)
+

1

2

(
Uk
i A

∗ + Uk+1
i A∗

−2Uk
i U

k+1
i

)
− v+

∆x

(
Uk
i − Uk

i−1

)
− v−

∆x

(
Uk
i+1 − Uk

i

)
.

(18)

The equation (18) can be written in the form

−λUk+1
i−1 + P (Uk

i )U
k+1
i − λUk+1

i+1 = S+Uk
i−1

+RUk
i + S−Uk

i+1, (19)

where

λ =
D∗∆t

2∆x2
,

τ =
∆t

2
,

P (Uk
i ) = 1 + 2λ− τA∗ + 2τUk

i ,

ν+ =
v+∆t

∆x
,

ν− =
v−∆t

∆x
,

R = 1− 2λ+ τA∗ − ν+ + ν−,

S+ = λ+ ν+

and

S− = λ− ν−.

Boundary points

Using second-order finite difference forward in space for

the first node
∂u

∂x
=

−3Ui + 4Ui+1 − Ui+2

2∆x
, and back-

ward for the last node
∂u

∂x
=

3Ui − 4Ui−1 + Ui−2

2∆x
, the

boundary condition is approximated by equation (20) for

the first node and equation (21) for the last node, given by

−3Uk+1
1 + 4Uk+1

2 − Uk+1
3 = 3Uk

1 − 4Uk
2 + Uk

3 , (20)

−3Uk+1
M+1+4Uk+1

M −Uk+1
M−1 = 3Uk

M+1−4Uk
M +Uk

M−1.

(21)

The vector with the unknowns at each time step is

denoted by Uk =
[
Uk
1 Uk

2 Uk
3 · · · Uk

M Uk
M+1

]T
and

Uk+1 =
[
Uk+1
1 Uk+1

2 Uk+1
3 · · · Uk+1

M Uk+1
M+1

]T
. Thus,

the equations (19)-(21) form a linear system of algebraic

equations for each time step that can be solved using a

direct method. Knowing an approximation in the previous

step Uk, the method determines Uk+1 as the solution of

the linear system

AUk+1 = bk = EUk, (22)

where A and E are the tridiagonal matrices

A =



−3 4 −1 0 0 0 0

−λ P (Uk
2 ) −λ 0 0 0 0

0 −λ P (Uk
3 ) −λ 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 −λ P (Uk
M−1) −λ 0

0 0 0 0 −λ P (Uk
M ) −λ

0 0 0 0 1 −4 3


,

(23)

E =



3 −4 1 0 0 0 0
S+ R S− 0 0 0 0
0 S+ R S− 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 S+ R S− 0
0 0 0 0 S+ R S−

0 0 0 0 −1 4 −3


. (24)

In the equation (22) it should be understood that first

the matrix E is multiplied with the solution vector in the

previous step Uk and then it is solved the linear system.

Analysis of stability and consistency of these formulations

can be found in Machado (2023).
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Results and discussion

Here, results of the evolution of glioma in response to

radiotherapy are presented for the RAD and RD models,

equations (11) and (13), respectively. The objective is to

compare the predictions of both models to evaluate how

the advective term (RAD model) influences the evolu-

tion of tumor size, in addition to comparing the impact

of the two initial conditions. The two models were im-

plemented in a computational code developed using the

Matlab software.

It should be noted that the RD and RAD models were

normalized for better computational code performance.

However, after obtaining the dimensionless numerical so-

lution, the results were post-processed and transformed

into variables with physical dimensions. We believe that

this should facilitate a better understanding of the simula-

tions carried out.

Although the spatial domain has a length L = 20

cm, in Figure 1 and in the section on Final tumor cell

concentration we present the results up to x = 10 cm.

In this way, the difference between all plotted curves is

emphasized.

Figure 1 shows the two initial conditions defined by

equations (8) and (10), in addition to the initial radius of

the tumor that corresponds to the hatched region.

