A FIXED POINT CURVE THEOREM FOR FINITE ORBITS
LOCAL DIFFEOMORPHISMS

LUCIVANIO LISBOA AND JAVIER RIBON

ABSTRACT. We study local biholomorphisms with finite orbits in some neigh-
borhood of the origin since they are intimately related to holomorphic foliations
with closed leaves. We describe the structure of the set of periodic points in
dimension 2. As a consequence we show that given a finite orbits local biholo-
morphism F, in dimension 2, there exists an analytic curve passing through the
origin and contained in the fixed point set of some non-trivial iterate of F. As
an application we obtain that at least one eigenvalue of the linear part of F' at
the origin is a root of unity. Moreover, we show that such a result is sharp by
exhibiting examples of finite orbits local biholomorphisms such that exactly one
of the eigenvalues is a root of unity. These examples are subtle since we show

they can not be embedded in one parameter groups.
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1. INTRODUCTION

Let FF : U — V be a biholomorphism where U and V are open sets of C"
that contain the origin 0 and F/(0) = 0. Fixed p € U, we define F°(p) = p and, if
F(p),..., Fi=Y(p) € U for j > 0, we define F’(p) = F(F'~!(p)). Given A CUNV,
we define I;{ 4(p) as the set of non-negative integers j such that F*(p) € A for any
0 < k < j. We define the positive orbit of p by F in A as

Ofalp) ={F(p); j €L A(p)}-

Note that the positive F-orbit of p in A is infinite if and only if F7(p) € A for any
j > 0 and the set {F7(p) : j > 0} is infinite. We define the negative F-orbit of p
in A as

Ora(p) = 05 4(p).
where F'~! denote the inverse of F. Analogously as above, the negative F-orbit of
p in A is infinite if and only if F~7(p) € A for any j > 0 and {F(p) : j > 0} is
infinite where F'~7 = (F'~1)7. We define the F-orbit of p in A as

Ora(p) = 04 4(p) U Op 4 (p).

There are two types of finite orbits Op 4(p), namely either Z; ,(p) and Z;_, ,(p)
are finite or

T} 4(p) = Tf-i 4(p) = NU{0}

and p is a periodic point, i.e. there exists k € N such that F*(p) = p.

We say that F' has finite orbits in A if Opa(p) is a finite set for all p € A. In
this case, F' has finite orbits in B for any subset B of A since Opp(p) C Op.a(p)
for all p € B. As a consequence, the finite orbits property can be defined for
F € Diff(C",0) where Diff(C",0) is the group of germs of biholomorphism fixing
the origin 0 € C™.

Definition 1. Let F' € Diff(C™,0) be a local biholomorphism. We say that F' is a
finite orbits germ or that it has finite orbits (and then we write F' € Diff _(C™,0))
if there exists a representative F' : U — V and a neighborhood A C U NV of 0
such that F' has finite orbits in A.

Finite orbits local biholomorphisms appear in the study of foliations with closed
leaves. In [MMS80] Mattei and Moussu proved one of the most important theorems
in the theory of holomorphic foliations, namely the topological characterization of
the existence of a non-constant holomorphic first integral for germs of codimension
1 holomorphic foliations. More precisely, they show that a singular holomorphic
foliation F on (C™,0) of codimension 1 has a first integral if and only if the leaves
of F are closed subsets of the complement of the singular set and only finitely
many of them accumulate at 0. A fundamental ingredient of the proof is that, in
dimension 1, the finite orbits property is equivalent to periodicity. More precisely,
they show that a biholomorphism F' € Diff (C, 0) has finite orbits if and only if F'is
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a finite order element of the group Diff (C, 0). For dimension n > 2, the equivalence
does not hold. For example, the local biholomorphism F(z,y) = (z,y + 2?) has
finite orbits but is of infinite order.

It is possible to recover the equivalence periodicity <+ finite orbits by replacing
the finite order property with stronger conditions and so to obtain, in dimension
greater than 1, analogues of the topological criterium of Mattei-Moussu ([RR15],
[CS09], and [CS17]). In spite of this, the following elementary problems, related
to the finite orbits property, were open until now:

(1) Description of the properties of the differential DyF" at the origin of a finite
orbits germ F;
(2) description of the set of periodic points of F' € Diff - (C",0).

We answer these questions in dimension two and provide partial answers for higher
dimension. A natural question (that was open until now) is whether the finite
orbits property for F' € Diff(C", 0) implies the analogue for the linear part Do F of
F' at the origin. The next result provides the first counterexamples.

Theorem 1. Suppose that A € C satisfies the Cremer condition and n > 1.
Then there exists a global biholomorphism F € Diff (C"*1) such that Spec(DyF) =
{A\, 1}, the algebraic multiplicity of the eigenvalue 1 of DoF is equal to 1 and F
has finite orbits in every set of the form C* x U, where U C C is a bounded open
set.

Let us stress that I’ is a counterexample because, in the linear case, F' has
finite orbits if and only if the spectrum of DyF consists of roots of unity (cf.
Proposition . Until now it was known that finite orbits local biholomorphisms
F satisfy that the eigenvalues of DyF have modulus 1 by the Stable Manifold
Theorem (cf. Corollary [5).

The next result gives an indication of why the examples of F' € Diff - (C",0)
such that spec(DyF) is not contained in the group of roots of unity were missing in
the literature: there are no “continuous” examples, i.e. where F' belongs to a one-
parameter group. Let X(C",0) denote the Lie algebra of singular local holomorphic
vector fields at the origin.

Theorem 2. Let X € X(C",0) and let F be the time 1 map of X. Suppose that
F has finite orbits. Then it satisfies

Spec(DyF) C e*™Q,

The existence of the examples provided by Theorem (1| has consequences in the
problem of geometrical realization of formal invariant curves. Indeed, it was proved
in [LHRRSS21] that when the multiplier of the restriction Fir of F' € Diff (C?,0) to
a formal invariant curve I is not an element of e2™®\Q and F is non-periodic then
either the curve I' is convergent or there are invariant analytic sets asymptotic to
I" and consisting of stable orbits, i.e. orbits of points p such that limy_,, F*(p) =
0. Our examples show that in general there is no systematic approach to the
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geometrical realization of I' as a stable set if the multiplier of Fir is irrationally
neutral, i.e. if it belongs to e*™®\Q  This completes somehow the realization
program in [LHRRSS21] and [LHRSSV]. More precisely, the examples provided
by Theorem (1] for dimension 2 have a formal curve I' invariant by F, such that the
multiplier A of F|p belongs to e?™®\Q) hut F has no stable sets, since it has finite
orbits.

Theorem [I| suggests that the finite orbits property is related to small divisors.
Note that the multiplier A in Theorem [1|is very well approached by roots of unity
since it is a Cremer number. Such a circumstance is not accidental; indeed we
show, by applying a Theorem of Péschel [P86], that there is no F' € Diff -, (C?,0)
such that Spec(DyF) contains a Bruno number (Proposition [f]). In particular, we
show that if the multiplier of Fjr is a Bruno number, for F' € Diff (C%,0) and a
formal invariant curve I' of F, then F' is not a finite orbits germ (Corollary .

The natural follow up question to Theorem [I]is to understand how far is the germ
of DoF at the origin of having finite orbits if F' € Diff .,(C",0). In particular,
are there ' € Diff ..o(C",0) such that Spec(DyF) N e*Q = ()7 The answer is
negative for dimension 2.

Theorem 3. Let F' € Diff . ,(C?,0). Then at least one eigenvalue of DoF is a
root of unity (and all of them belong to the unit circle).

As a consequence, the examples of Theorem [I| have the minimal number of roots
of unity eigenvalues and hence Theorem |3|is sharp. Moreover, we classify the finite
orbits local biholomorphisms F' € Diff (C?,0) such that Spec(DyF) contains a non-
root of unity eigenvalue: essentially they are the examples provided by Theorem
(Proposition [5)). Theorem [3]is a consequence of the Fixed Point Curve Theorem
that we discuss next. A classical result about vector fields in dimension n = 2 is the
Camacho-Sad theorem [CS82], which states that every vector field X € X(C?0)
admits a germ of invariant curve at the origin. Existence of invariant objects for
local biholomorphisms tangent to the identity F' € Diff {(C?,0) is also well known
(see [AbaO1], [LSI8], [BMCLHOS]....). In [Aba0OI] Abate generalizes to C? the
classical Leau-Fatou flower theorem proving that if £’ € Diff ;(C?,0) has an isolated
fixed point at 0 then F' has at least one parabolic curve, that is, a F-invariant
holomorphic curve, with the origin in their boundary, and whose orbits tend to 0;
in particular, it is not a finite orbits germ. Thus, if F' € Diff(C?, 0)NDiff -, (C?,0)
then F' has a non isolated fixed point at the origin. Later on, Lopez-Hernanz and
Sanz [LS18| showed that if F' has a formal invariant curve I" that is not contained
in the fixed point set of F' then F or F~! has a parabolic curve asymptotic to I.
In particular, if F' € Diff ; (C?,0) N Diff -,(C?%,0) then every formal invariant curve
is a fixed point curve.

