Parte 2

Autovalores e autovetores

Introduziremos os espaços vetoriais sobre $\mathbb C$ e generalizaremos os resultados obtidos para espaços vetoriais reais finitamente gerados. Vamos trabalhar, daqui por diante, com espaços vetorias reais ou complexos finitamente gerados. Trabalharemos com K-espaços vetoriais, onde $K=\mathbb R$ ou $K=\mathbb C$.

Apresentaremos os conceitos de subespaço invariante por meio de um operador K-linear e daremos ênfase a um tipo especial de subespaço invariante, a saber, os subespaços característicos, que são subespaços gerados por autovetores associados a um autovalor de um operador K-linear.

Ensinaremos como determinar, caso existam, os autovalores e os autovetores de um operador K-linear em um espaço vetorial de dimensão finita. Apresentaremos os conceitos de polinômio característico e polinômio mínimo de um operador K-linear, multiplicidade algébrica e multiplicidade geométrica de um autovalor. Introduziremos o conceito de operadores diagonalizáveis e daremos condições necessárias e suficientes para um operador K-linear em um espaço vetorial de dimensão $\mathfrak{n} \geq 1$ ser diagonalizável, em termos do polinômio característico e dos subespaços característicos, mas também do polinômio mínimo.

Espaços vetoriais sobre $\mathbb C$

Na primeira disciplina de Álgebra Linear vocês estudaram espaços vetoriais sobre $\mathbb R$ finitamente gerados. Vamos generalizar os conceitos lá aprendidos para espaços vetoriais sobre $\mathbb C$.

Sabemos que $\mathbb{C}=\{a+bi\;;\;a,b\in\mathbb{R}\;\mathrm{e}\;i^2=-1\}$ está munido com as operações de adição e multiplicação, respectivamente:

$$(a + bi) + (c + di) = (a + c) + (b + d)i e$$

$$(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i.$$

Com essas operações $\mathbb C$ é um corpo.

Definição 1 (Espaço vetorial sobre \mathbb{C})

Um \mathbb{C} -espaço vetorial é um conjunto não vazio V, munido com as operações de adição e multiplicação por escalar:

tendo as seguintes propriedades, para quaisquer $u, v, w \in V$ e $a, b \in \mathbb{C}$:

- (1) Comutativa: u + v = v + u.
- (2) Associativa: (u + v) + w = u + (v + w).
- (3) Existência de elemento neutro: Existe 0_V , tal que $v + 0_V = v$, para todo $v \in V$.
- (4) Existência de simétrico: Para cada $v \in V$, existe $u \in V$ tal que $u+v=0_V$.
- (5) $1 \cdot v = v$.
- (6) Associativa: $(a \cdot b) \cdot v = a \cdot (b \cdot v)$.
- (7) Distributiva: $(a + b) \cdot v = a \cdot v + b \cdot v$.
- (8) Distributiva: $\mathbf{a} \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{a} \cdot \mathbf{u} + \mathbf{a} \cdot \mathbf{v}$.

Exemplo 1

 $\mathbb C$ é um $\mathbb C$ -espaço vetorial com as operações de adição e multiplicação usuais de números complexos.

Exemplo 2

Seja n > 1 um número natural. Definimos

$$\mathbb{C}^n = \{(x_1, \dots, x_n) \; ; \; x_j \in \mathbb{C}, \; \mathrm{para} \; \mathrm{todo} \; \mathfrak{j} = 1, \dots, n\}.$$

 \mathbb{C}^n é um \mathbb{C} -espaço vetorial com as seguintes operações de adição e multiplicação por escalar definidas a seguir, chamadas de *operações usuais*:

Verifique!

Verifique as outras propriedades. Todas elas são consequência das propriedades das operações do corpo dos números

complexos.

Verifique as outras

propriedades.

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$
 onde $x_j,y_j\in\mathbb{C},$ para $j=1,\ldots,n$ e

$$\mathbf{a} \cdot (\mathbf{x}_1, \dots, \mathbf{x}_n) = (\mathbf{a} \cdot \mathbf{x}_1, \dots, \mathbf{a} \cdot \mathbf{x}_n)$$
, onde $\mathbf{a} \in \mathbb{C}$ e $\mathbf{x}_j \in \mathbb{C}$, para $j = 1, \dots, n$.
Observamos que $(0, 0, \dots, 0)$ é o elemento neutro de \mathbb{C}^n e o simétrico de $\mathbf{v} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{C}^n$ é $\mathbf{u} = (-\mathbf{x}_1, \dots, -\mathbf{x}_n)$.

Exemplo 3

Sejam $m \geq 1, n \geq 1$ números naturais. O conjunto $M_{m \times n}(\mathbb{C})$ é um \mathbb{C} -espaço vetorial com as operações usuais de adição de matrizes e multiplicação de um escalar por uma matriz. A saber, sejam $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(\mathbb{C})$ e $a \in \mathbb{C}$. Definitions:

$$A + B = (a_{ij} + b_{ij}) e a \cdot B = (a \cdot b_{ij}),$$

para quaisquer i = 1, ..., m e j = 1, ..., n.

Observamos que $0 = (a_{ii})$, onde $a_{ii} = 0$, para quaisquer i = 1, ..., m e j = 1, ..., n, é o elemento neutro e o simétrico de $A = (a_{ij})$ é $B = (-a_{ij})$.

Definição 2 (Subespaço vetorial)

Um subespaço vetorial de um \mathbb{C} -espaço vetorial V é um subconjunto não vazio W de V, que com as operações de adição e multiplicação por escalares de V é um C-espaço vetorial.

Equivalentemente, um subconjunto W de um \mathbb{C} -espaço vetorial V é um subespaço de V se, e somente se, tem as seguintes propriedades:

- (a) $0_V \in W$;
- (b) se $u, w \in W$, então $u + w \in W$;
- (c) se $a \in \mathbb{C}$ e $w \in W$, então $a \cdot w \in W$.

Exemplo 4

Seja V um \mathbb{C} -espaço vetorial. Então, $\{O_V\}$ e V são subespaços de V.

Exemplo 5

Consideremos $W = \{(x, y) \in \mathbb{C}^2 ; x + 2y = 0\}$. W é um subespaço vetorial de \mathbb{C}^2 . De fato,

(a)
$$0 + 2 \cdot 0 = 0 \Longrightarrow (0, 0) \in \mathbb{C}^2$$
;

(b) se $u = (x, y), v = (x', y') \in W$, então x + 2y = 0, x' + 2y' = 0, u + v = 0(x + x', y + y') e $(x + x') + 2(y + y') \stackrel{(1)}{=} (x + 2y) + (x' + 2y') \stackrel{(2)}{=} 0 + 2 \cdot 0 = 0$, logo $\mathfrak{u} + \mathfrak{v} \in W$;

Em (1) usamos a associatividade e a comutatividade da adição em \mathbb{C} e em (2), que $\mathfrak{u}, \mathfrak{v} \in W$.

(c) se $w = (x, y) \in W$ e $a \in C$, então x + 2y = 0, $a \cdot w = (a \cdot x, a \cdot y)$ e $a \cdot x + 2(a \cdot y) \stackrel{(3)}{=} a \cdot (x + 2y) \stackrel{(4)}{=} a \cdot 0$, logo $a \cdot w \in W$.

Em (3) usamos a comutatividade da multiplicação e a distributividade em \mathbb{C} e em (4), que $w \in W$.

As noções de dependência e independência linear em um \mathbb{C} -espaço vetorial são análogas às de um \mathbb{R} -espaço vetorial.

Definição 3 (Dependência e independência linear)

Seja V um \mathbb{C} -espaço vetorial. Os vetores $\nu_1,\ldots,\nu_n\in V$ são linearmente independentes se, e somente se,

se
$$a_1, \ldots, a_n \in \mathbb{C}$$
 e $a_1v_1 + \cdots + a_nv_n = 0$, então $a_1 = \cdots = a_n = 0$.

Caso contrário, v_1, \ldots, v_n são ditos linearmente dependentes, ou seja,

existem
$$a_1, \ldots, a_n \in \mathbb{C}$$
, nem todos nulos, tais que $a_1v_1 + \cdots + a_nv_n = 0$.

Exemplo 6

Os vetores $v_1 = (1,0), v_2 = (i,0)$ são linearmente dependentes no \mathbb{C} -espaço vetorial \mathbb{C}^2 , pois $v_2 = iv_1$ é equivalente a $iv_1 - v_2 = (0,0)$, que é uma combinação linear nula de v_1 e v_2 , com escalares em \mathbb{C} nem todos nulos.

Entretanto, com $a, b \in \mathbb{R}$, temos:

 $(0,0) = av_1 + bv_2 = a(1,0) + b(i,0) = (a+bi,0)$ se, e somente se, a+bi=0 se, e somente se, a=b=0.

Portanto, v_1 e v_2 são linearmente independentes no \mathbb{R} -espaço vetorial \mathbb{C}^2 .

Exemplo 7

Os vetores $\mathfrak{u}_1=(1,0),\mathfrak{u}_2=(0,1)$ são linearmente independentes no \mathbb{C} -espaço vetorial \mathbb{C}^2 , pois se $\mathfrak{a}_1,\mathfrak{a}_2\in\mathbb{C}$ e $(0,0)=\mathfrak{a}_1(1,0)+\mathfrak{a}_2(0,1)=(\mathfrak{a}_1,\mathfrak{a}_2),$ então $\mathfrak{a}_1=\mathfrak{a}_2=0.$

Definição 4 (Conjunto gerador)

Seja V um \mathbb{C} -espaço vetorial. Dizemos que V é um \mathbb{C} -espaço vetorial finitamente gerado se, e somente se, existe $\{v_1, \ldots, v_n\} \subset V$, tal que para todo $v \in V$, existem $a_1, \ldots, a_n \in \mathbb{C}$ tais que

$$v = a_1v_1 + \cdots + a_nv_n$$
.

Nesse caso, dizemos que $\{v_1, \ldots, v_n\}$ é um conjunto gerador de V, V é o \mathbb{C} -espaço vetorial gerado por $\{v_1, \ldots, v_n\}$ e escrevemos $V = [v_1, \ldots, v_n]$.

Definição 5 (Base e dimensão)

Seja $V \neq \{0\}$ um \mathbb{C} -espaço vetorial finitamente gerado. Dizemos que o subconjunto $\beta = \{\nu_1, \dots, \nu_n\}$ de V é uma base de V se, e somente se, β gera V e é linearmente independente sobre \mathbb{C} . Nesse caso, dizemos que a $\mathit{dimens\~ao}$ de V é n e escrevemos $\dim_{\mathbb{C}} V = n$.

Observação:

- (1) A definição de dimensão está bem posta, pois todas as bases têm o mesmo número de elementos. O número de elementos de uma base é o número máximo de vetores linearmente independentes e o número mínimo de geradores.
- (2) Quando $V = \{0_V\}$ definimos $\dim_{\mathbb{C}} V = 0$.

Temos que $\dim_{\mathbb{C}} \mathbb{C}^n = n$. De fato, se $v \in \mathbb{C}^n$, então existem $x_1, \ldots, x_n \in \mathbb{C}$ tais que

$$\begin{array}{rcl} \nu=(x_1,\ldots,x_n)&=&(x_1,0,\ldots,0)+(0,x_2,\ldots,0)+\cdots+(0,0,\ldots,x_n)\\ &=&x_1(1,0,\ldots,0)+x_2(0,1,0,\ldots,0)+\cdots+x_n(0,0,\ldots,1),\\ \log \beta&=\{e_1=(1,0,\ldots,0),e_2=(0,1,\ldots,0),\ldots,e_n=(0,0,\ldots,1)\}\ \mathrm{gera}\\ \mathbb{C}^n. \end{array}$$

Como $(0,0,\ldots,0) = x_1e_1 + x_2e_2 + \cdots + x_ne_n = (x_1,x_2,\ldots,x_n)$ se, e somente se, $x_1=x_2=\cdots=x_n=0$, então β é $\mathbb C$ -linearmente independente.

Logo, β é uma base de \mathbb{C}^n como \mathbb{C} -espaço vetorial.

Exemplo 9

Temos que $\dim_{\mathbb{C}} M_{2\times 2}(\mathbb{C}) = 4$.