Figure 1 - Initial concentrations u1(x, 0) and u2(x, 0).
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This region is determined by the detectable margin of

the tumor. In other words, for concentrations smaller

than the detectable margin Uthr the tumor radius is con-

sidered zero. At each time instant, the tumor radius is

calculated as

R(tk) =

{
max

i
{xi}, if Uk

i ≥ Uthr

0, otherwise
. (25)

The initial conditions, u1(x, 0) and u2(x, 0), have

the same initial radius R0 = 1.41 cm, but different

mathematical behavior. The initial condition u1(x, 0)

is introduced in Rockne et al. (2009), and is a continu-

ous function along with all its derivatives. The initial

condition u2(x, 0) is proposed for the first time in this

work. Although u2(x, 0) is continuous, its derivative is

discontinuous at the points that delimit the four parts. In

the first part the concentration of cancer cells is a con-

stant, in the second and third part the concentration is

described by straight lines with different slopes, and in

the fourth part there are no cancer cells. This last part

establishes a big difference between the two initial con-

ditions, since u1(x, 0) 6= 0 for all points in the domain.

That is, the initial condition u1(x, 0) assumes that there

are cancer cells throughout the brain, even if at points far

from the center of the tumor they are present in very small

amounts.

The results of the glioma evolution simulations that the

two models predict will be separated into three groups.

First, concentrations at the final time point (tf = 80

days) are compared. In the second group, tumor radius

are compared at each instant of time. In the third group,

the temporal evolution of the maximum concentrations is

presented.

Parameter values and dose fractionation

The simulations are based on the results described in

Rockne et al. (2009) and Silva et al. (2016), as they allow

comparisons to be made to validate the developed code.

The following parameters were used as input data: ini-

tial radius R0 = 1.41 cm, constant diffusion coefficient

D = 3.9 10−5 cm2/day, proliferation rate g = 0.0453

day−1, saturation limit for cell concentration umax = 4.2

108 cells/cm3, average velocity of invasive cells mov-

ing away from the core v = 0.01 cm/days, and the ra-

diobiological model parameters α = 0.0305 Gy−1 and

α/β = 10 Gy.

In the treatment schemes detailed in Table 1, it

was considered that all doses were applied daily

at 8:00 am, and that on Saturday only a booster

dose was applied depending on the fractionation

scheme. On Sundays there was never a dose appli-

cation. Other fractionation schemes were studied in

Machado (2023).

According to Rockne et al. (2009) (2008), days in ther-

apy (DIT) is defined to be the duration of the therapy

regimen, whereas days of treatment (DOT) is defined

to be the number of days in which XRT was actually

administered.
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Table 1 - Dose fractionation schemes.

Fractionation schemes

DOT = 0 day There is no treatment

DOT = 1 day Dose of 60 Gy given on a single

day and 4.2 Gy booster delivered the

next day

DOT = 5 days Dose of 12.2 Gy given each day, and

3.2 Gy booster given on day six

DOT = 35

days (7 weeks

of treatment)

Daily dose of 1.8 Gy given during

the first five days of each week, and

without a booster dose

Final goncentration of glioma cells

DOT = 0 day:

In this case there is no therapy. Figure 2 shows tumor

cell concentration as a function of x predicted by RAD

and RD models for tf = 80 days and the two initial con-

ditions u1(x, 0) and u2(x, 0). It is notable that, for both

initial conditions, the curve of the RAD model is wider

than the prediction of the RD model. This was to be ex-

pected because the RAD model is more dispersive due

to the advection term, which contributes to a greater tu-

mor expansion compared to the RD model. It should be

noted that the discontinuity points for the initial condition

u2(x, 0) disappear after 80 days for both models, since

these discontinuities are smoothed by the diffusion term

present in both models.

Figure 2 - Cell concentration for tf = 80 days

(DOT = 0 day).
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DOT= 1 day:

In this case, a single dose is applied. Figure 3

shows tumor cell concentration as a function of x pre-

dicted by RAD and RD models for tf = 80 days

and the two initial conditions u1(x, 0) and u2(x, 0).

Comparing Figures 2 and 3 a decrease in concentration

is observed for both models, since there was cell death

due to radiotherapy. On the other hand, the shape of the

curves remained similar in both figures.