In contrast to the previous approach, the second author showed that existence
of germs of analytic invariant curves does not hold for biholomorphisms F €
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Diff (C?,0) in general [Rib05]. Moreover, the counterexamples can be chosen to be
tangent to the identity or formally linearizable.

In this work we prove the following theorem. It is a version of the Camacho-Sad
Theorem for finite orbits local biholomorphisms.

Fixed Point Curve Theorem. Let F € Diff (C?,0) be a finite orbits diffeomor-
phism. Then, there exists m € N such that F™ has a germ I' of complex analytic
curve consisting of fized points.

We can apply The Fixed Point Curve Theorem to obtain a generalization of
a Rebelo-Reis Theorem in the context of cyclic subgroups of Diff (C2,0). More
precisely, a consequence of Theorem A in [RR15] is that if, for all m € N, every
point p € Fix(F™) in a neighborhood of 0 satisfies that either p is an isolated
fixed point of F™ or the germ of F"" at p is equal to the identity map, then F'is
periodic. We provide a stronger version of this result in dimension 2, namely it
suffices to check the condition at the origin. Thus, we obtain a negative criterium
for the finite orbits property.

Corollary 1. Let F € Diff(C%,0) such that 0 is an isolated fived point of F™ for
every m € N. Then F' is not a finite orbits germ.

Our approach to show the Fixed Point Curve Theorem relies on describing the
connected components of the set of periodic points of F' € Diff - (C?,0).

Theorem 4. Let F' € Diff ...(C?0). Let B be an open or closed ball centered at
the origin such that F and F~' are defined in a neighborhood U of B and F has
finite orbits in U. Consider the sets

Per,(F) = {p € B: p, F(p)...... F*(p) € B and F*(p) = p}

for k € N. Let C' be a connected component of Per(F) := U2, Pery(F). Then, C
is semianalytic and there exists m = m(C') such that C' is a connected component
of the semianalytic set Per,,(F'). Moreover, if B is an open ball then C' is complex
analytic in B and the irreducible components of C' have positive dimension.

Suppose that B is a closed ball since it is simpler to work in compact sets. Let
B be the set of points p € B such that the map ¢ — #Opp(¢) is an unbounded
function in every neighborhood of p. Such a set is the analogue for diffeomorphisms
of the so called bad set associated to smooth foliations by compact leaves of compact
manifolds; it consists of the leaves where the volume function (defined in the space
of leaves) is not locally bounded. The properties of the bad set are one of the
ingredients used by Edwards, Millet and Sullivan to show that, under a suitable
homological condition, the volume function associated to a smooth foliation by
compact leaves is uniformly bounded [EMST77]. In the finite orbits case for n = 2,
the bad set B is contained in Per(F') and moreover, the connected components of
B are also connected components of Per(F'). In general, the structure of the bad
set can be very complicated. However, the finite orbits property constrains the
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connected components of the bad set B to be simple for n = 2. Indeed they are
semianalytic by Theorem [4]

Our results can be used to study holomorphic foliations of codimension 2 defined
in a neighborhood of a compact leaf and whose leaves are closed. Such a problem
will be contemplated in future work.

Section [2|introduces the setting of the paper along with some elementary results.
Theorem [2] is proved in section [3] We show Theorems and the Fixed Point
Curve Theorem in section [l Finally, we provide the examples in Theorem [I] in
section [

2. NOTATIONS AND FIRST RESULTS

As above, we denote by Diff (C", 0) the group of germs of biholomorphisms fixing
0 € C" and by Diff ..(C",0) the subset of Diff (C",0) consisting of those having
finite orbits. In the remainder of this section we included some elementary results
about the finite orbits property for the sake of completeness.

Proposition 1. Let F' € Diff(C",0).

(i) (Invariance by analytic conjugation) If F = HGH ! for some H € Diff (C",0),

then

F € Diff ..(C",0) & G € Diff ..(C",0).

(ii) (Invariance by iteration) The following affirmations are equivalent.

(a) F € Diff ..(C™,0).

(b) F™ e Diff ..(C",0), Ym € N.

(c) F™ € Diff .(C™,0) for some m € N.

Proof. (i) Assume H o G = F'o H and let U be a connected open neighborhood
of 0 in which all germs involved have injective representatives. There exists a
neighborhood 0 € A C U such that G(A), H(A), H(G(A)) C U. By using H o
G = F o H, we can show by induction that, if z, G*(z),...,G**(z) € A, then
F'Y(H(z)) = H(G'(z)) for | = 1, ..., +k. Therefore,

H(Og.a(x)) = Opuay(H(x)) for any x € A.

In particular, G has finite orbits in A if and only if F" has finite orbits in H(A).
This shows (i).

(ii) (a)= (b): Suppose F' € Diff ..(C",0) and let U be a connected open
neighborhood of 0 in which F' e F~! are defined and have finite orbits. Given
m € N, there exists a connected open neighborhood V' of 0 such that F*i(p) € U
for all p e V and 0 < j < m. As a consequence, we obtain

Opmy(p) C Opu(p), Vp €V,

and hence F™ € Diff _(C",0) for any m € N. It is obvious that (b) =(c). Let us
show that (c)=-(a). Let m € N such that '™ € Diff .,.(C",0). As before, let V' be
a connected open neighborhood of 0 in which F™ has finite orbits. Up to consider
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a smaller V', we can assume that F*', ..., FF"=1 are defined in V. Since for each
p € V, the set Opm y(p) is finite and

Ory(p) C U, F/(Opny(p)),

we deduce that Opy (p) is finite; that is, F' € Diff .,(C™,0). This concludes the
proof. O

We say that a biholomorphism F' € Diff(C™,0) is periodic if it is a finite order
element of the group Diff(C",0), that is, if there exists m € N such that F™ = id.
In dimension n = 1, Mattei and Moussu proved in [MMS80] that the finite orbits
property is equivalent to periodicity. For dimension n > 1, the equivalence is
far from be true. For example, the biholomorphism F(z,y) = (z,z + y) is non-
periodic, but has finite orbits in each bounded neighborhood of 0 € C2 : the line
{z = 0} is the set of fixed points of F' and F is a non-trivial translation on {z = ¢}

with ¢ # 0.

Remark 1. The subset Diff . (C, 0) of Diff (C, 0) is not a subgroup. For example,

the biholomorphisms F'(x) = —z and G(z) = —1% are periodic of period 2 and,

hence, belong to Diff . (C, 0). However, the composition

X

H(z) = (F o G)(w) = ——

is not periodic, since H"(x) = n € N. On the other hand, it is easy to check

1—nz’
that the subset of Diff (C, 0) formed by the linear isomorphisms with finite orbits
is a subgroup of Diff (C, 0), isomorphic to the group of roots of unity. Nevertheless,

this does not hold for dimension greater than 1 (cf. Corollary

Proposition 2 (Linear case). Let F' € Diff (C",0) be analytically linearizable.
Then F has finite orbits if and only if its eigenvalues are roots of unity. Fur-
thermore, if m is the least positive integer such that F™ 1is unipotent then every
periodic point of F is a fixed point of F™.

Proof. Applying Proposition[l](i), we can assume F'(z) = Az, where A € GL(n, C).
Let A € Spec(A) and let B be an arbitrary ball centered at 0. If v € B is a
eigenvector of F' associated with A, then F"(v) = A\"v for all m € Z. In particular,
Op p(v) is finite if and only if A is a root of unity. Hence, the finite orbits property
implies that all eigenvalues of F' are roots of unity.

Reciprocally, suppose that the eigenvalues of F' are roots of unity. It suffices to
show that C" admits a decomposition C" = V; & --- @V, as F-invariant subspaces
such that, for each z; € V}, the orbit Opy(z;) is finite for any bounded set U and
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any x; € U NVj. Thus, it suffices to consider the case where A is a Jordan block

A
1 A

A= 1

A
1 A

where A is a root of unity. We can assume n > 1 since the remaining case is trivial.
Let x = (x1, ..., z,,) € C". By using induction on m it is easy to see that

F™(z) = A"z, mA" oy + N, ooy Pon(T1, ooy Tng) +mA™ i,y + A2),

with P;,,, linear for all j,m € N. In other words, if 7; is the jth projection on C",
then

m(F™(x)) = A"y,

o (F™(x) mA™ ey + Ny,

’/Tg(Fm(.’ﬂ)) = P37m(.271) + m)\m_1$2 + A"

~—

T (F™(2)) = Pum(x1, .y Tpo) + mAN" 1 + N2,

Consider x # 0. Let jo be the first index such that z;, # 0. If jo = n then z is
periodic; so it has a finite orbit. Consider jo < n. Then

1T jo1 (F™(2))] = |mA™ 12y + N2y 41] — 00 when m — oo.