De fato, tomando
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, temos que se $x, y, z, w \in \mathbb{C}$, então
$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & w \end{pmatrix}$$
$$= x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + w \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= x E_{11} + y E_{12} + z E_{21} + w E_{22},$$

 $logo \{E_{11}, E_{12}, E_{21}, E_{22}\} gera M_{2\times 2}(\mathbb{C})$

Além disso,

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = x E_{11} + y E_{12} + z E_{21} + w E_{22} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \text{ se, e somente se,}$$

$$x = y = z = w = 0, \text{ mostrando que } \{E_{11}, E_{12}, E_{21}, E_{22}\} \text{ \'e } \mathbb{C}\text{-linearmente independente.}$$

Definição 6 (Transformação C-linear)

Sejam V e W \mathbb{C} -espaços vetoriais. Uma função $T:V\longrightarrow W$ é chamada uma transformação \mathbb{C} -linear se, e somente se,

- (i) T(u + v) = T(u) + T(v), para quaisquer $u, v \in V$;
- (ii) $T(\alpha\nu) = \alpha T(\nu)$, para quaisquer $\alpha \in \mathbb{C}$ e $\nu \in V$.

Exemplo 10

Seja T:
$$\mathbb{C}^2 \longrightarrow \mathbb{C}$$
 definida por $T(x,y) = 2ix + (1+i)y$.

Se
$$u = (x, y)$$
 e $v = (x', y')$, então $u + v = (x + x', y + y')$ e

$$\begin{array}{cccc} T(u+\nu) & \stackrel{(1)}{=} & T(x+x',y+y') \\ & \stackrel{(2)}{=} & 2i(x+x') + (1+i)(y+y') \\ & \stackrel{(3)}{=} & 2ix + 2ix' + (1+i)y + (1+i)y' \\ & \stackrel{(4)}{=} & (2ix + (1+i)y) + (2ix' + (1+i)y') \\ & \stackrel{(5)}{=} & T(u) + T(\nu) \end{array}$$

Em (1) usamos a definição da adição em \mathbb{C}^2 ; em (2), a definição de T; em (3), a distributividade em \mathbb{C} ; em (4), a comutatividade e associatividade da adição em \mathbb{C} ; em (5), novamente, a definição de T.

Observação: Continuam válidas as seguintes propriedades, onde V e W são \mathbb{C} -espaços vetoriais, que deixamos como exercício.

- (1) Toda $T:V\longrightarrow W$ transformação \mathbb{C} -linear está perfeitamente determinada se é conhecida numa base de V.
- (2) Se $\mathsf{T}:\mathsf{V}\longrightarrow W$ é $\mathbb{C}\text{-linear},$ então

$$\operatorname{N\'ucleo}(T) = \{ \nu \in V \; ; \; T(\nu) = 0_W \}$$

 $\acute{\mathrm{e}}$ um subespaço de V.

Além disso, T é injetora se, e somente se, Núcleo(T) = $\{0_V\}$.

- (3) Se $T: V \longrightarrow W$ é \mathbb{C} -linear com $\dim_{\mathbb{C}} V = \mathfrak{n}$ e $\dim_{\mathbb{C}} W = \mathfrak{m}$, então $\dim_{\mathbb{C}} V = \dim_{\mathbb{C}} \mathrm{Núcleo}(T) + \dim_{\mathbb{C}} \mathrm{Imagem}(T)$.
- (4) Seja $\mathsf{T}:\mathsf{V}\longrightarrow W$ C-linear bijetora. Então, a função $\mathsf{T}^{-1}:W\longrightarrow \mathsf{V}$ é C-linear.
- (5) Seja $T: V \longrightarrow W$ \mathbb{C} -linear com $\dim_{\mathbb{C}} V = \mathfrak{n}$ e $\dim_{\mathbb{C}} W = \mathfrak{m}$. Sejam $\alpha = \{\nu_1, \ldots, \nu_n\}$ e $\beta = \{w_1, \ldots, w_m\}$ bases de V e W, respectivamente. Seja $A \in M_{m \times n}(\mathbb{C})$ definida por $A = T]^{\alpha}_{\beta} = (T(\nu_1)]_{\beta} T(\nu_2)]_{\beta} \cdots T(\nu_n)]_{\beta}$). Se

$$\nu = \alpha_1 \nu_1 + \alpha_2 \nu_2 + \dots + \alpha_n \nu_n, \, \operatorname{ent\tilde{a}o} \, \nu]_\alpha = \left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_n \end{array} \right) \operatorname{e} \, T(\nu)]_\beta = A \, \nu]_\alpha = T]_\beta^\alpha \nu]_\alpha.$$

Exercícios

- 1. Seja V um C-espaço vetorial. Mostre que:
 - (a) O elemento neutro de V é único.
 - (b) $\mathbf{a} \cdot \mathbf{0}_{\mathbf{V}} = \mathbf{0}_{\mathbf{V}}$, para todo $\mathbf{a} \in \mathbb{C}$.

- (c) $0 \cdot v = 0_V$, para todo $v \in V$.
- (d) Para cada $v \in V$, o simétrico de v é único.
- (e) Para cada $v \in V$, $(-1) \cdot v$ é o simétrico de v.
- 2. Consideremos o \mathbb{C} -espaço vetorial \mathbb{C}^3 e seja $W = \{(x, y, z) \in \mathbb{C}^3 ; x + y = 0, x + z = 0\}.$
 - (a) Mostre que W é um subespaço de \mathbb{C}^3 .
 - (b) Determine uma base e a dimensão de W.
- 3. Descreva todos os subespaços do \mathbb{C} -espaço vetorial \mathbb{C}^2 .
- 4. Mostre que $\dim_{\mathbb{C}} M_{m \times n}(\mathbb{C}) = m \cdot n$.
- 5. Considere $V = M_{n \times n}(\mathbb{C})$ como \mathbb{C} -espaço vetorial.

Seja
$$W = \{A \in V ; A = A^t\}.$$

- (a) Mostre que W é um subespaço de V.
- (b) Determine a dimensão de W.
- 6. Considere \mathbb{C} como \mathbb{R} -espaço vetorial.
 - (a) Mostre que $\dim_{\mathbb{R}} \mathbb{C} = 2$.
 - (b) Mostre que $\dim_{\mathbb{R}} \mathbb{C}^n = 2 \cdot n$.
 - (c) Mostre que $\dim_{\mathbb{R}} M_{m \times n}(\mathbb{C}) = 2 \cdot m \cdot n$.
- 7. Verifique que a função T é uma transformação \mathbb{C} -linear:
 - (a) $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ definida por T(x, y) = (x + iy, (1 + i)x - iy, (2 - i)x - 2y).
 - (b) $T: \mathbb{C}^2 \longrightarrow \mathbb{C}$ definida por T(x,y) = (1+2i)x + (1-i)y.
 - (c) $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ definida por T(x, y) = (x + iy, 2ix 2y)
- 8. No Exercício anterior, determine o núcleo e a imagem de cada T. Verifique o teorema do núcleo e da imagem.
- 9. Sejam U, V e W \mathbb{C} -espaços vetoriais. Mostre que:
 - (a) Se $T: V \longrightarrow W$ é \mathbb{C} -linear, então
 - i. Núcleo(T) é um subespaço de V.

- ii. T é injetora se, e somente se, Núcleo(T) = $\{0_V\}$.
- (b) Se $S:U\longrightarrow V$ e $T:V\longrightarrow W$ são \mathbb{C} -lineares, então a função $T\circ S:U\longrightarrow W$ é \mathbb{C} -linear.
- (c) Se $T:V\longrightarrow W$ é \mathbb{C} -linear e bijetora, então a função inversa de T, $T^{-1}:W\longrightarrow V$, é \mathbb{C} -linear.
- (d) Se $\{v_1, \ldots, v_n\}$ é uma base de V, $\{w_1, \ldots, w_n\} \subset W$ e $v = a_1v_1 + \cdots + a_nv_n$, definindo $T(v) = a_1w_1 + \cdots + a_nw_n$, então temos que $T(v_i) = w_i$, para cada $j = 1, \ldots, n$, e $T : V \longrightarrow W$ é \mathbb{C} -linear.

_		,	
Espacos	vetoriais	sobre	(()

Álgebra Linear II

Subespaços invariantes e autovetores

Vamos, daqui por diante, trabalhar com K-espaços vetoriais, onde K = \mathbb{R} ou K = \mathbb{C} .

Introduzimos agora um tipo especial de subespaço que será muito importante para entendermos, geometricamente, um operador linear num espaço vetorial.

Definição 7 (Subespaço invariante)

Sejam V um K-espaço vetorial e $T:V\longrightarrow V$ um operador K-linear. Um subespaço W de V é chamado subespaço invariante por T se, e somente se, $T(W)\subset W$.

Exemplo 11

Sejam V um K-espaço vetorial e $T:V\longrightarrow V$ um operador K-linear. Então, $\{0_V\}$ e V são invariantes por T.

Exemplo 12

Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por $T(x,y,z) = (x, \frac{3}{5}y - \frac{4}{5}z, \frac{4}{5}y - \frac{3}{5}z)$.

Consideremos o plano Π com equação x = 0.

Esse plano é um subespaço invariante por T. De fato, se $\nu=(0,y,z)\in\Pi,$ então

$$T(\nu) = T(0, y, z) = \left(0, \frac{3}{5}y - \frac{4}{5}z, \frac{4}{5}y - \frac{3}{5}z\right) \in \Pi,$$

logo $T(\Pi) \subset \Pi$.

Consideremos agora o subespaço W=[(1,0,0)]. Esse subespaço do \mathbb{R}^3 também é invariante por T. De fato, se $w\in W$, então existe $\alpha\in\mathbb{R}$ tal que $w=\alpha(1,0,0)=(\alpha,0,0)$. Logo, $T(w)=T(\alpha,0,0)=(\alpha,0,0)=w\in W$.

 ${\rm H\acute{a}}$ um tipo de subespaço invariante muito interessante, conforme veremos a seguir.

Definição 8 (Autovalor e autovetor)

Sejam V um K-espaço vetorial e $T:V\longrightarrow V$ um operador K-linear. Um elemento $\lambda\in K$ é chamado um autovalor de T e $\nu\in V,\ \nu\neq 0_V,$ é chamado um autovetor associado ao autovalor λ se, e somente se, $T(\nu)=\lambda\nu$.

Exemplo 13

No Exemplo anterior, $\nu=(\alpha,0,0)$, com $\alpha\neq 0$, $\alpha\in\mathbb{R}$, é um autovetor de T associado ao autovalor 1.

Observação: O vetor 0_V foi excluído da definição de autovetor. Por quê? Como T é K-linear, temos que $T(0_V) = 0_V = \lambda \cdot 0_V$, para qualquer $\lambda \in K$.

Planos que passam pela origem são subespaços do \mathbb{R}^3 .

t é uma indeterminada e $\mathbb{R}[t]$ é o conjunto dos polinômios com coeficientes reais com as operações usuais de adição de polinômios e multiplicação de um número real por um polinômio. Temos que $\dim_{\mathbb{R}} \mathbb{R}[t] = \infty$ e $\{1, t, t^2, \ldots\}$ é uma base de $\mathbb{R}[t]$.

Exemplo 14

Se $V \neq 0_V$ é um K-espaço vetorial e $I_V : V \longrightarrow V$ é definido por $I_V(v) = v$, para qualquer $\nu \in V$, então $\lambda = 1$ é um autovalor do operador linear I_V e qualquer $v \in V$, $v \neq 0_V$, é um autovetor associado ao autovalor 1.

Exemplo 15

Sejam $n \geq 0$ um natural e $P_n(\mathbb{R})$, subespaço vetorial do espaço vetorial real $\mathbb{R}[t]$, definido por

$$P_n(\mathbb{R}) = \{a_0 + a_1t + \dots + a_nt^n \; ; \; a_j \in \mathbb{R}, \; \mathrm{para} \; \mathrm{todo} \; j = 0, \dots, n\}.$$

Seja $D:P_n(\mathbb{R})\longrightarrow P_n(\mathbb{R})$ o operador \mathbb{R} -linear derivação. Para cada $\mathfrak{a}\in\mathbb{R}$ temos que $D(a) = 0 = 0 \cdot a$. Logo, todo $a \in \mathbb{R}$, $a \neq 0$, é um autovetor associado ao autovalor $\lambda = 0$.