Figure 3 - Cell concentration for tf = 80 days

(DOT = 1 day).
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DOT= 5 days:

In this case, there was fractionation of the dose. Figure 4

shows tumor cell concentration as a function of x predicted

by RAD and RD models for tf = 80 days and the two

initial conditions u1(x, 0) and u2(x, 0). Comparing Fig-

ures 3 and 4 it is possible to observe a drastic decrease

in cell concentration for both models, since the fractiona-

tion of the dose is more therapeutically efficient than the

treatment with a single dose. Among all fractionations,

specifically this fractionation proved to be the most ad-

vantageous. In addition, the shape of the curves remained

similar in Figures 2-4.

Figure 4 - Cell concentration for tf = 80 days

(DOT = 5 day).
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DOT = 35 days:

In this case, there was a larger fractionation of the dose.

Figure 5 shows tumor cell concentration as a function of

x predicted by RAD and RD models for tf = 80 days and

the two initial conditions u1(x, 0) and u2(x, 0). It is ob-

served that this fractionation presents a lower cell concen-

tration for bothmodels than the single dose treatment, but a

higher cell concentration than the DOT = 5 days fraction-

ation. Again, the shape of the curves remained similar in

Figures 2-5.

Figure 5 - Cell concentration for tf = 80 days

(DOT = 35 day).
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Tumor radius evolution

DOT = 0 day:

Figure 6 shows the evolution of the tumor radius over

the days for the RAD and RD models and the two initial

conditions. The straight line R(t) = R0 represents the

initial tumor radius, which makes it easier to identify the

time instants in which the tumor size is larger or smaller

than the tumor before treatment. As there is no treatment,

the tumor grows freely over time, since the influence of the

non-linear term that saturates cell proliferation is still not

significant for 80 days (u(x, t) << umax ∀t ≤ 80). It can

also be confirmed that the tumor radius in the RAD model

is notably larger than in the RD model for the two initial

conditions, showing that the advective term significantly

influenced tumor growth.

DOT = 1 day:

Figure 7 shows the evolution of the tumor radius over

the days for the RAD and RD models and the two initial

conditions. The single dose together with the booster dose

causes the tumor radius to decrease to close to zero for a

few days, and then, close to the ninth day, it grows again.

Figure 6 - Tumor radius evolution (DOT = 0 day).
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Figure 7 - Tumor radius evolution (DOT = 1 day).
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Upon resumption of tumor growth, the shape of the tumor

radius curve is remarkably different for the two initial

conditions. For the initial condition u1(x, 0), the growth

curve of the RAD and RD models has a similar shape,

where the radius estimated by the RAD model is greater

than that of the RD model. The radius estimated by the

RD model is similar to that presented by Rockne et al.

(2009), and this can be considered a validation of our

computational codes. For the initial condition u2(x, 0)

in both models, it is possible to observe two significant

changes in the slope of the curve after the treatment period

that may possibly be related to the initial tumor radius

R0. After the recession period, there is a very marked

resumption in tumor growth, and when the radius exceeds

the initial radius the growth rate changes again. For the RD

model the moment of the second “change” in the growth

rate is at the instant t ≈ 27 at which R(t) = R0. For the

RADmodel, the moment of the second “change” is shifted

to a previous instant t ≈ 25 in which R(t) > R0.
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DOT = 5 days:

Figure 8 shows the evolution of the tumor radius over

the days for the RAD and RD models and the two initial

conditions. This is the most advantageous case of dose

fractionation, since it presents a longer period of time (ap-

proximately 47 days) for which the tumor radius remains

close to zero. After this period of time, the tumor grows

again, but with significant differences between the RAD

and RD models for the two initial conditions. Similar to

the DOT=1 day case, the growth in the RAD and RDmod-

els has a similar shape for the initial condition u1(x, 0).

Again, for the initial condition u2(x, 0) in both models

there are two significant changes in the growth rate after

the recession period. For the RD model the moment of

the second “change” in the growth rate is at the instant

t ≈ 65 at which R(t) = R0. For the RAD model, the

moment of the second “change” is shifted to a previous

instant t ≈ 63 in which R(t) > R0. On the other hand,

comparing Figures 7 and 8 it is clear that, for both mod-

els and the two initial conditions, dose fractionation is

more therapeutically efficient than treatment with a single

dose.