In any case, we see that = has finite positive orbit in any bounded neighborhood
of 0. Since the eigenvalues of A~! are the inverses of the eigenvalues of A, we show
that every negative orbit of z is finite analogously. This shows that F' has finite
orbits. Moreover, if m is the least positive integer such that F is unipotent, the
discussion above shows that for a Jordan block the set of periodic points coincide
with Fix(F™). Therefore, Fix(F™) is the set of periodic points of F. O]

Corollary 2. Suppose n > 2. Then the subset of Diff (C",0) consisting of finite
orbits linear biholomorphisms is not a subgroup of Diff (C™,0).

Proof. Let
F(x1,....,xy) = (11,21 + X9, X3, ..., ) and G(xq,...,x,) = (X1 +To, To, T3, ..o, Tp).

Then F' and G are linear and have finite orbits, since they are unipotent. However,
FoG = (r1 + w3, 21 + 229,23, ..., x,) & Diff ..o(C™,0), since %5 and %5 are
eigenvalues of F'o G. 0J
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2.1. Formal diffeomorphisms. We denote by O, (resp. @mo) the local ring
of convergent (resp. formal) power series with complex coefficients in n variables
centered at the origin of C". Let m be the maximal ideal of O, .

Definition 2. The group Diff (C™,0) of formal diffeomorphisms consists of the el-
ements F' = (Fy,..., F,) of m x ... x m such that its first jet DoF" belongs to
GL(n,C).

Remark 2. As a consequence of the inverse function theorem, we can iden-
tify Diff (C™,0) with the subset of Diff (C™,0) of formal diffeomorphisms F =
(F1,..., F,) such that F; € mN O, for every 1 < j <n.

Definition 3. We denote by [/)i?fu((C",O) the set of unipotent formal biholomor-
phisms, that is, the elements F' € Diff (C™,0) such that Spec(DoF) = {1}. Its
subset Diff 1(C™,0):={F € Diff (C™,0) : DoF = id} is called the group of tangent
to the identity formal diffeomorphisms in n variables.

2.2. Vector fields and flows. Let X(C™,0) denote the Lie algebra of singular
local holomorphic vector fields at 0 € C". Let X € X(C",0) and denote by ¢'(z)
its local flow, defined in a neighborhood of {0} x C™ in C"*!. Then, for each t € C,
the map z — ¢'(z) is defined in a neighborhood U; of 0 in C™ and hence defines a
biholomorphism ¢' € Diff(C",0), the so called time-t map of X, also denoted by
exp(tX). We also use exp(1X) = exp(X) to denote the time-1 map of X. It turns
out that if f € O, then

foexp(tX)(z )+ Z

by Taylor’s formula, where X is now understood as a derivation in the ring O,
and X7 = X o X7~!. By considering f = z;, j = 1,...,n, we obtain

exp(tX)(z1, ..., 2n) = (21+Z—X] 21)y e zn—i—z X] (zn ) :

This last identity allows us to extend the definition of flow assocnated to a germ of
holomorphic singular vector field to a formal singular vector field X € X(C",0),
i.e. a derivation of the rin/g\ of formal power series that preserves the maximal
ideal. Indeed exp(tX) € Diff (C",0) for all X € X(C",0) and ¢t € C. We say
that two vector fields X,Y € X (C™,0) are analytically equivalent if there exists
H € Diff(C",0) such that H,X =Y, that is

D,H - X(z) = Y (H(z))

for any x in a neighborhood of the origin. The map H is called a conjugacy between
X and Y. In this case, one could show that H is also a conjugacy between their
time-t maps for any ¢t € C.
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Definition 4. We say that a singular vector field X € X (C",0) has finite orbits
(denoting by X € X -(C™,0)) if exp(X) € Diff ..(C",0).

Now we derive some properties of finite orbits vector fields.
Corollary 3. Let X € X (C",0) be a singular vector field.
(i) If Y € X (C™,0) is singular and analytically conjugated to X then
X €X (C"0) =Y € X (C"0).

(ii) The following statements are equivalents.
(a) X has finite orbits.
(b) mX has finite orbits for all m € N.
(¢) mX has finite orbits for some m € N.

Proof. (1): As exp(X) is conjugated to exp(Y'), we can apply Proposition (1} (i)
(ii) Set F' = exp(X) € Diff(C",0). Then

F™ =exp(mX) for all m € Z.
Then we can apply Proposition |1 (ii). O

Remark 3. The last corollary implies that the Z-multiples of X have finite orbits.
However, in general such a property is not satisfied for R or C-multiples of X. In
fact, the time-1 map of the one-dimensional field X = )\x% is f =etx, A € C.
Since in dimension one finite orbits is equivalent to finite order, it follows that

X € X .o(C,0) & f has finite order < \ € 27miQ.
Corollary 4. Let X € X(C",0) be an analytically linearizable vector field. Then
X € X c(C",0) & Spec(DyX) C 2miQ.

Proof. The time-1 map F' := exp(X) is linearizable and its eigenvalues have the
form e* with A € Spec(DyX). The proof now is a consequence of Proposition .

0
Example 1. Consider the vector field X = x(27i + y)a— Then we have
x

exp(X) = (¥, y) = (eYz,y).

Moreover, in each level {y = ¢} with ¢ §é 2miQ every point x # 0 has an infinite
orbit. Since the linear part Xy = 27rm: — has finite orbits, it follows that X is not
analytically linearizable.



A FIXED POINT CURVE THEOREM FOR FINITE ORBITS DIFFEOMORPHISMS 11

2.3. Semisimple/nilpotent decomposition of vector fields. We say that a

singular vector field X € X (C",0) is semisimple if it is formally conjugated to a

vector field of the form Z?Zl Aj:vj%. We say that X is nilpotent if the linear part
J

of X is nilpotent. Finally, we say that
X =Xs+ Xy

is the semisimple/nilpotent decomposition of X if Xg is semisimple, Xy is nilpo-
tent and [Xy, Xg] = 0. Every singular formal vector field X admits a unique
semisimple /nilpotent decomposition (cf. [Mar81]). We denote by Xy(C",0) the
subset of X (C",0) consisting of the formal nilpotent vector fields.

Proposition 3 (cf. [Eca75, MRS3|). The image of Xn(C",0) by the exponen-
tial aplication is Diff,(C",0) and the map exp : Xy(C",0) — Diff,(C*,0) is a
bijection.

2.4. Poincaré-Dulac normal form. First, let usrecall that a point A = (A, ..., \,)
of C" is said resonant if there exists m € Nj with |m| > 2 and some 1 < k <n
such that

(A,m) = A\ymq + -+ Aymy, = A
This equation is called a resonance and its resonant monomial is the vector field

Fk,m =a"e, = (O, ...,iL‘Tl R 0)

n

Note that A = (Ay, ..., A,) is resonant if and only if (A,q), ..., As(n)) is resonant for
every permutation of the set of indexes {1,2,...,n}. Keeping this in mind, we say
that a singular vector field X € X (C",0) is resonant if the the n-tuple formed by
the eigenvalues of the linearization matrix Dy X of X is resonant. Finally, we say
that a singular vector field X € X(C™,0) is in the Poincaré domain if 0 does not
belong to the convex hull of Spec(DyX) = {Ay, ..., A\, }, that is, there is no choice
of t; € [0,1] for 1 < j < n such that

ty+--+t,=1 and t A\ +---F+t,\, =0.

Poincaré-Dulac normal form (cf. [IYO§] p. 62). Let X € X(C™,0) be a singular
vector field in the Poincaré domain. Then X has only finitely many resonances
and it 1s analytically conjugated to

Az + Z Ck,ka,Tm

where A is in Jordan normal form, ci., € C and the Fy,, are the resonant mono-
maals of X. In particular, if X is in the Poincaré domain and it has no resonances,
then X is analytically linearizable.
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2.5. Stable manifold theorem. We denote by (W, p) the germ of an analytic
variety at a point p. A germ of analytic variety W C (C",0) is said to be invariant
by F € Diff (C",0) if the germs of W and F(W) coincide at the origin. Addition-
ally, we say that W is stable if there exists a neighborhood U of 0 where F' and
W are defined and satisfy

(1) FUNW)cUNW and

(2) for each z € U N W, the positive orbit (F™(z))men converges to zero.
Analogously, a variety W C (C™,0) is invariant by X € X(C",0) if X (z) is tangent
to W at z, for every regular point z € (W,0). In particular, W is invariant by
exp(X). We say that W is stable by X if is stable for its real flow, i.e. for any = €
UNW, we have exp(tX)(z) € UNW for any ¢ € RT, and lim;_,, exp(tX)(z) = 0.