Exemplo 16

Seja $C^{\infty} = \{f : \mathbb{R} \longrightarrow \mathbb{R} \text{ funções com derivadas de todas as ordens } \}.$

Consideremos os operadores lineares $D: C^{\infty} \longrightarrow C^{\infty}$, operador linear derivação, e $D^2:C^\infty\longrightarrow C^\infty$, operador linear derivação de segunda ordem.

Como $D(e^{\alpha t}) = \alpha e^{\alpha t}$, então todo $\alpha \in \mathbb{R}$ é autovalor de D e $f(t) = e^{\alpha t}$ é autovetor de D associado ao autovalor a.

Como $D^2(\cos t) = -\cos t$ e $D^2(\sin t) = -\sin t$, então -1 é um autovalor de $D^2 e f(t) = \cos t e g(t) = \sin t$ são autovetores de D^2 associados ao autovalor

Mais ainda, $D^2(e^t) = e^t e D^2(e^{-t}) = e^{-t}$, logo $e^t e e^{-t}$ são autovetores de D^2 associados ao autovalor 1.

Para todo real a > 0, temos que $e^{\sqrt{a}t}$ e $e^{-\sqrt{a}t}$ são autovetores de D^2 associados ao autovalor \mathfrak{a} .

Exemplo 17

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear definido por T(x, y) = (y, x).

Observamos que

$$T(1,1) = (1,1) = 1 \cdot (1,1) e$$

$$T(-1,1) = (1,-1) = (-1) \cdot (-1,1).$$

Portanto, $1 e^{-1}$ são autovalores de T e (1,1) é autovetor associado ao autovalor 1, enquanto (-1, 1) é autovetor associado ao autovalor -1.

Como $\beta = \{\nu_1 = (1,1), \nu_2 = (-1,1)\}$ é uma base de \mathbb{R}^2 , todo $\nu \in \mathbb{R}^2$ se escreve como uma combinação linear única dessa base, assim, existem $a, b \in \mathbb{R}$, unicamente determinados, tais que

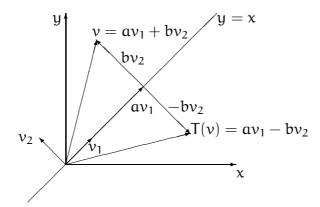
$$v = av_1 + bv_2$$
.

Como qualquer transformação linear está perfeitamente determinada pelos seus valores numa base, temos que

$$T(v) = aT(v_1) + bT(v_2)$$

= $av_1 + b(-v_2)$
= $av_1 - bv_2$.

T tem a propriedade de fixar a componente de ν na direção de ν_1 e mandar no seu simétrico a componente de ν na direção de ν_2 . Geometricamente, T é a simetria com respeito à reta y = x, que é a reta que passa pela origem gerada por ν_1 .



Nesse caso,
$$T]^{\beta}_{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Exemplo 18

Seja
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 definida por $T(x,y,z) = \left(\frac{2x-y-z}{3}, \frac{-x+2y-z}{3}, \frac{-x-y+2z}{3}\right)$.

Quem é esse operador \mathbb{R} -linear? A fórmula acima não dá nenhuma informação, apenas permite determinar os seus valores em cada ponto.

$$\mathrm{Sejam}\; \nu_1 = (1,1,1), \, \nu_2 = (1,-1,0) \; \mathrm{e}\; \nu_3 = (1,1,-2).$$

Observamos que $T(\nu_1) = (0,0,0) = 0 \cdot \nu_1$, $T(\nu_2) = (1,-1,0) = \nu_2$ e $T(\nu_3) = (1,1,-2) = \nu_3$. Portanto, ν_1 é autovetor de T associado ao autovalor 0 e ν_2 e ν_3 são autovetores de T associados ao autovalor 1.

Geometricamente, T é a projeção sobre o plano gerado por ν_2 e ν_3 segundo a direção da reta gerada por ν_1 . Por quê?

O conjunto $\beta = \{\nu_1, \nu_2, \nu_3\}$ é uma base do \mathbb{R}^3 . Cada $\nu \in \mathbb{R}^3$ se escreve de uma única maneira como combinação linear de β . Assim, existem $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, unicamente determinados tais que

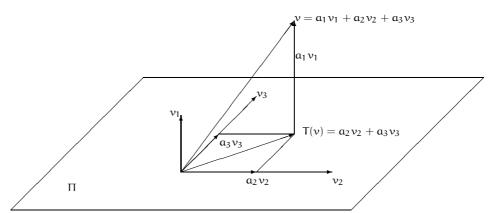
$$v = a_1v_1 + a_2v_2 + a_3v_3.$$

Portanto,

Faça um desenho ilustrativo com ν e $T(\nu)$, como no Exemplo anterior.

$$T(v) = a_1T(v_1) + a_2T(v_2) + a_3T(v_3)$$

= $a_1.(0,0,0) + a_2v_2 + a_3v_3$
= $a_2v_2 + a_3v_3$



Lembramos que se $u = (x_1, x_2, x_3) e$ $v = (y_1, y_2, y_3)$, então o produto interno usual do \mathbb{R}^3 Vale que $\mathfrak{u} \perp \mathfrak{v}$, se e somente se, $\mathbf{u} \cdot \mathbf{v} = 0$.

Geometricamente, T fixa as componentes de ν nas direções de ν_2 e ν_3 , logo fixa a componente de ν sobre o plano gerado por ν_2 e ν_3 , e manda em (0,0,0)a componente de ν na direção de ν_1 . Portanto, T projeta cada $\nu \in \mathbb{R}^3$ sobre o plano gerado por v_2 e v_3 , segundo a direção de v_1 . Como v_1 é ortogonal a v_2 e a v_3 , então T é a projeção ortogonal sobre o plano x+y+z=0. Nesse

caso,
$$T]_{\beta}^{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

O Exemplo anterior motiva a seguinte Proposição.

Proposição 1

Sejam V um K-espaço vetorial e ν_1, \ldots, ν_s autovetores associados ao autovalor λ do operador K-linear T em V. Então, $W = [\nu_1, \dots, \nu_s]$ é invariante por T.

Demonstração: Seja $w \in W$. Então, existem $a_1, \ldots, a_s \in K$ tais que

$$w = a_1 v_1 + \dots + a_s v_s. \qquad (\star)$$

Logo,

$$T(w) \stackrel{(1)}{=} T(\alpha_1 \nu_1 + \dots + \alpha_s \nu_s)$$

$$\stackrel{(2)}{=} \alpha_1 T(\nu_1) + \dots + \alpha_s T(\nu_s)$$

$$\stackrel{(3)}{=} \alpha_1 (\lambda \nu_1) + \dots + \alpha_s (\lambda \nu_s)$$

$$\stackrel{(4)}{=} \lambda (\alpha_1 \nu_1 + \dots + \alpha_s \nu_s)$$

$$\stackrel{(5)}{=} \lambda w \in W. \quad \blacksquare$$

comutativa e distributiva; em (5), (*).

Em (1) usamos (\star) ; em (2),

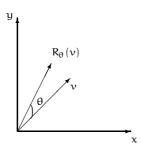
que T é linear; em (3), que $T(v_j) = \lambda v_j$; em (4), que a

multiplicação por escalar é

Exemplo 19

Seja $R_{\theta}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ o operador \mathbb{R} -linear rotação de θ radianos, no sentido positivo das rotações, onde $0 \le \theta < 2\pi$. Lembramos que

$$R_{\theta}(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$



No momento essa fórmula não tem interesse. Geometricamente, a rotação muda a direção do vetor $\nu \neq (0,0)$, sempre que $\theta \neq 0$ e $\theta \neq \pi$. Portanto, $R_{\theta}(\nu) = a\nu$, com $\nu \neq (0,0)$, se e somente se, $\theta = 0$ rd ou $\theta = \pi$ rd, isto é, $R_0 = I_{\mathbb{R}^2}$ ou $R_{\pi} = -I_{\mathbb{R}^2}$. Em ambos os casos, todo $\nu \neq (0,0)$ é autovetor, sendo 1 o autovalor de R_0 e -1 o autovalor de R_{π} .

Além disso, R_{θ} , com $\theta \neq 0$ e $\theta \neq \pi$, é um operador \mathbb{R} -linear sem autovalores e autovetores.

Os Exemplos 17 e 18 mostram que o conceito de autovalores e autovetores permite compreender geometricamente esses operadores lineares, enquanto o Exemplo 19 mostra que pode não haver autovalores e autovetores. A pergunta natural é: como determinar, caso existam, os autovalores e autovetores de um operador linear?

Vamos a seguir desenvolver um método para responder à questão no caso dos espaços vetoriais de dimensão finita.

Para os nossos propósitos precisamos do conceito a seguir.

Definição 9 (Determinante de um operador)

Sejam V um K-espaço vetorial, $\dim_K(V)=n\geq 1$ e T um operador K-linear em V. Definimos $\det(T)=\det(T]^\alpha_\alpha)$, onde α é qualquer base de V.

Devemos mostrar que a definição acima está bem posta. De fato, sejam α e β bases de V, então

$$T]_{\beta}^{\beta} = I]_{\beta}^{\alpha} \cdot T]_{\alpha}^{\alpha} \cdot I]_{\alpha}^{\beta}$$
$$= (I]_{\alpha}^{\beta})^{-1} \cdot T]_{\alpha}^{\alpha} \cdot I]_{\alpha}^{\beta}$$

Logo,

$$\begin{split} \det \left(T \right]_{\beta}^{\beta} \big) &= \det \left(\left(I \right]_{\alpha}^{\beta} \right)^{-1} \cdot T \right]_{\alpha}^{\alpha} \cdot I \right]_{\alpha}^{\beta} \big) \\ &= \det \left(\left(I \right]_{\alpha}^{\beta} \right)^{-1} \right) \cdot \det \left(T \right]_{\alpha}^{\alpha} \right) \cdot \det \left(I \right]_{\alpha}^{\beta} \big) \\ &= \left(\det \left(I \right]_{\alpha}^{\beta} \right) \right)^{-1} \det \cdot \left(T \right]_{\alpha}^{\alpha} \right) \cdot \det \left(I \right]_{\alpha}^{\beta} \big) \\ &= \det \left(T \right]_{\alpha}^{\alpha} \big) \,, \end{split}$$

 $\det(A^{-1}) = (\det(A))^{-1} \text{ e a}$ multiplicação em K é comutativa.

Lembramos que

para alguma base.

 $I_V:V\longrightarrow V \ \acute{\rm e} \ {\rm definida} \ {\rm por}$ $I_{V}(\nu)=\nu,\,\forall\;\nu\in V.$

Nesse caso, a expressão para

qualquer base é equivalente a

mostrando que o valor det(T) não depende da base escolhida.

Proposição 2

Sejam V um K-espaço vetorial, $\dim_K V = n \ge 1$ e T um operador K-linear em V. T é invertível se, e somente se, $det(T) \neq 0$.

Demonstração: Seja $T:V\longrightarrow V$ um operador K-linear. Pelo Teorema do núcleo e da imagem, T é injetor se, e somente se, T é sobrejetor. Assim,

Té invertível se, e somente se, Té bijetor existe $S: V \longrightarrow V$, K-linear, se, e somente se, tal que $I_V = S \circ T$ e $I_V = T \circ S$ se, e somente se, para qualquer base β de V, $I = S_{\beta}^{\beta} \cdot T_{\beta}^{\beta} e I = T_{\beta}^{\beta} \cdot S_{\beta}^{\beta},$ onde $I = I_V_{\beta}^{\beta}$ $1 = \det(S) \cdot \det(T)$ se, e somente se, se, e somente se, $\det(T) \neq 0_K$.

Agora estamos prontos para desenvolver o método para determinação de autovalores e autovetores de operadores lineares em espaços vetoriais de dimensão finita, caso existam.

Teorema 1

Sejam V um K-espaço vetorial, $\dim_K V = n \geq 1$ e T um operador K-linear em V. As seguintes condições são equivalentes:

- (a) $\lambda \in K$ é autovalor de T.
- (b) O operador K-linear $\lambda I T$ não é invertível.
- (c) $\det(\lambda \mathbf{I} \mathsf{T}) = 0$.