Figure 8 - Tumor radius evolution (DOT = 5 day).
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DOT= 35 days:

Figure 9 shows the evolution of the tumor radius over

the days for the RAD and RD models and the two initial

conditions. In all curves, oscillations in the tumor radius

are evident throughout the duration of radiotherapy, which

are a consequence of the application of the fraction of the

dose per day. For this dose fractionation scheme, there

is no period of tumor recession, that is, the tumor radius

is never close to zero. For both initial conditions, the im-

pact of the advective term on tumor evolution throughout

the treatment application period is evident, since the tu-

mor radius in the RD model remains close to the initial

radius while in the RAD model it grows above the initial

radius. After the end of treatment, the tumor seems to

grow with similar shape for both initial conditions. For

the initial condition u2(x, 0), the two points of significant

changes in the growth rate were not observed after the end

of the treatment, unlike what was observed in the cases

DOT = 1 day and DOT = 5 days.

Figure 9 - Tumor radius evolution (DOT = 35 day).
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On the other hand, the following observation was ver-

ified for all fractionation schemes. The RAD model so-

lutions for the initial condition u1(x, 0) and u2(x, 0) can

have several intercept points. The number of these inter-

cepts seems to depend on the fractionation scheme, that is,

it seems to be related to the number of fractions n and the

value of the dose per fraction d. This demonstrates that

the temporal evolution of the tumor radius can switch to

the RAD model when all parameters are fixed and only

the initial condition is varied.

Furthermore, the difference between the tumor radius

predicted by both initial conditions can be significant, es-

pecially in the region close to the last intercept. However,

for all fractionation schemes, it is verified that after the

last intercept between these solutions, the tumor radius

predicted by the initial condition u2(x, 0) is always sig-

nificantly smaller than that predicted by u1(x, 0). This

same finding is also valid for the RD model, indicating

that the initial condition is a crucial element in building a

mathematical model as close as possible to reality.

Maximum cell concentration

Figures 10 and 11 show the evolution of the maximum

cell concentration over the days for the RAD and RD mod-

els and the two initial conditions. Unlike what was ob-

served for the final cell concentration and tumor radius, the

maximum cell concentration for both models is the same.
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This was expected because the advective term contributes

to faster tumor growth, but this term does not create or

destroy cells. It is just a transport term that contributes to

the dispersion of cells along with the diffusion term. The

reactive term is solely responsible for cell proliferation or

death.

Figure 10 - Evolution of the maximum cell concentra-

tion estimated by the RAD and RD models for the initial

condition u1.
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Figure 11 - Evolution of the maximum cell concentra-

tion estimated by the RAD and RD models for the initial

condition u2.
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DOT = 0 day:

As there is no therapy, the growth of maximum cell

concentration on the logarithmic scale is almost linear in

Figures 10 and 11. Furthermore, the differences between

the initial conditions u1 and u2 are negligible, so that the

maximum concentration of both models are the same.

DOT = 1 day:

For this fractionation scheme a marked decrease in the

maximum cell concentration can be observed during the

single dose administration and a smaller decrease during

the booster. After the end of the treatment application

(region of the graph where there is a negative slope) the

tumor cells grow back quickly, almost exponentially.

DOT = 5 days:

In Figures 10 and 11 again, a marked decrease in the

maximum cell concentration is observed during the admin-

istration of the 5 dose fractions and the booster. After the

end of the treatment application (region of the graph where

there is a negative slope) the tumor cells grow back quickly,

almost exponentially. The oscillations correspond to the

application of daily doses and booster dose. Comparing

the maximum cell proliferation of DOT= 1 and DOT= 5

from Figures 10 and 11 it can be concluded again that the

dose fractionation scheme is more advantageous than the

single dose.

DOT = 35 days:

In Figures 10 and 11 there is no significant decrease in

the maximum cell concentration during treatment, oscil-

lating in a “sawtooth” fashion. After administration of the

treatment, the maximum cell concentration grows almost

exponentially.