Holomorphic Stable Manifold Theorem for Diffeomorphisms (cf. [Rue89,
p. 26, [IY0S, p.107]). Let F' € Diff (C™,0) and p € (0,1]. Let

L™ = @,y ker(DoF — Aid)"
be the sum of the generalized eigenspaces associated to the eigenvalues of DoF in
A, = {X € Spec(DoF); |\ < p}.
Then there exists a unique F-stable manifold W~ whose tangent space at 0 is L.
Corollary 5. Let F' € Diff ..(C",0). Then |\ =1 for any A € Spec(DyF).

Proof. Suppose F has a eigenvalue A such that |\| # 1. So, up to change F by F 1,
we can suppose |A| < 1. Thus F' admits a stable manifold W~ # {0} invariant by
F and associated to A] . Hence, the points of W~ close to 0 have infinite orbits. [

Holomorphic Stable Manifold Theorem for Vector Fields (cf. [CS14]).
Let X € X(C™,0) be a singular vector field and 0 € R_q. Suppose

Sy = {X € Spec(DpX); Re(A) <8} #0
and denote by L, = Dres; (x) ker(DogX — Aid)" the direct sum of the generalized

eigenspaces associated to the eigenvalues in Sy (X). Then X admits a unique germ
of stable manifold W, whose tangent space at 0 is L, .

3. FINITE ORBITS AND ONE PARAMETER GROUPS

In this section we show Theorem 2|

Proof. Suppose that X has finite orbits. Applying the stable manifold theorem for
X we conclude that Spec(DyX) C iR. The proof now follows by induction on n.
If n = 1, then the finite orbits property is equivalent to periodicity and hence
Spec(DyX) = {\} C 2miQ.
Now, suppose n > 2 and assume the theorem holds in dimension less than n.
Set

Ao ={X € Spec(DpX); X € iR-g} and A= {\ € Spec(DyX); X € iR_o}.
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Suppose Asg # 0. Let us prove that A~ C 2miQ.

Setting X = i.X, we obtain a vector field whose complex trajectories coincide

with those of X, both interpreted as sets. The subset of Dy X consisting of eigen-
values with negative real part is iA.o. Therefore, X admits a stable manifold
Vo, which is invariant by X, such that Spec(DyX,) = Aso, where Xy = Xjy.
Since X has finite orbits so does Xy. If Asg # Spec(DyX), then dimVy < n
and so by induction hypothesis we have A.q C 2miQ. Therefore, we can suppose
A~g = Spec(DyX) and V; is an open subset of C". Hence X = X is in the Poincaré
domain. If X has no resonances then X is analytically linearizable and we have
Ao C 2miQ by Corollary [d Suppose, then, that X admits resonances. It follows
that k := §(Spec(DyX)) is greater than 1. Set Spec(DoX) = {\i,..., \x} with
Im (A;) > --- > Im (\;). By applying the Stable Manifold Theorem to iX and
0 =1i), 0 =1y, ..., 0 =i\, we find invariant manifolds Vi, V5, ..., Vi_1, Vi =V
such that Spec(DoX;) = {A1,...,A;} where X; := Xy, for all 1 < j < k. Conse-
quently, X7 has no resonances and so is analytically linearizable. It follows from
Corollary [ that \; € 2miQ.

Suppose that A\, ..., \, € 2mQ, [ < k. We are going to show that A\, 1 € 2miQ.
Since Im (A1) > --- > Im (\g), it follows that X;;, is linearizable (in which case

A1y ey A1 € 2miQ) or the possible resonances of X, ; have the form
I+1
Aj = Myl Ajea + -+ [Miga | A, Z | M| > 2,
k=j+1

where M; € Z%,, and n; is the algebraic multiplicity of \; for j = 1,...,1. By
using the Poincaré-Dulac normal form, we have coordinates z = (z1,...,2;41) €
C™ x - x Cm+1 = C™ such that X, ~ Az + (x,*,...,%,0), where the first spot
corresponds to the n; first coordinates, the second spot to the next n, coordinates
and so on. If there exists some resonance with M;,; # 0, then we can write A\;;1
as a combination of \q, ..., \; with rationals coefficients, that is, A\;;; € 2mQ. If all
resonances satisfies M; 1 = 0, then X; 1 ~ Az + (%, %,...x,0,0) and we see that the
manifold W = {z; = 0} C C™ has dimension nj +ny+ ... +n;_1 +ny41, is invariant
by X;.1 and the restriction X |y has eigenvalues Aq, ..., \;_1, \jr1. By hypothesis
of induction, we see that Ay, ..., \j_1, \j11 € 2miQ. This shows that A.y C 2miQ.
Analogously, A is contained in 27iQ and hence Spec(DyX) C 2miQ. O

The inverse proposition of the above theorem is not true, even in dimension one,
as we can see in the next example.

Example 2. The vector field X(z) = 222 has spectrum Spec(DoX) = {0}, but
it is not a finite orbits germ, since exp(X) = 2z + 22 + O(2?) is clearly non-periodic.
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4. F1XxED POoINT CURVE THEOREM

In this section we prove that if F' € Diff .,(C?,0) then some iterate '™ admits
a curve of fixed points at 0. First, we use constructions and ideas featuring in
Mattei and Moussu [MMS80], Rebelo and Reis [RR15] and Pérez-Marco [PM97] to
show that there is a non-trivial continuum K containing the origin and satisfying
F(K) = K. The set K consists of periodic points of F' and can be obtained as a
limit of compact sets where we consider the Hausdorff topology on the compact
subsets of B. Finally, we will use the theory of semianalytic sets (see [Loj64]
[BMS8S]) to show that the continuum K is contained in an analytic curve which is
invariant by some iterate of F.

4.1. Continua. For the sake of simplicity, we recall in this section the Sierpinski
theorem and the Hausdorff topology on compact sets.

A topological space X is called a continuum if X is both connected and com-
pact. The next result will be a key ingredient in the description of the connected
components of the set of periodic points of a finite orbits local biholomorphism.

Sierpiniski Theorem (sece [Eng89, p.358]). Let X be a continuum that has a
countable cover {X;}52, by pairwise disjoint closed subsets. Then at most one of
the sets X; is non-empty.

Now, we define the Hausdorff topology. Let (M, d) be a metric space and denote
by H(M) the space of bounded, non-empty closed subsets of M. Note that H (M)
is the set of compact subsets of M if M is compact. We define the Hausdorff
metric p: H(M) x H(M) — [0, 00) by

p(A, B) = max{supd(z, B), supd(4,y)}.

€A yeEB

Consider A C M and € > 0. We define the e-neighborhood of A by
V.(A) = | Bo(w),

z€A
where B.(z) = {y € M;d(y,z) < €¢}. The Hausdorff metric satisfies

p(A, B) =inf{e > 0; V.(A) D B and V.(B) D A}

for all A, B € H(M). Moreover, the metric space (H(M), p) is compact if M is
compact ([Nad92, Th. 4.13, p. 59]). We assume that M is compact from now
on. Given a sequence (A,),>1 of subsets of M, let liminf A, be the set of points
x € M such that any neighborhood of x intersects A, for all but finitely many
n. We define limsup A,, as the set of points x € M such that any neighborhood
of x intersects infinitely many of the sets in the sequence (A,),>1. Both sets
are compact and liminf A,, C limsup A,. Given a sequence (K, ),>; of compact
subsets of M, the sequence converges in the Hausdorff topology to K if and only
if
liminf K,, = limsup K,, = K,



A FIXED POINT CURVE THEOREM FOR FINITE ORBITS DIFFEOMORPHISMS 15

see [Nad92, Th. 4.11, p. 57]. Moreover, the subset of H(M) consisting of continua
is compact if M is compact (cf. [Nad92, Th. 4.17, p. 61]).

4.2. Invariant curves. A formal curve at 0 € C? is a proper radical ideal I' = (f)
of C[[z,y]]. Such a condition is equivalent to f being reduced, i.e. f hasno multiple
irreducible factors.
(i) We say that T is invariant by F' € Diff (C%,0) if T o F' =T, i.e., f divides
folF.
(i) We say that I is a fixed point curve of F' € Diff (C?,0) if f divides zo(F—id)
and y o (F —1id).
(iii) We say that I' is invariant by X € X (C?,0) if X(T') C T, i.e., f divides
X(f)-
(iv) We say that I' is a singular curve of X if f divides X.
In the case where the curve I' = (f) is a radical ideal of C{x,y}, we identify it

with the germ of analytic set V1 = (f = 0) and the conditions above coincide with
the natural ones for F' € Diff (C%,0) and X € X (C%0):

(i) We have the equality F'(Vr) = Vi of germs of analytic sets at 0.