Demonstração:

 $\lambda \in K$ é autovalor de T se, e somente se, existe $\nu \in V$, $\nu \neq 0_V$, tal que $T(v) = \lambda v = \lambda I_V(v)$ se, e somente se, existe $v \in V$, $v \neq 0_V$, tal que $(\lambda I_V - T)(\nu) = 0_V$ se, e somente se, $\lambda I_V - T$ não é invertível se, e somente se, $\det(\lambda I_V - T) = 0$.

Com as notações do Teorema acima, seja α uma base qualquer de V, seja $A = T_{\alpha}^{\alpha} \in M_{n \times n}(K)$. Então, $(\lambda I_V - T)_{\alpha}^{\alpha} = (\lambda I_V)_{\alpha}^{\alpha} - T_{\alpha}^{\alpha} = \lambda I - A$. Logo,

 $\lambda \in K$ é autovalor de T se, e somente se, $\det(\lambda I_V - T) = \det(\lambda I - A) = 0$. Escrevendo $A = (a_{ij})$, com i, j = 1, ..., n, temos que

IIFF

$$\lambda I - A = \begin{pmatrix} \lambda - \alpha_{11} & -\alpha_{12} & \cdots & -\alpha_{1n} \\ -\alpha_{21} & \lambda - \alpha_{22} & \cdots & -\alpha_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ -\alpha_{n1} & -\alpha_{n2} & \cdots & \lambda - \alpha_{nn} \end{pmatrix}.$$

Assim, $p(\lambda) = \det(\lambda I - A)$ é um polinômio mônico de grau n com coeficientes em K, chamado de polinômio característico de T.

 $\lambda \in K$ é autovalor de T - se, e somente se, - p(\lambda) = 0 $\text{se, e somente se, } \quad \lambda \in K \text{ \'e raiz do polin\^omio}$ característico de T.

Quem são os autovetores de T, caso existam autovalores?

Escrevendo $\alpha = \{\nu_1, \dots, \nu_n\}$, temos que para cada $\nu \in V$, existem x_1, \dots, x_n em K, tais que $\nu = x_1\nu_1 + \dots + x_n\nu_n$.

Seja
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = v]_{\alpha}.$$

Lembramos que $\nu \neq 0_V$ se, e somente se, $X = \nu]_{\alpha} \neq 0$.

Denotaremos $v \in V$, $v \neq 0_V$, autovetor de T associado ao autovalor λ por $v \leftrightarrow \lambda$. Portanto,

$$\begin{split} \nu \leftrightarrow \lambda \quad \text{se, e somente se,} \quad & (\lambda I_V - T)(\nu) = 0_V, \ \text{com} \ \nu \neq 0_V \\ \text{se, e somente se,} \quad & (\lambda I_V - T)]_\alpha^\alpha \nu]_\alpha = 0_V]_\alpha = 0, \ \text{com} \ \nu]_\alpha \neq 0 \\ \text{se, e somente se,} \quad & (\lambda I - A)X = 0, \ \text{com} \ X \neq 0. \end{split}$$

Para determinar os autovetores de T, resolvemos o sistema linear homogêneo, cuja matriz associada é $\lambda I - A$. Cada solução $X \neq 0$ desse sistema corresponde ao autovetor $\nu = x_1\nu_1 + \dots + x_n\nu_n$ de T, pois $\nu]_\alpha = X$.

Exemplo 20

Vamos determinar, caso existam, os autovalores e autovetores do operador \mathbb{R} -linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definido por T(x,y) = (-y,x).

Tomamos $\alpha = \{(1,0), (0,1)\}$, a base canônica do \mathbb{R}^2 .

Então,
$$A = T]^{\alpha}_{\alpha} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 e $\lambda I - A = \begin{pmatrix} \lambda & 1 \\ -1 & \lambda \end{pmatrix}$. Logo, o polinômio caraterístico de T é $p(\lambda) = \det(\lambda I - A) = \lambda^2 + 1 \in \mathbb{R}[\lambda]$. Como esse polinômio não tem raízes reais, T não tem autovalores, consequentemente, não tem autovetores. Observamos que $T = R_{\frac{\pi}{2}}$.

Antes de mais um exemplo, introduzimos uma terminologia.

Um polinômio não nulo cujo coeficiente líder (coeficiente do termo de mais alto grau) é 1 é chamado de *polinômio mônico*.

Verifique que V_{λ} é um

subespaço de V.

Definição 10 (Subespaço característico)

Sejam V um K-espaço vetorial de dimensão $n \geq 1$, T um operador K-linear em V e $\lambda \in K$. O conjunto

$$V_{\lambda} = \{ \nu \in V \; ; \; T(\nu) = \lambda \nu \}$$

é chamado de subespaço característico de T.

Observação:

- (1) $V_{\lambda} \neq \{0_{V}\}$ se, e somente se, λ é autovalor de T.
- (2) $V_{\lambda} = \{0_V\} \cup \{v \in V; v \text{ \'e autovetor associado ao autovalor } \lambda\}$.

Exemplo 21

Consideremos $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por

$$T(x, y, z) = (5x - 6y - 6z, -x + 4y + 2z, 3x - 6y - 4z).$$

Tomamos $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$ a base canônica do \mathbb{R}^3 .

$$\operatorname{Ent\tilde{a}o}, \ T]^{\alpha}_{\alpha} = \left(\begin{array}{ccc} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{array} \right) \ \mathrm{e} \ \lambda I - A = \left(\begin{array}{ccc} \lambda - 5 & 6 & 6 \\ 1 & \lambda - 4 & -2 \\ -3 & 6 & \lambda + 4 \end{array} \right).$$

O polinômio característico de T é

$$p(\lambda) = \det(\lambda I - A) = \lambda^3 - 5\lambda^2 + 8\lambda - 4 = (\lambda - 1)(\lambda - 2)^2 \in \mathbb{R}[\lambda].$$

Temos os autovalores reais 1 e 2.

Vamos determinar os autovetores, resolvendo os sistemas lineares homogêneos correspondentes.

$$\lambda = 1$$

$$I - A = \begin{pmatrix} -4 & 6 & 6 \\ 1 & -3 & -2 \\ -3 & 6 & 5 \end{pmatrix} \sim_1 \begin{pmatrix} 0 & -6 & -2 \\ 1 & -3 & -2 \\ 0 & -3 & -1 \end{pmatrix} \sim_2 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & -3 & -1 \end{pmatrix}$$
$$\sim_3 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & \frac{1}{3} \end{pmatrix}$$

Usamos a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_1 \to L_1 + 4L_2 \ e \ L_3 \to L_3 + 3L_2$;

em
$$\sim_2$$
: $L_1 \to L_1 - 2L_3$ e $L_2 \to L_2 - L_3$;

em
$$\sim_3$$
: $L_3 \leftrightarrow -\frac{1}{3}L_3$.

A solução do sistema é o subespaço característico

$$V_{\lambda=1} = \{(x, y, z) \in \mathbb{R}^3 ; x - z = 0, y + \frac{1}{3}z = 0\} = \{(z, -\frac{1}{3}z, z) ; z \in \mathbb{R}\}.$$

Logo,
$$\lambda = 1 \leftrightarrow \nu = z \left(1, -\frac{1}{3}, 1\right)$$
, com $z \neq 0$.

Para fatorar $p(\lambda)$ pesquisamos, primeiramente, as possíveis raízes racionais. Lembramos que se $p(\lambda)$ tem coeficientes inteiros e a fração irredutível $\frac{a}{b}$ é sua raiz, então a divide o termo constante e b divide o coeficiente líder.

$$\lambda = 2$$

$$2I - A = \begin{pmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \\ -3 & 6 & 6 \end{pmatrix} \sim_1 \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

Usamos a seguinte sequência de operações elementares em \sim_1 : $L_1 \to L_1 + 3L_2$ $e L_3 \rightarrow L_3 + 3L_2$.

A solução do sistema é o subespaço característico

$$V_{\lambda=2} = \{(x, y, z) \in \mathbb{R}^3 ; x - 2y - 2z = 0\}.$$

Logo, todo vetor não nulo do plano acima é autovetor de T associado ao autovalor $\lambda = 2$.

Nesse caso, existe uma base β do \mathbb{R}^3 formada por autovetores de T, por exemplo $\beta = \{\nu_1 = (3, -1, 3), \nu_2 = (0, 1, -1), \nu_3 = (2, 0, 1)\},$ onde ν_1 está na reta $V_{\lambda=1}$ e v_2 e v_3 foram escolhidos no plano $V_{\lambda=2}$.

Observamos que
$$T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Agora, entendemos geometricamente o operador linear T. Quem é T?

Consideremos
$$V = \left\{ \begin{pmatrix} x & y \\ z & 0 \end{pmatrix}; x, y, z \in \mathbb{R} \right\}$$
 e seja $T : V \longrightarrow V$ definida por $T \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} = \begin{pmatrix} 2x - y + 2z & 3x \\ -2x + 4y + z & 0 \end{pmatrix}$. Vamos determinar os autovalo-

res e autovetores de

Primeiramente, V é um espaço vetorial real, pois é um subespaço de $M_{2\times 2}(\mathbb{R})$ e T é linear. Precisamos de uma base de V. Afirmamos que $\dim_{\mathbb{R}} V = 3.$ De fato, dado $v \in V$ temos que

$$v = \begin{pmatrix} x & y \\ z & 0 \end{pmatrix}$$

$$= \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix}$$

$$= x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in [v_1, v_2, v_3],$$
onde $v_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} e v_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$

Como esses vetores são linearmente independentes, então $\alpha = \{\nu_1, \nu_2, \nu_3\}$ é

uma base de
$$V e v]_{\alpha} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

$$\mathrm{Seja} \ A = T]^{\alpha}_{\alpha} = \left(\begin{array}{ccc} 2 & -1 & 2 \\ 3 & 0 & 0 \\ -2 & 4 & 1 \end{array} \right). \ \mathrm{Ent} \tilde{a}o, \ \lambda I - A = \left(\begin{array}{ccc} \lambda - 2 & 1 & -2 \\ -3 & \lambda & 0 \\ 2 & -4 & \lambda - 1 \end{array} \right).$$

Temos
$$p(\lambda) = \det(\lambda I - A) = \lambda^3 - 3\lambda^2 + 9\lambda - 27 = \lambda^2(\lambda - 3) + 9(\lambda - 3) = (\lambda^2 + 9)(\lambda - 3).$$

Portanto, $\lambda = 3$ é o único autovalor de T. Para determinar os autovetores associados devemos resolver o sistema linear (3I - A)X = 0, onde $X = v]_{\alpha}$.

Como
$$3I - A = \begin{pmatrix} 1 & 1 & -2 \\ -3 & 3 & 0 \\ 2 & -4 & 2 \end{pmatrix}$$
, reduzindo por linhas, temos

$$3I - A \sim_1 \begin{pmatrix} 1 & 1 & -2 \\ 0 & 6 & -6 \\ 0 & -6 & 6 \end{pmatrix} \sim_2 \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & -6 & 6 \end{pmatrix} \sim_3 \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

com a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_2 \to L_2 + 3L_1, L_3 \to L_3 - 2L_1$;

em
$$\sim_2$$
: $L_2 \leftrightarrow \frac{1}{6}L_2$ e

em
$$\sim_3$$
: $L_1 \rightarrow L_1 - L_2$ e $L_3 \rightarrow L_3 + 6L_2$.

O conjunto solução do sistema é

$$\{(x, y, z) \in \mathbb{R}^3 ; x - z = 0, y - z = 0\} = \{(z, z, z) ; z \in \mathbb{R}\}.$$

Logo, o subespaço característico é

$$V_{\lambda=3} = \left\{ v \in V \; ; \; v = zv_1 + zv_2 + zv_3 = \left(\begin{array}{cc} z & z \\ z & 0 \end{array} \right) = z \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right) \right\}.$$

Assim, os autovetores de T associados a $\lambda=3$ são $\nu=z\left(\begin{array}{cc}1&1\\1&0\end{array}\right),$ $z \neq 0$.

Nesse caso, temos $\dim_{\mathbb{R}} V = 3$ e o subespaço característico $V_{\lambda=3}$ tem dimensão 1. Não é possível construir uma base de V formada por autovetores de Τ.