Influence of the nonlinear term on cell
proliferation

The previously presented results simulate the evolution

of the glioma up to 80 days. However, this time is in-

sufficient for the influence of the nonlinear term on the

logistic proliferation to be noticed, since u(x, t) << umax

∀t ≤ 80. Now, results of glioma evolution up to 720 days

are presented for cases DOT = 0 day (without therapy)

and DOT = 5 days (best therapy).

In this simulation, the RAD and RD models,

equation (11) and (13), and the linear version of the

RD model (called RD-linear) with umax → ∞ were

used. That is, in the RD-linear model there is no sat-

uration limit for tumor cells. Thus, the RD model,

equation (13) reduces to the RD-linear model defined by

the equation (26)

∂ū

∂t
= D∗ ∂

2ū

∂x2
+ ūA∗. (26)

Figures 12 and 13 show tumor cell concentration as

a function of x predicted by RAD, RD and RD-linear

models for tf = 720 days and the two initial conditions

u1(x, 0) and u2(x, 0). It is remarkable that, for both ini-

tial conditions, without the restrictive term umax the cell
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concentration for the RD-linear model grows much more

than for the RAD and RD models. For this reason, it was

necessary to use the logarithmic scale to better visualize

the results. The curves of the RAD and RD models do not

grow beyond the saturation limit umax.

Figure 12 - Cell concentration for tf = 720 days

(DOT = 0 day).
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Figure 13 - Cell concentration for tf = 720 days

(DOT = 5 day).
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Figures 14 and 15 show the evolution of the maxi-

mum cell concentration over the days for the RAD, RD

and RD-linear models with the two initial conditions.

It can be observed that from day 600 onwards, the curves

of the RD and RAD models present the constant value

umax. However, the curve of the RD-linear model con-

tinues to grow almost exponentially for the two initial

conditions. Also, it is observed that, approximately from

day 340 for the case DOT = 0 day and from day 390 for

the case DOT = 5 days, the growth of the RAD and RD

models with the term nonlinear differs significantly from

the RD-linear model.

Figure 14 - Evolution of maximum cell concentration in

720 days (DOT =0 day).
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Figure 15 - Evolution of maximum cell concentration in

720 days (DOT =5 days).
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Clinically, it is common to use tumor “size” as a surro-

gate marker for overall survival (Dempsey et al., 2005).

The exponential proliferation of glioma cells should not

spontaneously cease until the tumor reaches its lethal size.

It is well known that in this growth process there is com-

petition between cells, such as competition for nutrients.

Assuming that the final stage of this competition between

malignant cells could be related to exponential growth

saturation, it is reasonable to think that growth saturation

has some relationship with the patient’s survival time. On

the other hand, statistical data in the literature show that

the average survival time for patients with glioma high-

grade untreated tumor ranges from 6 months to 1 year.

Semin., Ciênc. Exatas Tecnol. 2023, v.44: e47321 11



Machado, B. S.; Alvarez, G. B.; Lobão, D. C.

Whereas our simulations including the non-linear term es-

timate that the beginning of the glioma growth saturation

process was approximately 1 year, it can be conjectured

that the inclusion of this term in the model is fundamental

to adequately estimate the patient’s survival time. It should

be clear that this is just a conjecture, as glioma growth

is a very complex biological phenomenon and is still not

well understood. In other words, it is observed that for the

input data considered in these simulations, the saturation

process in glioma growth starts approximately after 1 year,

and this non-linear term can be crucial to adequately esti-

mate the patient’s survival time. Although this term was

known to us, it had not been considered in our previous

studies, since it was not included in the analyzes carried

out by Barbosa et al. (2019), Jesus et al. (2014), Silva et al.

(2016) and Souza et al. (2015).

Conclusions

This work analyzes the influence of the terms of a reactive-

advective-diffusive PDE used to model the evolution of

gliomas. A combined RAD model is constructed and

compared with the RD and RD-linear models. In this way,

comparing the solutions of all models, it is possible to

estimate the influence of each term.