(i) Fly. =id.
(iii) X is tangent to Vi at any of its regular points.
(iv) Xy =0.

Lemma 1 (cf. [Rib05)). Let X € X x(C%,0) and let T be a formal curve at 0.
(a) T is invariant by X iff T is invariant by exp(X).
(b) T is singular curve of X iff T is a fixed point curve of exp(X).

Lemma 2. Let VW C (C?0) be different germs of non-trivial analytic sets.
Consider 1 € Diff (C?,0) such that V,W C Fix(v)). Then 1) is tangent to identity.

Proof. We have V' # {0} # W and V # W by hypothesis. If V = (C?0) or
W = (C?,0) then 1 = id. Therefore, we can suppose that V' and W are analytic
curves with reduced equation f = 0 and g = 0, respectively, at 0. So both f and
g divide z oY — x and y o ¢ — y. If ord(f) > 2 or ord(g) > 2, then the first jet
JY4 of 1) is equal to Id. So we can assume ord(f) = ord(g) = 1. Since V # W, we
deduce fglx ot —x and fg|y o —y. Again, we obtain J'4 = Id. This concludes
the proof. O

4.3. Connected components of the set of periodic points. Let us assume
that F' € Diff .(C?,0), U is a neighborhood of 0 in which F' is defined and
injective and fix a closed ball B,(0) such that B,(0) C U. Let us also set

(1) Pen(F):={p € B,(0); F(p),... F*"'(p) € B,(0) and F¥(p) = p}
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and
Pery(F) := {p € B,(0); F(p),..., F*'(p) € B,(0) and F*(p) = p}
for k € N and
(2) Per(F) = | J Pery(F), Per(F) =[] Pery(F).
keN keN

Lemma 3. There is a subset K C Per(F) with the following properties.

(1) K is a continuum;
(2) 0 € K and KN OB,(0) # 0;
(3) F(K)=K

Proof. We have Spec(DyF) C S' as a consequence of the Stable Manifold Theorem.
For each n € N, set F,, = e~'/*F. Thus, F, is a biholomorphism with Spec(DoF;,) C
{AeC; | <1}

Claim. We denote B, = B,(0) and B, = B,(0) for r € R* and B = B,,
B = B,,. There are sequences (k,) of positive integer numbers and (r,,) of positive
real numbers such that:

(1) lim, s 7, = 0 and the closed ball B, satisfies
(2) B,,,F;*(B,,),..., E*(B,,) C B and E;*(B,, )N 0B # .

Tn n

Let us assume this for a moment to prove the lemma. We define

Then V,, is connected since it is the closure of a union of connected sets that have
the origin as a common point. Thus, V,, is a continuum contained in B such that
Fi(V,,) C V, for all j > 0 and there exists p,, € V,, NdB. Passing to a subsequence
if necessary, we can assume that V,, — K, in the Hausdorff topology of compact
subsets of B, and also p, — p € K N dB. Since {0,p} C limsupV,, K is a
continuum containing the origin such that K N 9B # 0. Since (F},),>1 converges
to F uniformly in B, it is easy to check that

F(liminfV,) C liminf F,,(V,,) and F(limsupV,) = limsup F,(V,,).
Since F,,(V,,) C V, for every n € N and V,, — K, we deduce that
F(K) = F(limsup V,,) = limsup F,,(V,,) C limsupV,, = K.

Therefore, since F' has finite orbits, we obtain K C Per(F). In particular, K is
contained in the image of F|x and hence F(K) = K.

Proof of the claim.
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Let us construct 0 < r, < 1/n and k,. Since the origin is an attractor for F,,
there exists R € (0,1/n) such that the closed ball By is contained in the basin of
attraction of 0 and satisfies U F/ (Br) C B. We claim that there exists k, € N
such that

F A Br)U...UF,®=U(Bg)c B and F,*(Bgr)\ B #0.

Assume, aiming at contradiction, that no such k, exists. Denote A = DyF; ! and
AF = (aij;k)lgi,jSQ for k € Z. We have

1 zoFk 1 2\° 2
= — " drdy = 4+ < —=@R)?* =) ==
T (amiy? /|| vy 0 = el = o ”(R) R

2

for any £ € N. Analogously, we obtain |aox| < 2p/R, |aoik] < 2p/R and
lage.x| < 2p/R for any k € N. We proved that the sequence (A*)x>1 is bounded,
contradicting spec(A) C {z € C;|z| > 1}.
By defining
r, = inf{s € (0, R); F,*(B,)\ B # 0},

we obtain k, and r, satisfying the desired properties. 0

Definition 5. Let M be a real analytic manifold. A subset X of M is semianalytic
if each p € M has a neighborhood V' such that X NV has the form

cor (A,

i=1j=1
where X;; = {fi; = 0} or X;; = {fi; > 0} with fi; real analytic on V.

Remark 4. Notice that every (real or complex) analytic set X is semianalytic
with m = 1 and X;; = {f;; = 0}. Moreover, since {f;; < 0} = {—f;; > 0},
{fi; = 0} = {fi; = 0y U{fi; > 0} and {f;; < 0} = {fi; = 0} U{fi; < 0}, we
can add these types of sets to the possible options for X;; to obtain an alternative
definition.

Example 3. For each r > 0 the closed ball B,(0) is semi-analytic in C", since it
can be written as B,(0) = {f > 0}, where f(z) = r? — |z1|> — -+ — |z,|*.

Lemma 4. Under the hypotheses above, each set Pery(F) is semianalytic in U,
has finitely many connected components, and each of its connected components is
semianalytic and path-connected.

Proof. We denote P, = mk(F ). Let p € Pi. The local biholomorphism F¥ is
well-defined in some neighborhood V' of p. Moreover, we have

PV = (i {f; = 03) N (NS {f o F' > 0}),
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where fi = Re(zo F*¥ —z), fo = Im(zo F¥ — 1), f3 = Re(yo F¥ —y),
fi= Im (yoF*—vy), and f(z,y) = r*>—|z|*>—|y|%. Therefore, P} is semianalytic.
Now, by Corollary 2.7 in [BMS8S§], we know that each connected component of
Py is also semianalytic and the family of connected components of Py is locally
finite. Since Py is compact, it has finitely many connected components. Finally,
by using Theorem 1 in [Loj64], we know that Py is triangulable and so is locally
path connected. Thus, each connected component of Py, is path connected. 0

Lemma 5. Let C' be a connected component of Pery(F) for some | € N and
suppose that

E={pecC; F*(p) =p and the germ sz of F* at p is unipotent }
is non-empty. Then C is a subset of Per,(F) and D,F* is unipotent for allp € C.

Proof. Denote ¢ = F*. We know that if 1)(p) = p then the characteristic polyno-
mial of D, is

Pp, () = 2° — tr(Dptp)z + det Dyyp = 2* — Sz + P,
where S is the sum and P is the product of the eigenvalues of D,1. Therefore,

E={peC; ¢¥(p) =p, tr(Dyy) =2 anddet(D,) = 1}.
In order to prove the lemma it suffices to show that £ = C. Since E # (), the
set C' is connected, and F is closed in C, it suffices to show that E is open in C.
Consider p € E. Let us first prove that the germ (C,p) of C' at p is contained in
Pery(F). Set

A={qeUsd(q)=q} and B={qeU: ¢'(q) =q}.
It is obvious that A and B are analytic and (C,p) C (B, p). Now since ¥(p) = p
and D, is unipotent, we can consider the infinitesimal generator X, of the germ
1y, i.e., the nilpotent formal vector field X, such that exp(X,) = ¢,,. Consequently,
[ X, is the infinitesimal generator of wé = Fzﬂd . Since (¢;)| B =1id, Lemma applied
to the germ of B at p, implies that (B,p) C Sing(1X,,) = Sing(X,,) and therefore
Y| = 1d. In particular, we obtain (C,p) C Perg(F).