Exemplo 23

Vamos determinar os autovalores e autovetores de $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definida por T(x, y, z) = (2z, x + z, y - 2z).

$$\mathrm{Seja} \ \alpha = \{(1,0,0), (0,1,0), (0,0,1)\} \ \mathrm{e} \ \mathrm{seja} \ A = T]_{\alpha}^{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{array} \right). \ \mathrm{Ent} \ \tilde{\mathrm{ao}},$$

$$\lambda I - A = \begin{pmatrix} \lambda & 0 & -2 \\ -1 & \lambda & -1 \\ 0 & -1 & \lambda + 2 \end{pmatrix} e \ p(\lambda) = \lambda^2 (\lambda + 2) - 2 - \lambda = (\lambda + 2)(\lambda^2 - 1).$$

T tem três autovalores distintos: $1, -1 e^{-2}$

$$\lambda = -1$$

$$-I - A = \begin{pmatrix} -1 & 0 & -2 \\ -1 & -1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$
 Logo, o subespaço carac-

terístico é

$$V_{\lambda=-1} = \{(x,y,z) \in \mathbb{R}^3 \; ; \; x+2z=0 \; \mathrm{e} \; y-z=0\} = \{(-2z,z,z) \; ; \; z \in \mathbb{R}\}$$

е

 $v \leftrightarrow \lambda = -1$ se, e somente se, v = z(-2, 1, 1), com $z \in \mathbb{R}$ e $z \neq 0$.

$$\lambda = -2$$

$$-2I - A = \begin{pmatrix} -2 & 0 & -2 \\ -1 & -2 & -1 \\ 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
 Logo, o subespaço carac-

terístico é

$$V_{\lambda=-2} = \{(x,y,z) \in \mathbb{R}^3 \; ; \; x+z=0 \; \mathrm{e} \; y=0\} = \{(-z,0,z) \; ; \; z \in \mathbb{R}\}$$

е

 $\nu \leftrightarrow \lambda = -2$ se, e somente se, $\nu = z(-1,0,1)$, com $z \in \mathbb{R}$ e $z \neq 0$.

$$\lambda = 1$$

$$I - A = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 1 & -1 \\ 0 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix}.$$
 Logo, o subespaço carac-

terístico é

$$V_{\lambda=1} = \{(x,y,z) \in \mathbb{R}^3 \; ; \; x-2z=0 \; \mathrm{e} \; y-3z=0\} = \{(2z,3z,z) \; ; \; z \in \mathbb{R}\}$$

е

 $v \leftrightarrow \lambda = 1$ se, e somente se, v = z(2,3,1), com $z \in \mathbb{R}$ e $z \neq 0$.

Nesse caso, existe uma base β do \mathbb{R}^3 formada por autovetores de T, digamos $\beta = \{v_1 = (-2, 1, 1), v_2 = (-1, 0, 1), v_3 = (2, 3, 1)\}$, onde escolhemos os

Por que $\{v_1, v_2, v_3\}$ é linearmente independente sobre \mathbb{R} ?

$$\mathrm{vetores} \ \nu_1 \in V_{\lambda=1}, \ \nu_2 \in V_{\lambda=-2} \ \mathrm{e} \ \nu_3 \in V_{\lambda=-1}. \ \mathrm{Temos} \ T]_{\beta}^{\ \beta} = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Exercícios

- 1. Seja V um K-espaço vetorial com $\dim_K V \geq 1$, onde $K = \mathbb{R}$ ou $K = \mathbb{C}$.
 - (a) Seja I_V o operador identidade em V. Mostre que todo subespaço W de V é invariante por I_V .
 - (b) Mostre que $W = \{0_V\}$ é um subespaço invariante por T, para todo operador K-linear T.
 - (c) Seja $T: V \longrightarrow V$ um operador K-linear.
 - i. Mostre que Núcleo(T) é invariante por T.
 - ii. Sejam $f(x) = a_0 + a_1x + \cdots + a_nx^n$ em K[x] e o operador definido por $f(T) = a_0I_V + a_1T + \cdots + a_nT^n$. Mostre que Núcleo(f(T)) é invariante por T.
 - iii. Se T não é injetor mostre $\lambda=0$ é um autovalor de T.
- 2. Sejam V um K-espaço vetorial, $K = \mathbb{R}$ ou $K = \mathbb{C}$, ν_1, \ldots, ν_s autovetores do operador K-linear T em V associados ao autovalor λ e $W = [\nu_1, \ldots, \nu_s]$. Mostre que todo $w \in W$, $w \neq 0$, é autovetor de T associado ao autovalor λ .
- 3. Sejam V um K-espaço vetorial de dimensão $n \geq 1$, T um operador linear em V e $\lambda \in K$. Mostre que $V_{\lambda} = \{ \nu \in V; T(\nu) = \lambda \nu \}$ é um subespaço de V.
- 4. Seja $T:\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ definida por T(x,y)=(-y,x).
 - (a) Mostre que T tem dois autovalores distintos.
 - (b) Determine os autovetores associados a cada um dos autovalores.
 - (c) Construa uma base β de \mathbb{C}^2 formada por autovetores de T e dê $T]_{\beta}^{\beta}.$
- 5. Interprete geometricamente o operador \mathbb{R} -linear do Exemplo 21.

IIFF

6. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a transformação linear definida por T(x,y,z) = (x-3y+3z,3x-5y+3z,6x-6y+4z).

Mostre que $W = \{(x, y, z) ; x - y + z = 0\}$ é um subespaço invariante por T.

7. Sejam $A \in M_{n \times n}(\mathbb{R})$ e $T_A : \mathbb{R}^n \to \mathbb{R}^n$ a transformação linear, tal que $T_A]_{\alpha}^{\alpha} = A$, onde α é a base canônica do \mathbb{R}^n .

Mostre que os escalares indicados são autovalores de T_A , justificando sua resposta, e determine uma base para o subespaço característico do \mathbb{R}^n associado a cada autovalor.

(a)
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$
, $\lambda = 4$ (b) $A = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{pmatrix}$, $\lambda \in \{1, 4\}$

(c)
$$A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
 $e \lambda \in \{1, 2, 3\}$

(d)
$$A = \begin{pmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
 e $\lambda = 4$

8. Seja $A\in M_{n\times n}(K)$. Determine os autovalores de A, para $K=\mathbb{R}$ e $K=\mathbb{C}$.

Os autovalores e autovetores de $A \in M_{n \times n}(K)$ são os autovalores e autovetores de $T_A : K^n \longrightarrow K^n$, tal que $A = T]^{\alpha}_{\alpha}$, onde α é a base canônica de K^n .

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & -1 & -2 \end{pmatrix}$

(c)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 (d) $A = \begin{pmatrix} 2 & -1 & 2 \\ 3 & 0 & 0 \\ -2 & 4 & 1 \end{pmatrix}$

9. Sejam
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 e $B = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{pmatrix}$ matrizes em $M_{3\times 3}(\mathbb{R})$.

Determine, sem fazer cálculos e justifique sua resposta:

- (a) Um autovalor de A.
- (b) Um autovalor e dois autovetores de B linearmente independentes associados a esse autovalor.

- 10. Seja $A \in M_{n \times n}(K)$, onde $K = \mathbb{R}$ ou $K = \mathbb{C}$. Mostre que:
 - (a) Se A é matriz diagonal, então os autovalores de A são os elementos da sua diagonal principal.
 - (b) $\lambda = 0$ é autovalor de A se, e somente se, A não é invertível.
 - (c) A e A^t têm os mesmos autovalores.
- 11. Seja $T: V \longrightarrow V$ uma transformação K-linear, onde $K = \mathbb{R}$ ou $K = \mathbb{C}$ e $\dim_K V = n \ge 1$. Mostre que:
 - (a) Se T é invertível e λ é autovalor de T, então $\lambda \neq 0$ e λ^{-1} é autovalor
 - (b) Se T² é o operador nulo, então λ é autovalor de T se, e somente se, $\lambda = 0$.
- 12. Seja $T: V \longrightarrow V$ um operador K-linear, onde $K = \mathbb{R}$ ou $K = \mathbb{C}$.
 - (a) Mostre que se $\lambda \in K$ é um autovalor de T, então λ^m é um autovalor de T^m , para todo inteiro $m \ge 1$.
 - (b) Seja $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$ um polinômio com coeficientes em K. Mostre que se $\lambda \in K$ é um autovalor de T, então $f(\lambda)$ é um autovalor de $S = a_n T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0 I_V$ onde $I_{V}(v) = v$, para todo $v \in V$.
- 13. Sejam S e T operadores K-lineares e W um subespaço de V invariante por T e por S. Mostre que W é invariante por S + T e por $S \circ T$.
- 14. Sejam S e T operadores K-lineares, tais que $S \circ T = T \circ S$. Sejam $\lambda \in K$ um autovalor de T e W o subespaço característico associado a λ . Mostre que W é um subespaço invariante por S.
- 15. Seja V um espaço vetorial real de dimensão ímpar $n \geq 3$. Mostre que para todo operador linear $T: V \longrightarrow V$ existe W subespaço de V, tal que $W \neq V$, $W \neq \{0\}$ e W é invariante por T.
- 16. Seja V um espaço vetorial complexo de dimensão $n \geq 2$. Mostre que para todo operador linear $T: V \longrightarrow V$ existe W subespaço de V, tal que $W \neq V$, $W \neq \{0\}$ e W é invariante por T.

IIFF

Operadores diagonalizáveis

Os diversos exemplos da Seção anterior mostram que nem sempre existe uma base do espaço vetorial V formada por autovetores do operador linear em V. Vamos dar condições necessárias e suficientes para a existência de uma base de autovetores.

Definição 11 (Operador diagonalizável)

Sejam V um K-espaço vetorial com $\dim_K V = n \ge 1$. Dizemos que o operador K-linear T em V é ${\it diagonaliz\'{a}vel}$ se, e somente se, existe β base de V formada por autovetores de T.

A definição acima equivale à existência de uma base β de V tal que $T]^{\beta}_{\beta}$ é uma matriz diagonal. De fato, digamos que $\beta = \{\nu_1, \ldots, \nu_n\}$ é uma base de V formada por autovetores de T e ν_j é autovetor associado ao autovalor

 $\lambda_1, \dots, \lambda_n$ não são necessariamente distintos.

$$\lambda_{j}, \; \mathrm{para} \; \mathrm{cada} \; j \; = \; 1, \ldots, n. \; \; \mathrm{Ent\tilde{a}o}, \; T]_{\beta}^{\beta} \; = \; \left(\begin{array}{cccc} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{array} \right) \; \acute{\mathrm{e}} \; \mathrm{matriz}$$

diagonal.

Reciprocamente, se existe uma base $\beta=\{\nu_1,\ldots,\nu_n\}$ de V tal que $T]_{\beta}^{\beta}=(\alpha_{ij})$ é uma matriz diagonal, então $\alpha_{ij}=0$, para todo $1\leq i\neq j\leq n$.

Portanto,
$$T(\nu_j)]_{\beta} = \begin{pmatrix} 0 \\ \vdots \\ a_{jj} \\ \vdots \\ 0 \end{pmatrix}$$
, $T(\nu_j) = a_{jj}\nu_j$, para cada $j = 1, \dots, n$, e β é

uma base de V formada por autovetores de T.

Se α é qualquer base de V, tomando a matriz de mudança de base $P=I]^{\beta}_{\alpha},$ temos $P^{-1}=I]^{\alpha}_{\beta}$ e

$$[\mathsf{T}]_{\beta}^{\beta} = \mathsf{I}]_{\beta}^{\alpha} \cdot \mathsf{T}]_{\alpha}^{\alpha} \cdot \mathsf{I}]_{\alpha}^{\beta} = \mathsf{P}^{-1} \mathsf{T}]_{\alpha}^{\alpha} \mathsf{P}.$$

Logo, para cada base α de V, existe uma matriz invertível $P \in M_{n \times n}(K)$ tal que $P^{-1}T]^{\alpha}_{\alpha}P$ é uma matriz diagonal. Dizemos que P diagonaliza T.