These three continuous models were discretized using

the finite difference method. All spatial derivatives at in-

terior points of the domain were discretized with centered

second-order differences. For the boundary points for-

ward and backward second-order differences were used.

A first-order direct difference was used for the non-linear

term in cell proliferation. After linearizing the PDE, the

Crank-Nicolson method was applied considering only the

reactive-diffusive terms, while the advective term was

approximated using the upwind method.

Simulation results are shown for four scenarios: no

radiotherapy, application of a single dose, and two dose

fractionation schemes. By simple comparison, it is pos-

sible to verify that the fractionation of the dose presents

therapeutic advantages, as is already widely recognized in

the literature. Also, it was found that the RAD model is

more dispersive than the RD model, since in addition to

the diffusive term the advective term contributes to cell

mobility. This means that the tumor radius for the RAD

model is always larger than for the RD model.

It was found that, generally, the evolution of the tu-

mor radius has three stages: first an oscillatory decrease

caused by treatment with fractioned doses, second a period

of recession where the tumor radius is below the detec-

tion threshold, and third, the resumption of tumor growth

after the end of the effects of the treatment. In case of

non-use of radiotherapy the tumor radius hardly grows.

In the case of very small dose fractions like DOT = 35

days the recession period does not occur.

When comparing the results of the RAD and RDmodels

for maximum concentration of tumor cells, it is verified

that they are both equal. The reason for this is that the

advective term in the RAD model neither creates nor de-

stroys tumor cells. It is also concluded that the maximum

concentration of tumor cells always decreases during the

application of the treatment and increases again at the end

of the treatment. The decreasing region in the maximum

cell concentration plot has a “sawtooth” shape that depends

on the fractioned dose value. The DOT = 35 days treat-

ment showed a smaller reduction in tumor radius without

recession period. The DOT = 5 days treatment showed

the greatest reduction in tumor radius and the longest pe-

riod of recession, offering a longer window of time for

the medical team to apply another type of therapy, such

as surgical resection or chemotherapy.

Comparing the predictions of the RAD and RD mod-

els for the two analyzed initial conditions, it is possible

to observe that for some cases of fractionation there are

significant differences. For the initial condition u1(x, 0)

the growth in the RAD and RD models is always almost

exponential after the end of the treatment effects. How-

ever, for the initial condition u2(x, 0) both models show

two significant changes in the growth rate of the tumor

radius after the end of the treatment effects. Everything

indicates that these changes are related to the initial ra-

dius of the tumor R0 and the different parts of the initial

condition u2(x, 0). In the RAD model, these two changes

in growth rate occur at earlier time points than in the RD

model, and this can be explained by the fact that the RAD

model has a greater dispersion of cells than the RD model.

Only in the cases DOT= 0 day and DOT= 35 days it was

not possible to observe these two changes in the growth

rate for the initial condition u2(x, 0). Furthermore, for all

fractionation schemes in the two models, it is verified that,

after the end of the treatment effects, the tumor radius pre-

dicted by the initial condition u2(x, 0) is always smaller

than that predicted by u1(x, 0). Considering that the shape

of the two initial conditions is very similar, and that the

main difference between these two initial conditions lies

in the continuity of the first derivative, we can conclude

that the analyzed models are sensitive to the mathematical

properties of the initial condition. This justifies the need

for further studies on which initial condition should be

used so that the mathematical model is as close as possible

to reality.

Finally, it was found that without the non-linear term

of cell proliferation, glioma growth is unlimited, which

does not occur in practice. Whereas statistical data in

the literature show that the average survival time for pa-

12 Semin., Ciênc. Exatas Tecnol. 2023, v.44: e47321



Reactive-Advective-Diffusive Models for the Growth of Gliomas Treated with Radiotherapy

tients with glioma high-grade untreated tumor ranges

from 6 months to 1 year, and that our simulations in-

cluding the non-linear term estimate that the beginning

of the glioma growth saturation process was approxi-

mately 1 year, it can be concluded that the inclusion of

this term in the model may be fundamental to properly

estimate the patient’s survival time. Our arguments for

this conjecture were presented at the end of the previous

section.
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