Now let us prove that (C,p) C (E,p). Define f : A — C by setting f(q) =
det(D,1). The restrictions of f to the irreducible components of the germ of A
at p are holomorphic functions. As F' has finite orbits, it follows by the Stable
Manifold Theorem that the eigenvalues of Dyt have modulus 1 and then the image
of f is contained in the circle S*, since det(D,) is the product of the eigenvalues
of Dyip. In particular, the image of f does not contain any open set. We obtain
that f is locally constant in a neighborhood of C'N A in A by the open mapping
theorem. Since f(p) =1 and (C,p) C A, we deduce that (C,p) C {f = 1}. Now
we consider a function g : A — C, defined by g(q) = tr(D,¢). For each ¢ in some
neighborhood of p in A, the eigenvalues A and p of D, satisfy [\ = |u| =1
and A\ = 1 since Spec(D,) C S* and (C,p) C {f = 1}. Therefore, we obtain
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tr(Dyh) = A+ X = 2Re()\) € [~2,2]. Again, the restriction of g to the irreducible
components of (A, p) defines holomorphic functions whose images do not contain
any open set. Hence, g = g(p) = 2 is constant in a neighborhood of p in A. It
follows that (C,p) C (E,p). This concludes the proof. O

We have already seen in Lemmathat each Pery,(F) has finitely many connected
components, say, CF, ...., CF. Now, let us consider the family of all components of
F in D, namely,

A:={C¥ ke Nand C is a connected component of Per,(F) }.

We say that two components C, D € A are equivalent (and then we write C' ~ D)
if there are

k kr
Cyt,..,Core A

such that C' = Cf!, D = Ckr and Cf: N Cistt # ) for all 1 < s < r. Notice that
~ is a relation of equivalence in A.

Remark 5. If C¥' ... C% are components in A such that C%: N C{jsﬁ # () for all

1 < s < r, then there are j, k € N such that |, ij‘: - Cj’?. If fact, since the union
is connected and is contained in Pery, 4, (F), it is contained in C]’? 1k for some j.

Lemma 6 (stability of classes). If [C] is an equivalence class (possibly infinite) in

A/ ~, then
U ¢=cp
Cj€elC]
for some 7o, ko.

Proof. The result is obvious if there is at most one non-unitary component in [C],
i.e. a component CF of [C] such that CF > 1. Thus, we can assume that there
are two distinct non-unitary components C, and Cj, of [C] such that C, N Cy, # 0.
Suppose that C, is a connected component of P, and C} is a connected component
of Py, where we denote P; = Per;(F).

Let us show that there is p € C, N Cjy such that D,F @ is unipotent. First of
all, there is p € C, N Cy such that (C,,p) # (Cy,p) in B since C, and C, are
connected. Let (V,,p) and (V4, p) be the germs of analytic set of equation F'* = Id
and F® = Id, respectively, defined in some neighborhood of p in U. Since C, and
C}, are non-unitary, we have dim(V,,p) > 1 and dim(V},p) > 1.

We claim that (V,,p) # (V4, p). Otherwise, we have (C, U Cy,p) C P, NP, and
hence

(Omp) = (Oa U Ob7p) = (Ob7p)7
that contradicts the choice of p. Therefore we obtain D,F* = id by Lemma .
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Consider the connected component C¢ of P,;, containing p. Let A be a connected
union of finitely many components of [C] that contains p. Then A C C% by Lemma
4.5. By varying A, we deduce Ug,¢ic)C; = Cab. OJ

4.4. Structure of the set of periodic points. Now, we combine the previous
results to show Theorem (] and the Fixed Point Curve Theorem.

Proof of Theorem[{] and the Fized Point Curve Theorem. Let B an open ball such
that F and F~! are defined in a neighborhood of B. Let P be a connected
component of Per(F). It is a countable union of elements of the family A of
components of F' in B. Up to consider only maximal components of F in B, we
can suppose that such a union is disjoint by Lemmal6] Therefore, we obtain P = C
for some C' € A by Sierpinski Theorem. Hence P is a connected component of
some Pery(F). Both C' and Perj(F) are semianalytic by Lemma .

Let Q be a connected component of Per(F'). It is contained in a connected
component Q' of Per(F). Then Q' is a semianalytic subset of Per;(F) for some
k € N by the first part of the proof. We obtain @ C Pery(F') and hence the set Q
is given locally by the equation F* = id. It follows that Q is a complex analytic
subset of the open ball. Since the set Pery(F) N Q' is semianalytic and relatively
compact, it follows that it has finitely many connected components [BMS8§| Cor.
2.7] and they are all semianalytic. We deduce that Q is a semianalytic subset of
C2.

We claim that dim(Q,p) > 1 for any p € Q. This is equivalent to the property
£Q > 1 since Q is a connected component of Pery(F). First, suppose 0 € Q. Since
Q' C Per,(F), there exists a neighborhood W of the origin such that

WNQ=wngQ =WnFix(F*).

Note that Q' is a continuum that contains the non-trivial subcontinuum K ob-
tained in Lemma . Since Q' is a non-trivial continuum, we deduce that the germ
of Fix(F*) and then of Q at the origin have positive dimension and thus contains
an analytic curve I' passing through 0. Finally, consider a general connected com-
ponent Q of Per(F'). Given p € Q, there exists a germ of analytic curve IV at p
contained in Per;(F") for some [ € N by the previous discussion. Since (I, p) C Q,
we obtain dim(Q, p) > 1. O

Proof of Theorem[3 The eigenvalues of Dy F belong to the unit circle by Corollary
. By the Fixed Point Curve Theorem, there exists an analytic curve I' C Fix(F")
through the origin for some k& > 1. Suppose 1 & spec(DoF*). Then Do(F* —1d)
is a regular matrix, therefore F¥ — Id is a local diffeomorphism at 0. But this
contradicts I' C (F* — Id)~1(0). Therefore, we obtain 1 € spec(DyF"*). Since the
cigenvalues of DyE'* are kth-powers of eigenvalues of DyF, it follows that there
exists A € spec(DyF) such that \F = 1. O
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Remark 6. Corollary [1] provides negative algebraic criteria for the finite orbits
property. For instance, let F(z,y) = (z + fi(z,v),y + f2(z,y)) € Diff;(C?,0)
where fj(z,y) = > o, Pu;(z,y) is the expansion of f; € C{z,y} as a sum of
homogeneous polynomials for j € {1,2}, where m > 2. Assume that P,,; and
P,, 5 are relatively prime. Since

zoF*—x=FkP,;+hot and yo F* —y = kP, 5+ h.o.t.

we deduce that the fixed point (0,0) of F* is isolated for any k& € N and hence F
is not a finite orbits germ.

Later on, we will see that there exists F' € Diff (C?, 0) with finite orbits but Do F
has no finite orbits (see Theorem [I)). It makes sense to study whether the finite
orbits property for other actions naturally associated to F' implies spec(DgF’) C
e?™2 We are going to consider the blow-up 7 : C2 — C? of the origin and the

diffeomorphism F' induced by F in a neighborhood of the divisor D := 771(0) (see
[Rib05) ).

Corollary 6. Let ' € Diff (C2,0). Assume that the germ of F defined in the
neighborhood of D in C* has finite orbits. Then spec(DoF) consists of roots of
unity.

Proof. The diffeomorphism ﬁ] p has finite orbits and hence Dy F induces an element
of finite order of PGL(2,C). Thus DyF is diagonalizable and has eigenvalues
A, i € C* such that A/p is a root of unity. Since at least one eigenvalue of DyF' is
a root of unity by Theorem , we deduce spec(DgF) C e*™Q, 0

Remark 7. In general, a germ of biholomorphism H does not admit germs of fixed
point curves, even when F € Diff . (C?,0). For example, F(z,y) = (—x, —x — y)
is a finite orbits germ, because it is linear and Spec(DyF') = {—1}, but the only
fixed point of F is the origin. Note, however, that F?(x,y) = (z,2x + y) and
{z = 0} is a fixed point curve of F?. Moreover, the curve {z = 0} is an irreducible
curve invariant by F'.

We conclude this section providing an example of F' € Diff(C?, 0) that has finite
orbits but has no irreducible germ of invariant curve. The diffeomorphism F' is of
the form F' = S oT where S(z,y) = (iy,iz), T = exp(X) and

¥ = 0 0 9 9 0 0

=2y (x%—ya—y) +1x%y (x%jtya—y) .

Note that S*X = X and hence S and T' commute. Moreover S has order 4. Any
germ of irreducible curve «y that is invariant by F is also invariant by F'* and hence
by exp(4X). Since X is the infinitesimal generator of a tangent to the identity
local biholomorphism, we deduce that « is invariant by X by Lemma |l| Note that
the singularity of X/(zy) at the origin is reduced and hence X/(xy) has only two
irreducible invariant curves by Briot and Bouquet theorem, namely the x and y
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axes. As a consequence, the axes are the unique irreducible germs of X-invariant
curves. Since S permutes the axes, it follows that F' has no irreducible germ of
invariant curve.

