Exercícios (Cálculo II-B) dos dias 10 e 12/09

Professor Javier Solano

Diferenciabilidade. Plano tangente.

1. Considere a função

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{, se } (x,y) \neq (0,0) \\ 0 & \text{, se } (x,y) = (0,0) \end{cases}$$

- (a) Foi provado na aula que $\frac{\partial f}{\partial x}(0,0) = 0$ e $\frac{\partial f}{\partial y}(0,0) = 0$. Então o "plano tangente", caso estivesse definido, seria z = 0. Encontre uma curva $\gamma(t)$ diferenciável que esteja contida no gráfico de f tal que $\gamma(0) = (0,0,0)$ e $\gamma'(0)$ não esteja no plano z = 0. O que pode concluir deste fato?
- (b) $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$ podem ser contínuas em (0,0)? Justifique

2. Considere a função

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right) &, \text{ se } (x,y) \neq (0,0) \\ 0 &, \text{ se } (x,y) = (0,0) \end{cases}$$

- (a) Calcule $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$ para todo $(x,y) \in \mathbb{R}^2$.
- (b) Mostre que $\frac{\partial f}{\partial x}(x,y)$ não é contínua em (0,0).
- (c) Podemos concluir que f não é diferenciável em (0,0)? Verifique, usando a definição de diferenciabilidade, se f é diferenciável em (0,0).

3. Identifique a região de \mathbb{R}^2 onde as funções são diferenciáveis.

- (a) $f(x,y) = e^{xy^2}$
- (b) $f(x,y) = \arctan(2xy)$
- 4. Determinar, caso exista, o plano tangente ao gráfico das função $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$, no ponto $(1, 1, \frac{\sqrt{2}}{2})$.
- 5. Determine o plano que seja paralelo ao plano z=2x+y e tangente ao gráfico de $f(x,y)=x^2+y^2$.
- 6. Encontrar a inclinação da reta tangente à curva resultante da interseção de $z=\sqrt{x^2+y^2-1},$ com o plano x=1 no ponto (1,-1,1).

7. Considere a função

$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2 + 1} & \text{, se } x^2 + y^2 < 1\\ 0 & \text{, se } x^2 + y^2 \ge 1 \end{cases}$$

- (a) Esboce o gráfico de f.
- (b) Calcular, caso existirem, $\frac{\partial f}{\partial x}(0,1)$ $\frac{\partial f}{\partial y}(1,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- 8. Determinar o diferencial das funções (a) $z = \sin^2(x+y)$ (b) $z = x \arctan(x+2y)$

- 9. Determinar o erro decorrente de tomarmos a diferencial dz como uma aproximação do acréscimo Δz , quando $z=\sqrt{x^2+y^2},\,(x,y)$ passando de (1,2) para (1,01;2,01).
- 10. Considerar um retângulo com lados a=5 cm e b=2 cm. Como vai variar, aproximadamente, a diagonal desse retângulo se o lado a aumentar 0,002 cm e o lado b diminuir 0,1 cm?
- 11. Em um setor circular, o ângulo central é 80° e o raio é 20 cm. Reduzindo-se o ângulo de 1°, qual deve ser o acréscimo no raio para que a área fique aproximadamente inalterada? (Lembre que a área do setor circular é igual a $\frac{\theta r^2}{2}$, com θ em radianos).
- 12. Encontre um valor aproximado para $(a)1,02^{3,001}$ $(b)(0,995)^4 + (2,001)^3$
- 13. Seja $f(x,y,z)=x^2+y^2+z^2$ e $\gamma(t)=(x(t),y(t),z(t))$ uma curva diferenciável contida na superfície de nível $x^2+y^2+z^2=1$. Seja $\gamma(t_0)=(x_0,y_0,z_0)$. Mostre que vale $\gamma'(t_0)\cdot\nabla f(x_0,y_0,z_0)=0$.