Exemplo 24

O operador \mathbb{R} -linear do Exemplo 23 é diagonalizável, assim como, os operadores \mathbb{R} -lineares dos Exemplos 17, 18 e 21. Enquanto, a rotação R_{θ} no plano, com $\theta \neq 0$ e $\theta \neq \pi$ não é diagonalizável.

Proposição 3

Sejam V um K-espaço vetorial, T um operador K-linear em $V, \lambda_1, \ldots, \lambda_s$ autovalores distintos de T e ν_1, \ldots, ν_s autovetores associados, respectivamente, a $\lambda_1, \ldots, \lambda_s$. Então, $\{\nu_1, \ldots, \nu_s\}$ é K-linearmente independente.

Demonstração: Faremos indução sobre s. Seja v_1 autovetor de T associado ao autovalor λ_1 . Como $\nu_1 \neq 0_V$, então $\{\nu_1\}$ é linearmente independente e a afirmação vale para s = 1.

Seja $s \geq 1$ e suponhamos a afirmação válida para s.

Sejam $v_1, \ldots, v_s, v_{s+1}$ autovetores de T associados, respectivamente, aos autovalores distintos $\lambda_1, \ldots, \lambda_s, \lambda_{s+1}$. Consideremos $\alpha_1, \ldots, \alpha_{s+1} \in K$ tais que

$$0_V = a_1 v_1 + \dots + a_s v_s + a_{s+1} v_{s+1}.$$
 (*)

Aplicando T, obtemos

$$\begin{array}{lcl} 0_{V} = T(0_{V}) & = & a_{1}T(\nu_{1}) + \dots + a_{s}T(\nu_{s}) + a_{s+1}T(\nu_{s+1}) \\ & = & a_{1}\lambda_{1}\nu_{1} + \dots + a_{s}\lambda_{s}\nu_{s} + a_{s+1}\lambda_{s+1}\nu_{s+1}. \quad (\star\star) \end{array}$$

Multiplicando a igualdade (\star) por λ_{s+1} , obtemos

$$0_{V} = a_{1}\lambda_{s+1}\nu_{1} + \cdots + a_{s}\lambda_{s+1}\nu_{s} + a_{s+1}\lambda_{s+1}\nu_{s+1}. \qquad (\star \star \star)$$

Subtraindo $(\star \star \star)$ de $(\star \star)$, obtemos

$$0_{V} = a_{1}(\lambda_{1} - \lambda_{s+1})\nu_{1} + \cdots + a_{s}(\lambda_{s} - \lambda_{s+1})\nu_{s}.$$

Pela hipótese de indução, temos que $\{v_1,\ldots,v_s\}$ é K-linearmente independente, logo $a_j(\lambda_j - \lambda_{s+1}) = 0$, com $\lambda_j \neq \lambda_{s+1}$, para $j = 1, \ldots, s$. Portanto, $a_{j} = 0$, para $j = 1, \ldots, s$.

Substituindo em (\star) , temos $\mathfrak{a}_{s+1}\nu_{s+1}=\mathfrak{0}_{\nu}$. Como $\nu_{s+1}\neq\mathfrak{0}_{\nu}$, então $a_{s+1} = 0$. Assim, $\{v_1, \dots, v_{s+1}\}$ é K-linearmente independente.

Exemplo 25

Seja $T: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ definido por

$$T(a + bt + ct^{2}) = (a + 2b + 3c) + (2b + 3c)t + 3ct^{2}.$$

Esse operador é diagonalizável. De fato, tomando $\alpha = \{1, t, t^2\}$ temos

$$A = T_{\alpha}^{\alpha} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}, \lambda I - A = \begin{pmatrix} \lambda - 1 & -2 & -3 \\ 0 & \lambda - 2 & -3 \\ 0 & 0 & \lambda - 3 \end{pmatrix} \text{ e o polinômio}$$
característico é $p(\lambda) = (\lambda - 1)(\lambda - 2)(\lambda - 3).$

Como $\dim_{\mathbb{R}} P_2(\mathbb{R}) = 3$ e T tem três autovalores distintos, pela Proposição anterior, antes de determinarmos os autovetores, já sabemos que é possível construir uma base de $P_2(\mathbb{R})$ formada por autovetores de T. Por exemplo, escolhendo em $P_2(\mathbb{R})$, v_1 autovetor associado a $\lambda_1=1$, v_2 autovetor associado

Determine uma base β de $P_2\left(\mathbb{R}\right) \text{ formada por}$ autovetores de T e uma $\text{matriz } P = I_{\alpha}^{\beta} \text{ que}$ $\text{diagonaliza } T \,.$

a $\lambda_2=2$ e ν_3 autovetor associado a $\lambda_3=3$ então, $\{\nu_1,\nu_2,\nu_3\}$ é $\mathbb R$ -linearmente independente e é uma base de $P_2(\mathbb R)$ formada por autovetores de $\mathsf T$.

Quando $a \in K$ é autovalor de um operador K-linear T em V, então a é uma raiz do polinômio característico $p(\lambda) \in K[\lambda]$. Então, $\lambda - a$ divide $p(\lambda)$.

Definição 12 (Multiplicidade algébrica)

Seja V um K-espaço vetorial com $\dim_K V = n \ge 1$ e seja $\mathfrak{a} \in K$ um autovalor do operador K-linear T em V. Dizemos que o natural $\mathfrak{m} \ge 1$ é a multiplicidade algébrica do autovalor \mathfrak{a} se, e somente se, $(\lambda - \mathfrak{a})^{\mathfrak{m}}$ divide $\mathfrak{p}(\lambda)$, o polinômio característico de T, e $(\lambda - \mathfrak{a})^{\mathfrak{m}+1}$ não divide $\mathfrak{p}(\lambda)$.

Exemplo 26

No Exemplo anterior temos $p(\lambda) = (\lambda - 1)(\lambda - 2)(\lambda - 3)$ e a multiplicidade algébrica de cada autovalor é 1.

No Exemplo 17 temos $p(\lambda) = (\lambda - 1)(\lambda + 1)$ e a multiplicidade algébrica de cada autovalor é 1.

No Exemplo 18 temos $p(\lambda) = \lambda(\lambda - 1)^2$ e a multiplicidade algébrica do autovalor $\lambda = 0$ é 1 e do autovalor $\lambda = 1$ é 2.

No Exemplo 21 temos $p(\lambda) = (\lambda - 1)(\lambda - 2)^2$ e a multiplicidade algébrica do autovalor $\lambda = 1$ é 1 e do autovalor $\lambda = 2$ é 2.

No Exemplo 22 temos $\mathfrak{p}(\lambda) = (\lambda^2 + 9)(\lambda - 3)$ e a multiplicidade algébrica do único autovalor é 1. Nesse caso, o polinômio característico não se decompõe em produto de fatores lineares em $\mathbb{R}[\lambda]$.

Definição 13 (Multiplicidade geométrica)

Seja V um K-espaço vetorial com $\dim_K V = n \ge 1$ seja $\alpha \in K$ um autovalor do operador K-linear $T:V\longrightarrow V$. Dizemos que o natural $m\ge 1$ é a multiplicidade geométrica do autovalor $\alpha \in K$ se, e somente se, $m=\dim_K V_{\lambda=\alpha}$.

Exemplo 27

No Exemplo 17 temos $p(\lambda)=(\lambda-1)(\lambda+1)$, $\dim_{\mathbb{R}}V_{\lambda=1}=1$ e $\dim_{\mathbb{R}}V_{\lambda=-1}=1$. Nesse caso, a multiplicidade geométrica de cada autovalor é igual à multiplicidade algébrica.

No Exemplo 18 temos $p(\lambda) = \lambda(\lambda - 1)^2$, $\dim_{\mathbb{R}} V_{\lambda=0} = 1$ e $\dim_{\mathbb{R}} V_{\lambda=1} = 2$. Nesse caso, a multiplicidade geométrica de cada autovalor é igual à multiplicidade algébrica de cada autovalor.

No Exemplo 21 temos $p(\lambda) = (\lambda - 1)(\lambda - 2)^2$, $\dim_{\mathbb{R}} V_{\lambda=1} = 1$ e $\dim_{\mathbb{R}} V_{\lambda=2} = 2$. Nesse caso, a multiplicidade geométrica de cada autovalor é igual à multiplicidade algébrica.

Determine o polinômio característico dos operadores \mathbb{R} -lineares dos Exemplos 17 e 18.

No Exemplo 22 temos $p(\lambda) = (\lambda^2 + 9)(\lambda - 3)$ e a multiplicidade geométrica do único autovalor coincide com a sua multiplicidade algébrica.

Proposição 4

Seja V um K-espaço vetorial com $\dim_K V = n \ge 1$ e seja $\mathfrak{a} \in K$ um autovalor do operador K-linear $T:V\longrightarrow V$ com multiplicidade algébrica \mathfrak{m} . Então, $\dim_{\mathsf{K}} \mathsf{V}_{\lambda=\mathfrak{a}} \leq \mathfrak{m}.$

Demonstração: Seja r a multiplicidade geométrica do autovalor a de T, isto é, $r = \dim_K V_{\lambda=a}$. Seja $\{v_1, \ldots, v_r\}$ uma base do subespaço característico $V_{\lambda=a}$. Sejam u_1,\ldots,u_s vetores de V, tais que $\alpha=\{\nu_1,\ldots,\nu_r,u_1,\ldots,u_s\}$ seja uma base de V. Seja $A = T]^{\alpha}_{\alpha}$.

Então, n=r+s e existem matrizes $B\in M_{r\times s}(K)$ e $C\in M_{s\times s}(K)$ tais que $A = \begin{pmatrix} aI_r & B \\ 0_{s \times r} & C \end{pmatrix}$, onde I_r é a matriz identidade de ordem r e $0_{s \times r}$ é a

O polinômio característico de T é

$$\begin{split} p(\lambda) &= \det(\lambda I - A) \\ &= \det\left(\begin{array}{ccc} \lambda I_r - \alpha I_r & -B \\ 0_{s \times r} & \lambda I_s - C \end{array} \right) \\ &= \det((\lambda - \alpha)I_r)\det(\lambda I_s - C) \\ &= (\lambda - \alpha)^r \det(\lambda I_s - C). \end{split}$$

Portanto, $(\lambda - a)^r$ divide $p(\lambda)$. Assim, $r \leq m$.

Vamos agora dar condições necessárias e suficientes para um operador K-linear em V ser diagonalizável.

Teorema 2

Seja V um K-espaço vetorial com $\dim_K V = n \geq 1$. O operador K-linear $T:V\longrightarrow V$ é diagonalizável se, e somente se,

- (a) o polinômio característico de T tem todas as suas raízes em K;
- (b) a multiplicidade algébrica de cada autovalor λ de T é igual a dim_K V_{λ} .

Demonstração:

(⇒:) Suponhamos que o operador K-linear T em V seja diagonalizável. Sejam $\lambda_1, \ldots, \lambda_s$ em K os autovalores distintos de T e seja β uma base de V formada por autovetores de T, ordenada de modo que $\beta = \beta_1 \cup ... \cup \beta_s$, onde β_i é o subconjunto da base dos n_i autovetores de T associados ao autovalor λ_i , para cada $j=1,\ldots,s$. Então, é claro que $n=\dim_K V=\sharp\beta=n_1+\cdots+n_s$.

Podemos escrever a matriz identidade de ordem n como $I_r \quad O_{r \times s}$ $0_{r \times s}$, $0_{s \times r}$ são matrizes nulas e I_r e I_s são as matrizes identidades de ordens res. respectivamente.

A multiplicidade geométrica de cada autovalor coincide com a multiplicidade algébrica.

$$\mathrm{Seja}\ B_j = \left(\begin{array}{ccc} \lambda_j & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_j \end{array}\right) \in M_{n_j \times n_j}(K) \ \mathrm{matriz\ diagonal}.$$

$$\operatorname{Ent\~ao}, \, T]_{\beta}^{\beta} = \left(\begin{array}{ccc} B_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & B_s \end{array} \right) \, \text{\'e matriz diagonal em blocos de ordem}$$

n.