Let us show that F' has finite orbits. It suffices to prove that F* = T* has
finite orbits by Proposition [I} Indeed, it suffices to show that 7" has finite orbits
by the same result. Next, we study the action induced by X on the leaves of the
foliation d(ry) = 0. Such a foliation is preserved by X since X (xy) = 2i(zy)?.
We can relate the properties of X with those of Z = 2i230/dz and its time 1 map
G = exp(Z). Indeed, we have

(y) o T*(z,y) = G*(ay)

for k € Z.

Fix a small bounded neighborhood V' of 0 in C and a small bounded neighbor-
hood V of (0,0) in C? such that (zy)(V) C V’. Consider (g, o) € V and denote
20 = ToYo. Since the axes consist of fixed points of T', we can suppose zgyy # 0.
Assume, aiming at a contradiction that the positive T-orbit of (xg,y0) in V is
infinite. Therefore, G*(2y) is well-defined and belongs to V' for any k& > 0. Since
G has a dynamics of flower type, we deduce

Gk (Z()) in

lim G*(2) =0 and lim e {e%, —eT}).

k—o0 k—o0 ]Gk(zo)|
Assume that the latter limit is equal to eT. Let us study the variation of the
monomials %" by iteration; we have

2y’ o T = 2"y*(1 + (a — b)zy + O(x%y?))
for any (a,b) € Z>¢ x Z>p. As a consequence, we get
[ 0 T* (2, y0)| > |0 T"(wo,90)|, [(2%y) o T* (0, yo)| > [(2*y) o T* (o, 0)]

for any non-negative integer number k. Since |z| increases along the positive T-
orbit of (g, yo) and limy .o (zy)(T*(z0, yo)) = 0, we get limy o0 y(T*(z0,0)) = 0.
Moreover, since |z%y| increases along the positive T-orbit of (zg, o) it follows that
limy o0 |2|(T*(20,%0)) = co. This property contradicts that V is bounded. The

. GF in . ..
case limy_, o ﬁ = —e41 is treated in a similar way. Analogously, we can show

that the negative T-orbit of (z,yo) is finite.

5. NON-VIRTUALLY UNIPOTENT BIHOLOMORPHISMS WITH FINITE ORBITS

So far, all the examples in the literature of finite orbits local diffeomorphisms
were virtually unipotent, i.e. the eigenvalues of their linear parts were roots of
unity. The likely reason is revealed in Theorem [2} time 1 maps with finite orbits
have roots of unity eigenvalues. In this section we construct a family of finite orbits
local diffeomorphisms that are non-virtually unipotent.



A FIXED POINT CURVE THEOREM FOR FINITE ORBITS DIFFEOMORPHISMS 23

Definition 6. We say that A € C is a Cremer number if \ is not a root of unity,

but
Al =1 and liminf {/|A™ — 1| = 0.
m—0o0
This equation is called Cremer’s condition.

Fix n > 1 and consider coordinates x = (x, ... xn) € C" and y € C. Given
j € N we denote by [j] the unique natural number j' € {1,...,n} such that j — j'
is a multiple of n. The proof of Theorem [I] consists in bulldmg a convergent power
series

> 2]1‘ i 27\
@ et - B S (),
J

where (m;);>1 is an increasing sequence of natural numbers and (M;);>1 is a
sequence of positive numbers that will be chosen to ensure that

(4) F(z,y) = (Az1, A2, ..., A\xy, y + a(zy, ..., xp))

has finite orbits. We need auxiliary sequences (k;);>1 and (r;);>1 of natural num-
bers. They satisfy certain conditions that are provided by the following lemma.

Lemma 7. Let A be a Cremer number. There exist a sequence (M;);>1 in Ry and
sequences (m;)i>1, (kj)j>1 and (r;);>1 in N such that, for any j € N,

(Cl) M; = W satisfies M; > 45°;

C2) 2m > 14+ 3050, 2(20)m ™ (2™ > 2);
C3) min(m;,r;) > max(m] 1,Ti—1) if j > 2;

C4) |)\’c imi — 1| > 1;

Proof. Since \ satisfies the Cremer condition, we can choose m; and M; such that
the first three conditions hold, where (C3) is an empty condition. As A™! is not
a root of unity, the sequence (A¥™1);5; is dense on the unit circle; hence, there
exists k1 € N such that the fourth condition holds for j = 1. Now we can define 7,
in such a way that the last condition holds for 7 = 1. Analogously, we can define
(M, my), ko and 7o such that (C'1) — (C5) hold for j = 2. Indeed, we define the
sequences (M;)j>1, (m;);>1, (kj);>1 and (r;);>1 recursively for j € N. O

Remark 8. Notice that conditions (C1), (C2), (C3), (C4) and (C5) still hold if

we replace A by A7, since A = A~ implies
AT =1 == 1] = |A" =1

for any n € Z.
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Lemma 8. Consider the setting provided by Lemma[] Then a(z) (cf. (3)) is an
entire function of C". Moreover, the map F(x,y) = (Az,y+a(x)) is a holomorphic
automorphism of C" whose inverse is

F gy, zny) =W 2y, e,y —a(Z o, A ).
Proof. Since M; > 452 for any j > 1, it follows that

lim ™ <—]> — lim =L =0

and hence a(z1, ..., z,) is an entire function. We can verify directly that F'~(z,y) =
(A tz,y —a(A"1x)) is the inverse of F. O

Now note that if A(z) = Y aj, ;.2 ... 20" is a power series and G(z,y) =
(A1, ..., AT,y + A(zq, ..., x,)), then we can show that

GF(x,y) = (Neay, .., Mo,y + (LeA) (21, ... 20))

for any k € N by induction, where Ly is the linear operator of the ring of convergent
power series defined by

(5) (LpA)(z) = Ax)+Ax) +...+ AN 12)
= Z (1 + )\'JI + )\2|j| + ...+ )\(k_l)‘j‘)ajlmjn.%']l'l ce .CEan
jeNn

kljl _ .
- /\m -1 J1--Jnv1 ot

where [j| =j1 +jo + ... + Jn-

Lemma 9. Consider j > 1 and v € C with maxi<p<y, || < j and |z > 1/5.
Then we have

J < |(Li,a)(@)] < 2(25%)™ + 2™ — .

. By we have

N — 1 (2jap))™
A —1 MY

J

Proof. First, let us study ‘ij%

J

(2j(5)™

. ma
7 MJ J

Ly

‘ = |(\M™ = 1)(2jay)™ ],

where the second equality follows from the definition of M;. Thus, the choice of k;
allows us to conclude that

9 i)
Lk.—( ]x[ﬁl)_
Vi

J

2™ < < 2(25%)™




A FIXED POINT CURVE THEOREM FOR FINITE ORBITS DIFFEOMORPHISMS 25

since % < |zg| < j. Now, let us study

i1 2[5(]” ™
Ml
=1

We obtain
-1 i1 g
(QZIBU])ml Neima ] (2lx[l])ml
L. - =
(6> k] <Z Mlml >\ml _ 1 Mlml
=1 =1
j—1
= (AR — 1) (20) ™y’
=1
j—1
< Yoy
=1
< 2™ —(j+1)
if max(|z1|,...,|zn]) < j, where the final inequality follows from condition (C2).

Finally, let us consider

> (2[1?[”)7"’
ij < Z W .
I=j+1 !

The condition (C1) implies 2 < - for any [ > j. Therefore max(|z1], ..., |z,]) < j
implies
(7) L f: 2_l i < f: |1+)\m1+)\2m1+ +)\(k-—1 ml| 1
k:j Ml [l} = [P 2ml
I=j+1 I=j+1
— 1
< k)
I=j+1
— 1
S
l=r;
< 1

by conditions (C3) and (C5). In particular, by combining the previous estimates
we get

j=2m =@M = G+ 1) =1 < |(Liya) (@)] < 2025%)™ 27 —
if max(|z1],...,|x,|) < j and |z > 1/5. O

The next lemma concludes the proof of Theorem [I}
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Lemma 10. Let A € C be a Cremer number and n > 1. Consider the function
a(z) in (3) where (M;);>1 and (m;);>1 are provided by Lemma(7. Then the biholo-
morphism F(x,y) = (A\x,y + a(x)) has finite orbits in any set of the form C* x U,
where U s a bounded open set in C.