Escrevendo a matriz identidade de ordem $\mathfrak n$ como uma matriz em blocos

$$I = \left(\begin{array}{ccc} I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & I_s \end{array} \right), \text{ onde } I_j \text{ \'e a matriz identidade de ordem } n_j, \text{ para}$$

cada $j=1,\dots,s,$ temos que $B_j=\lambda_j I_j,$ para cada $j=1,\dots,s,$ e

$$\begin{split} (\lambda I_{V} - T)]_{\beta}^{\beta} &= (\lambda I_{V})]_{\beta}^{\beta} - T]_{\beta}^{\beta} &= \begin{pmatrix} \lambda I_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda I_{s} \end{pmatrix} - \begin{pmatrix} B_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & B_{s} \end{pmatrix} \\ &= \begin{pmatrix} \lambda I_{1} - \lambda_{1} I_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda I_{s} - \lambda_{s} I_{s} \end{pmatrix} \\ &= \begin{pmatrix} (\lambda - \lambda_{1}) I_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & (\lambda - \lambda_{s}) I_{s} \end{pmatrix} \end{split}$$

é matriz diagonal em blocos. Portanto,

$$\begin{aligned} p(\lambda) &= \det \left((\lambda I - T) \right]_{\beta}^{\beta} \right) \\ &= \det \left((\lambda - \lambda_1) I_1 \right) \cdot \ldots \cdot \det \left((\lambda - \lambda_s) I_s \right) \\ &= (\lambda - \lambda_1)^{n_1} \cdot \ldots \cdot (\lambda - \lambda_s)^{n_s}, \end{aligned}$$

mostrando o item (a) e que a multiplicidade algébrica do autovalor λ_j é n_j , para cada $j=1,\ldots,s$.

Consideremos W_j o subespaço de V de dimensão n_j gerado pelo subconjunto linearmente independente $\beta_j = \{\nu_{j1}, \ldots, \nu_{jn_j}\}$. Para mostramos o item (b) basta mostrarmos que $W_j = V_{\lambda_j}$, para cada $j = 1, \ldots, s$.

De fato, se $\nu \in W_j$, então $\nu = a_{j1}\nu_{j1} + \cdots + a_{jn_j}\nu_{jn_j}$, com $a_{j\ell} \in K$, para cada $\ell = 1, \ldots, n_j$ e

$$\begin{split} T(\nu) &= a_{j1}T(\nu_{j1}) + \dots + a_{jn_{j}}T(\nu_{jn_{j}}) \\ &= a_{j1}\lambda_{j}\nu_{j1} + \dots + a_{jn_{j}}\lambda_{j}\nu_{jn_{j}} \\ &= \lambda_{j}(a_{j1}\nu_{j1} + \dots + a_{jn_{j}}\nu_{jn_{j}}) \\ &= \lambda_{j}\nu, \end{split}$$

 $\operatorname{Logo}, \, \nu \in V_{\lambda_j}, \, \operatorname{mostrando} \, \operatorname{que} \, W_{\mathfrak{j}} \subset V_{\lambda_j}, \, \operatorname{para} \, \operatorname{cada} \, \mathfrak{j} = 1, \ldots, s.$

Consideremos agora $\nu \in V_{\lambda_i}$. Então, $T(\nu) = \lambda_i \nu$. Escrevendo ν como combinação linear da base $\beta = \beta_1 \cup \cdots \cup \beta_s$, temos que $\nu = \sum_{k=1}^{s} \left(\sum_{l=1}^{n_k} \alpha_{kl} \nu_{kl}\right)$

$$\mathrm{e}\ \mathsf{T}(\nu) = \sum_{k=1}^s \left(\sum_{\ell=1}^{n_k} \alpha_{k\ell} \mathsf{T}(\nu_{k\ell}) \right) = \sum_{k=1}^s \left(\sum_{\ell=1}^{n_k} \alpha_{k\ell} \lambda_k \nu_{k\ell} \right).$$

$$\mathrm{Portanto},\, \lambda_j \nu = \sum_{k=1}^s \left(\sum_{\ell=1}^{n_k} \lambda_j \, \alpha_{k\ell} \nu_{k\ell} \right) = \sum_{k=1}^s \left(\sum_{\ell=1}^{n_k} \lambda_k \alpha_{k\ell} \nu_{k\ell} \right).$$

Assim, $\lambda_j a_{k\ell} = \lambda_k a_{k\ell}$, para quaisquer k = 1, ..., s e $\ell = 1, ..., n_k$.

Logo, $(\lambda_i - \lambda_k)a_{k\ell} = 0$, para quaisquer k = 1, ..., s e $\ell = 1, ..., n_k$. Então, se $k \neq j$, temos $a_{k\ell} = 0$, para todo $\ell = 1, \ldots, n_k$.

Portanto, $\nu=\sum_{j=1}^{n}a_{j\ell}\nu_{j\ell}\in W_j$, mostrando que $V_{\lambda_j}\subset W_j$. Concluímos então que $W_j = V_{\lambda_i}$, para todo $k = 1, \dots, s$.

(⇐:) Suponhamos que sejam válidas as propriedades (a) e (b). Então, existem $\lambda_1,\dots,\lambda_s\in K$ distintos tais que o polinômio característico de T é da forma

$$p(\lambda) = (\lambda - \lambda_1)^{n_1} \cdot \ldots \cdot (\lambda - \lambda_s)^{n_s},$$

onde $n_i = \dim_K V_{\lambda_i}$.

Consideremos o subespaço de V definido por $W_s = V_{\lambda_1} + \cdots + V_{\lambda_s}$.

Afirmamos que a soma é uma soma direta.

Sabendo que $W_s = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s},$ temos que

$$\dim_K W_s = \sum_{j=1}^s \dim_K V_{\lambda_j} = \sum_{j=1}^s n_j = \operatorname{grau}(\mathfrak{p}(\lambda)) = \dim_K V.$$

Como $W_s \subset V$ concluímos que $W_s = V$. Tomando β_j uma base de V_{λ_j} , para cada $j=1,\ldots,s$, temos que $\beta=\beta_1\cup\cdots\cup\beta_s$ é uma base de V formada por autovetores de T. Logo, T é diagonalizável.

A demonstração da afirmação é por indução sobre s.

Para $j \neq k$, temos que se $v \in V_{\lambda_j} \cap V_{\lambda_k}$, então $T(v) = \lambda_j v = \lambda_k v$, que é equivalente a $(\lambda_j - \lambda_k)\nu = 0_V$, com $\lambda_j - \lambda_k \neq 0$, logo $\nu = 0_V$. Assim, $V_{\lambda_i} \cap V_{\lambda_k} = \{0_V\}.$

Portanto, se s=2, então $W_2=V_{\lambda_1}\oplus V_{\lambda_2}$.

Seja s ≥ 2 e suponhamos que $W_s = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s}$. Seja $v \in V_{\lambda_{s+1}} \cap W_s$. Então, existem $\nu_j \in V_{\lambda_j},$ para $j=1,\ldots,s,$ unicamente determinados, tais que $v = v_1 + \cdots + v_s$. Logo,

$$T(\nu) = T(\nu_1) + \dots + T(\nu_s) = \lambda_1 \nu_1 + \dots + \lambda_s \nu_s. \eqno(1)$$

Por outro lado,

$$T(\nu) = \lambda_{s+1}\nu = \lambda_{s+1}(\nu_1 + \dots + \nu_s) = \lambda_{s+1}\nu_1 + \dots + \lambda_{s+1}\nu_s.$$
 (2)

Subtraindo (2) de (1), obtemos

$$(\lambda_1 - \lambda_{s+1})\nu_1 + \cdots + (\lambda_s - \lambda_{s+1})\nu_s = 0_V.$$

Como em W_s a soma é uma soma direta, temos que $(\lambda_j - \lambda_{s+1})\nu_j = 0_V$, para $j = 1, \ldots, s$, com $\lambda_j - \lambda_{s+1} \neq 0$. Portanto, $\nu_j = 0_V$, para $j = 1, \ldots, s$, e $\nu = 0_V$. Isto mostra que a soma $W_{s+1} = W_s + V_{\lambda_{s+1}}$ é uma soma direta. Logo, $W_{s+1} = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s} \oplus V_{\lambda_{s+1}}$ e o resultado é válido para s+1.

Exemplo 28

Seja T : $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(x,y,z) = (4x + 2y, -x + y, y + 2z). Afirmamos que esse operador \mathbb{R} -linear não é diagonalizável.

De fato, tomando α a base canônica do \mathbb{R}^3 temos $A = T]_{\alpha}^{\alpha} = \begin{pmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$,

$$\lambda I - A = \left(\begin{array}{ccc} \lambda - 4 & -2 & 0 \\ 1 & \lambda - 1 & 0 \\ 0 & -1 & \lambda - 2 \end{array}\right) \ \mathrm{e} \ p(\lambda) = \det(\lambda I - A) = (\lambda - 2)^2 (\lambda - 3).$$

Assim, o autovalor $\lambda=2$ tem multiplicidade algébrica 2. Vamos determinar o subespaço característico $V_{\lambda=2}$.

$$\lambda = 2$$

$$2I - A = \begin{pmatrix} -2 & -2 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} -2 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Logo,
$$V_{\lambda=2} = \{(x, y, z) \in \mathbb{R}^3 ; x = 0, y = 0\} = \{(0, 0, z) ; z \in \mathbb{R}\}.$$

Nesse caso, $\dim_{\mathbb{R}} V_{\lambda=2}=1<2$ =multiplicidade algébrica do autovalor $\lambda=2$. Portanto, T não é diagonalizável.

Exemplo 29

Volte aos Exemplos 17, 18 e 21 e verifique a validade dos itens (a) e (b) do Teorema anterior.

Exemplo 30

O operador \mathbb{C} -linear $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ definido por T(x,y) = (-y,x) é diagonalizável. De fato, $p(\lambda) = \lambda^2 + 1 = (\lambda - i)(\lambda + i)$. Nesse caso,

 $1 \leq \dim_{\mathbb{C}} V_{\lambda=i} \leq 1$ =multiplicidade algébrica do autovalor $\lambda=i,$ assim como,

 $1 \leq \dim_{\mathbb{C}} V_{\lambda = -i} \leq 1 = \text{multiplicidade alg\'ebrica do autovalor } \lambda = -i.$

Portanto, $\dim_{\mathbb{C}} V_{\lambda=i} = 1$ e $\dim_{\mathbb{C}} V_{\lambda=-i} = 1$.

Podemos usar o conceito de diagonalização de operadores para determinar potências de números naturais de operadores ou matrizes.

Aplicação da diagonalização: Cálculo de potências

Seja $T:K^n\longrightarrow K^n$ um operador K-linear diagonalizável. Sejam α a base canônica do K^n e β uma base do K^n formada por autovetores de $\mathsf{T}.$

Sejam $A = T]^{\alpha}_{\alpha}$ e a matriz diagonal $D = T]^{\beta}_{\beta}$. Tomando a matriz de mudança de base $P = I_{\alpha}^{\beta} e P^{-1} = I_{\beta}^{\alpha}$ temos

$$D = T]_{\beta}^{\beta} = I]_{\beta}^{\alpha} T]_{\alpha}^{\alpha} I]_{\alpha}^{\beta} = P^{-1}AP.$$

Para cada natural $m \geq 1$, temos que

$$D^{m} = (P^{-1}AP)^{m} = P^{-1}A^{m}P.$$

Portanto,
$$T^m]^{\alpha}_{\alpha} = (T]^{\alpha}_{\alpha})^m = A^m = PD^mP^{-1}$$
.

Dessa maneira, podemos determinar o operador T^m ou a matriz A^m, para todo natural $m \geq 1$.

Vejamos agora um exemplo.

Vamos determinar
$$A^{10}$$
, onde $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$.

Consideramos o operador \mathbb{R} -linear do \mathbb{R}^2 , cuja matriz com respeito à base canônica do $\mathbb{R}^2 \notin \mathsf{T}]^{\alpha}_{\alpha} = \mathsf{A}$.