Proof. Let d be the diameter of U. Fix (z10,...,%n0,%) € (C"\ {0}) x U. Then
there exists j € N such that max(|zip|,...,|Tnol) < 4, 20 > 1/7 and j > d.
Lemma (9] implies that % (zg,10) does not belong to C* x U. Notice that by
Remark [§f conditions (C1), (C2), (C3), (C4) and (C5) still hold if we replace A by
AL Since F7Y(x,y) = (A o,y — a(A7'z)), we have

_a()\_lx) = Z(—)\_|J|)a]1]nx]11 Ce .TZLTL,

that is, the monomials of —a(A~'z) are obtained by multiplying those of a(x) by
complex numbers of modulus 1. In particular, the proof of Lemma [J is still valid
for F~1. One concludes that F'~*i(zg,y) € C" x U. Therefore, F has finite orbits
in (C"\ {0}) x U. In the other hand, as x = 0 is a fixed point curve of F, it is
clear that F' has finite orbits in C" x U. 0J

Theorem 5. Consider the hypotheses in Lemma [I0. Then the local diffeomor-
phism F(x,y) = (Ax,y+a(x)) is formally linearizable. In particular, F' has a first
integral of the form y+ b(x), where b(z) is a divergent power series with b(0) = 0.
Specifically, y — yo + b(x) = 0 defines a (divergent) formal invariant hypersurface
through the point (0,yy) for every yo € C.

Proof. The conjugacy equation

(z,y +0(x)) o (Az,y + a(x)) o (z,y — b(z)) = (Az,y)
is equivalent to
b(x) — b(Ax) = a(x).

Setting b(x) = > bjz? and a(x) = 37 . a2, we see that b(x)—b(Ar) = a(x)
can be expressed as

Z (b] — )\mb] — Clj)l’j = 0.

jEN™
Hence, the conjugacy equation has a solution

aj

b(x) = Z = /\Ijlxj'

jeNn

Since y is a first integral of (z,y) — (Az,y), the series y + b(x) is a first integral
of F. Note that the series b(x) is divergent, otherwise, F' and (z,y) — (\z,y)
would be analytically conjugated, which is impossible, because F' has finite orbits
whereas (z,y) — (Az,y) does not. O
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We want to understand the non-virtually unipotent diffeomorphisms F' € Diff (C?,0)
with finite orbits. First, we focus on the arithmetic properties of the non-root of
unity eigenvalue. It is not casual that in our examples such an eigenvalue is well
approximated by roots of unity.

Definition 7. A number N\ € C is called a Bruno number if there is a sequence
1< q1 <@g <...of integers such that

(8) A =1 and Z

< 400,
— Qk QA Qk-i-l)

where Q)(m) = ming<p<m |A* — A| for all m > 2. Condition @ is called Bruno
Condition and it is equivalent to the following (see [Bry73])
i i log ; < 400
k k1 '
£~ 2 Q) (2k+1)
Given X € St and | € N, we see that Qyu(m) > Qx((m — 1)l + 1) for all m > 2.
Thus we can adjust (@ to conclude that if \ is a Bruno number then so is .

Proposition 4. Consider F € Diff .,(C?,0) with DoF ¢ Diff -o(C?,0). Let \ be
the eigenvalue of DoF' that is not a root of unity. Then X is not a Bruno number.

Proof. Suppose, aiming a contradiction, that one of the eigenvalues of DyF is a
Bruno number. By Theorem , up to replace F with a non-trivial iterate F*, we
can suppose that spec(DgF') = {1, A}, where A is a Bruno number.

Up to a linear change of coordinates, we can suppose (DoF')(z,y) = (Az,y).
Note that the line y = 0 is invariant by DyF. Now, we apply a theorem of
Poschel that relates the invariant manifolds of DyF and F [P86]. In our context,
it determines a sufficient condition for the existence of a smooth analytic curve 7,
invariant by F', tangent to y = 0 at 0 and such that F}, is analytically conjugated
to the rotation z — Ax. The Poschel condition is

(9) 22 “logw (2" < o0

v>0

where we define
w(m) = min (|/\k A, AR = 1)).

2<k<

Since w(m) > Qy(m + 1) for m > 2, it follows that the property (9) is a conse-
quence of the Bruno condition. Thus, the intended ~y exists and F}, is an irrational
rotation, contradicting that F' is a finite orbits germ. 0

Corollary 7. Let F € Diff (C%,0). Consider a formal invariant curve T’ such that
the multiplier of Fir is a Bruno number. Then F' is not a finite orbits germ.
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Proof. Assume, aiming at a contradiction, that F' has finite orbits. Let 7(t) be a
Puiseux parametrization of I'. Since I' is invariant, we have F'(y(t)) = (yoh)(t) for
some h € Diff (C,0). We denote the multiplier of Fir by p; it satisfies u = h'(0).
We can suppose that 1 € spec(DoF) up to replace F' with some non-trivial iterate
F* by Theorem Note that the multiplier of F|’12 is equal to p*. Since p* is a

Bruno number, the hypothesis still holds for F* and I'. The tangent cone of I is a
subspace of eigenvectors of DyF’, associated to an eigenvalue that we denote by .
Moreover, we have u™ = X\, where m is the multiplicity of I'. Since p is a Bruno
number, so is A. Proposition [4| implies that A is not a Bruno number, providing a
contradiction. O

Next, we see that the diffeomorphisms provided by Theorem [1| are archetypic
examples of finite orbits diffeomorphisms £ € Diff (C%,0) such that DyF has no
finite orbits. Indeed, next result classifies the properties of such diffeomorphisms.

Proposition 5. Let F € Diff - (C?,0) with spec(DyF') = {1, \} where X is not a
root of unity. Then F satisfies the following properties:

e )\ is not a Bruno number;

o Fix(F) is a smooth curve through the origin;

o I is formally conjugated to (x,y) — (Ax,y) by a formal diffeomorphism
that is transversally formal along Fix(F');

o there exists a divergent smooth invariant curve through any point p €
Fix(F).

Proof. The eigenvalue \ is a non-Bruno number by Proposition[d Fix a sufficiently
small domain of definition B,(0). Let C' be the connected component of the origin
of Per(F) (cf. equation (). It is complex analytic, has positive dimension and
is contained in Fix(F™) for some m € N by Theorem [ The dimension of the
germ of C' at the origin is less than 2, since otherwise the germ of F at 0 is the
identity map, contradicting A € €*™Q. Therefore, the germ of C' at 0 is an analytic
curve 7. Moreover, -y is irreducible and smooth, since otherwise F™ is tangent to
the identity by Lemma . Since Fj, is a local biholomorphism in one variable with
finite orbits, it has finite order. Therefore, its multiplier at 0 is a root of unity and
thus it is necessarily equal to 1. Since the unique periodic tangent to the identity
local diffeomorphism is the identity map, we deduce v C Fix(F'). It is clear that
the germ of Fix(F') at 0 is contained in C' and hence the germs of Fix(F') and ~
at 0 coincide.

Up to a change of coordinates in a neighborhood of the origin, we can assume
Fix(F) = {x = 0}. Asaconsequence 1 € spec(D g, F) for any y in a neighborhood
of 0. We denote spec(D,)F) = {1, A\(y)}. The function A(y) is constant equal to
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A by the proof of Lemma [5] We obtain that F is of the form

F(z,y) = (M + Zaj(y)wj,y + ij(y)xj) :

where a;1,b; are defined in a common open neighborhood U of 0 in C for any
7 € N. We want to conjugate F' with DyF'. In order to do it, we consider sequences
(G2,)j>1, (G1,j41);>1 of diffeomorphisms of the form

Grjii(z,y) = (z + cia(y)2’™y) and Goj(z,y) = (z,y + dj(y)2?),

where d;, cj41 € O(U) for any j € N. We define Fy; = F, I, ; = ngl o Fy ;o Gy,
and F1’j+1 = Gl_,}-l-l e} FQ’j o Gl,j+1 for ] € N. We want Fg,j and F17j+1 to be of the
form

FQJ(‘T?y) = ()"T+O<'rj+1)7y+0($j+l))7 F17j+1<x7y) = (/\$+O<xj+2)7y+0(l‘j+l)>

for any j € N. Indeed, if a;.1(y) is the coefficient of 7% in x o Fy;, it suffices
to define ¢jy1(y) = ajp1(y)/ (M — A) for j € N. Analogously, if §;(y) is the
coefficient of 27 in y o Fy;, we have d;(y) = B;(y)/(M — 1) for j € N. The
diffeomorphism

Hj = Gz,1 o G1,2 o G2,2 o G1,3 ©...0 Gz,j—l o Gl,j

conjugates F' with Fy; for j > 2. By construction, it converges in the (z)-adic

topology to some H € Diff (C?,0), that is transversally formal along x = 0 and
satisfies H ' o F o H = DyF.

Note that y o DoF' = y implies (yo H ') o FF = yo H™'. Since yo H™ ! is
transversally formal along x = 0, there exists a formal invariant curve 7, through
(0,y), that is transverse to Fix(F), for any y € U. We claim that -, is divergent
for any y € U. Otherwise, there exists yo € U such that ~,, is an analytic curve
and since the multiplier of F, ~at (0,y0) is equal to A, the diffeomorphism Fj, is
non-periodic. This contradicts that the one dimensional diffeomorphism Fj,, —~has
finite orbits.
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