Então,
$$p(\lambda)=\det\left(\begin{array}{cc} \lambda-1 & 0 \\ 1 & \lambda-2 \end{array}\right)=(\lambda-1)(\lambda-2)$$
 é o polinômio carac-

terístico de T. O operador T é diagonalizável, pois $2=\dim_{\mathbb{R}}\mathbb{R}^2$ é igual ao número de autovalores distintos.

$$\lambda = 1$$

$$\overline{I - A} = \left(\begin{array}{cc} 0 & 0 \\ 1 & -1 \end{array}\right).$$

Logo, $V_{\lambda=1} = \{(x,y) \in \mathbb{R}^2 ; x-y=0\} = \{(x,x) ; x \in \mathbb{R}\} e$

$$\lambda=1 \leftrightarrow \nu=x(1,1), x\neq 0.$$

$$\lambda = 2$$

$$2I - A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Logo, $V_{\lambda=2}=\{(x,y)\in\mathbb{R}^2\;;\;x=0\}=\{(0,y)\;;\;y\in\mathbb{R}\}$ e

$$\lambda=2 \leftrightarrow \nu=y(0,1), y\neq 0.$$

Portanto, $\beta = \{(1,1), (0,1)\}$ é uma base do \mathbb{R}^2 formada por autovetores do operador T.

Faça a demonstração da última igualdade por indução sobre m.

$$\begin{split} \text{Temos que } P &= I]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \text{ e } P^{-1} = I]_{\beta}^{\alpha} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}. \\ \text{Como } D &= T]_{\beta}^{\beta} &= \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = P^{-1}AP, \text{ então } D^{10} = \begin{pmatrix} 1^{10} & 0 \\ 0 & 2^{10} \end{pmatrix} = \\ \begin{pmatrix} 1 & 0 \\ 0 & 1024 \end{pmatrix} = P^{-1}A^{10}P. \text{ Assim,} \\ A^{10} &= PD^{10}P^{-1} &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1024 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 1 & 1024 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ -1023 & 1024 \end{pmatrix}. \end{split}$$

Podemos determinar agora o operador T^{10} . Temos que $A^{10} = T^{10}]^{\alpha}_{\alpha}$ e $T^{10}(x,y) = (x,-1023x+1024y)$.

Exercícios

- 1. Seja $T:V\longrightarrow V$ um operador K-linear, onde $K=\mathbb{R}$ ou $K=\mathbb{C}$ e $\dim_K V=n\geq 1$. Diga quais das afirmações são falsas ou verdadeiras, justificando a sua resposta.
 - (a) Se $T(\nu) = \lambda \nu$, para algum $\nu \in V$, então λ é autovetor de T.
 - (b) T é operador linear invertível se, e somente se, zero não é autovalor de T.
 - (c) Zero é autovalor de T se, e somente se, núcleo de T é não nulo.
 - (d) $c \in K$ é autovalor de T se, e somente se, existe $v \in V$, $v \neq 0_V$, tal que $(T cI)(v) = 0_V$.
 - (e) Se $T(\nu) = \lambda \nu$, para algum escalar $\lambda \in K$, então ν é autovetor de T.
 - (f) Se v_1 e v_2 são autovetores de T linearmente independentes, então correspondem a autovalores distintos.
 - (g) Se a dimensão de V é 2, então T pode ter 3 autovalores.
 - (h) O número máximo de autovalores de T é a dimensão de V.
 - (i) Todo operador linear T tem autovalores e autovetores.

2. Seja V = $\left\{ \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} ; x, y, z \in \mathbb{C} \right\}$ e seja T : V \longrightarrow V definida por $T\begin{pmatrix} x & y \\ z & 0 \end{pmatrix} = \begin{pmatrix} 2x - y + 2z & 3x \\ -2x + 4y + z & 0 \end{pmatrix}.$ Mostre que T é diagonalizável. Construa uma base β de V formada por autovetores de T e dê T] $_{\beta}^{\beta}$.

Não encontre uma fórmula para T. Faça geometricamente.

- 3. Determine, caso exista, um autovalor do operador linear T e o subespaço característico, sem descrever T explicitamente.
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ é a simetria com relação a uma reta pela origem. T é diagonalizável?
 - (b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ é a projeção ortogonal sobre uma reta passando na origem. Té diagonalizável?
 - (c) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ é a rotação de $\theta \in [0, 2\pi)$. T é diagonalizável?
 - (d) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é a rotação de θ em torno de uma reta pela origem. T é diagonalizável?
 - (e) $\mathsf{T}:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ é a projeção ortogonal sobre um plano passando pela origem. T é diagonalizável?
 - (f) $\mathsf{T}:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ é a projeção ortogonal sobre uma reta passando pela origem. Té diagonalizável?
 - (g) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é a simetria com respeito a um plano passando pela origem. Té diagonalizável?
 - (h) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é a simetria com respeito a um reta passando pela origem. Té diagonalizável?
- 4. Determine, caso existam, uma matriz invertível P e uma matriz diagonal D em $M_{n\times n}(\mathbb{R})$, tais que D = $P^{-1}AP$, para cada $A\in M_{n\times n}(\mathbb{R})$:

5. Determine, caso existam, uma matriz invertível P e uma matriz diagonal D em $M_{n\times n}(\mathbb{C})$, tais que $D=P^{-1}AP$, para cada $A\in M_{n\times n}(\mathbb{C})$:

(a)
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 2 & -1 & 2 \\ 3 & 0 & 0 \\ -2 & 4 & 1 \end{pmatrix}$

6. Sejam $P_2(\mathbb{R})=\{a+bt+ct^2\;;\;a,b,c\in\mathbb{R}\}\;\mathrm{e}\;T:P_2(\mathbb{R})\longrightarrow P_2(\mathbb{R})$ definida por

$$T(a + bt + ct^{2}) = (5a + 6b + 2c) - (b + 8c)t + (a - 2c)t^{2}.$$

- (a) Determine o polinômio característico, os autovalores e os subespaços característicos de T.
- (b) T é diagonalizável?
- 7. Para cada $T:V\longrightarrow V$ \mathbb{R} -linear, determine uma base β de V, tal que $T]^{\beta}_{\beta}$ seja matriz diagonal D. Dê a matriz diagonal D.

(a)
$$V = \mathbb{R}^2 \in T(x, y) = (3x + 4y, 2x + y)$$
.

$$\mathrm{(b)}\ V=P_1(\mathbb{R})=\{\alpha+bt\ ;\ \alpha,b\in\mathbb{R}\}\ \mathrm{e}\ T(\alpha+bt)=\alpha+(6\alpha-b)t.$$

$$(\mathrm{c})\ V = M_{2\times 2}(\mathbb{R})\ \mathrm{e}\ T\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} 2c & a+c \\ b-2c & d \end{array}\right).$$

8. Sejam $K=\mathbb{R}$ ou $K=\mathbb{C},\,A,P\in M_{n\times n}(K)$ com P invertível.

Mostre que $(P^{-1}AP)^m = P^{-1}A^mP$, para todo inteiro $m \ge 1$.

9. Usando o exercício anterior, calcule:

(a)
$$A^{25}$$
, onde $A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$.

(b)
$$A^{2009}$$
, onde $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

10. O traço de uma matriz $A=(\mathfrak{a}_{ij})\in M_{n\times n}(K),$ onde $K=\mathbb{R}$ ou $K=\mathbb{C},$ é definido por

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}.$$

Mostre que se n=2, então o polinômio característico de A é $p(\lambda)=\lambda^2-\mathrm{tr}(A)\lambda+\det(A)$.

Álgebra Linear II

11. Seja
$$A=\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in M_{2\times 2}(\mathbb{R}).$$
 Mostre que:

- (a) Se $(\alpha-d)^2+4bc>0,$ então A é diagonalizável.
- (b) Se $(a-d)^2 + 4bc < 0$, então A não é diagonalizável.

Teorema de Hamilton-Cayley e polinômio mínimo

Relembramos algumas propriedades relevantes da álgebra dos operadores lineares antes de apresentar o Teorema de Hamilton-Cayley.

Seja V um K-espaço vetorial com $\dim_K V=\mathfrak{n}\geq 1$. Lembramos que $\mathcal{L}(V,V)=\{T:V\longrightarrow V; T\text{ \'e }K\text{-linear }\}$ \'e um K-espaço vetorial com $\dim_K \mathcal{L}(V,V)=\mathfrak{n}^2$. De fato, fixada α uma base de V a função

$$\varphi_{\alpha}: \mathcal{L}(V, V) \longrightarrow M_{n \times n}(K)$$

$$T \longmapsto T|_{\alpha}^{\alpha}$$

é um isomorfismo de K-espaços vetoriais.

Logo, $\dim_K \mathcal{L}(V, V) = \dim_K M_{n \times n}(K) = n^2$.

Também, T=0 se, e somente se, $T]^{\alpha}_{\alpha}=0\in M_{n\times n}(K)$.

Seja Vum K-espaço vetorial com $\dim_K V=\mathfrak{n}\geq 1$ e seja $T:V\longrightarrow V$ um operador K-linear.

Temos $T^1=T$ e, para cada número natural m>1, definimos o operador $T^m=T^{m-1}\circ T$. Então, $T^m:V\longrightarrow V$ é um operador K-linear.

Para cada polinômio $f(x) = b_0 + b_1 x + \dots + b_m x^m$ com coeficientes em K definimos o operador K-linear $f(T) = b_0 I_V + b_1 T + \dots + b_m T^m$.

Fixemos α uma base de V. Seja $A = T]^{\alpha}_{\alpha} \in M_{n \times n}(K)$.

Para cada número natural $\ell \geq 1$, temos que $A^\ell = (T]^\alpha_\alpha)^\ell = T^\ell]^\alpha_\alpha$ e assim,

$$\begin{split} f(T)]^{\alpha}_{\alpha} &= & (b_{0}I_{V} + b_{1}T + \dots + b_{m}T^{m})]^{\alpha}_{\alpha} \\ &= & b_{0}(I_{V}]^{\alpha}_{\alpha}) + b_{1}(T]^{\alpha}_{\alpha}) + \dots + b_{m}(T^{m}]^{\alpha}_{\alpha}) \\ &= & b_{0}I + b_{1}A + \dots + b_{m}A^{m} \\ &= & f(A). \end{split}$$

Observamos que fixado um operador K-linear T em V, tal que $\dim_K V=n\geq 1, \ {\rm ent} \ {\rm ao} \ {\rm sao} \ {\rm map} +1$ operadores lineares I_V,T,\ldots,T^{n^2} de $\mathcal{L}(V,V)$ são linearmente dependentes sobre K. Portanto, existem $\alpha_0,\ldots,\alpha_{n^2}$ em K, nem todos nulos, tais que

$$\alpha_0 I_V + \alpha_1 T + \dots + \alpha_{n^2} T^{n^2} = 0,$$

onde 0 é o operador identicamente nulo de $\mathcal{L}(V, V)$.

Logo, existe um polinômio não nulo $g(x) = a_0 + a_1 x + \cdots + a_{n^2} x^{n^2}$ com coeficientes em K, tal que g(T) = 0.

O Teorema de Hamilton-Cayley afirma que é possível construir um

A matriz da composição de operadores lineares é o produto das matrizes.

 $\mathcal{L}(V,V) \text{ \'e isomorfo a } \\ M_{n\times n}(K) \text{ e em qualquer } \\ \text{espaço vetorial de dimensão } \\ \text{finita, todo subconjunto com } \\ \text{mais elementos do que a } \\ \text{dimensão do espaço vetorial } \\ \text{\'e linearmente dependente.}$

polinômio de grau igual à dimensão de V, a saber, p(x), o polinômio característico de T, tal que p(T) = 0.

Exemplo 32

Consideremos o operador linear T em \mathbb{R}^2 definido por $\mathsf{T}(\mathsf{x},\mathsf{y}) = (\mathsf{x} + \mathsf{y},\mathsf{y})$.

Tomando
$$\alpha = \{(1,0),(0,1)\}$$
, temos que $A = T]_{\alpha}^{\alpha} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

O polinômio característico de T é

$$p(\lambda) = \det(\lambda I - A) = \det\left(\begin{array}{cc} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{array}\right) = (\lambda - 1)^2.$$

Verificamos facilmente que $p(A) = (A - I)^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Isto é equivalente a $p(T) = (T - I_V)^2 = T^2 - 2T + I_V = 0$.

Como consequência temos que $I_V = -T^2 + 2T = T \circ (-T + 2I_V)$. Portanto, Té um operador invertível e o seu inverso é o operador $T^{-1} = -T + 2I_V$. Logo,

$$\mathsf{T}^{-1}(\mathsf{x},\mathsf{y}) = -\mathsf{T}(\mathsf{x},\mathsf{y}) + 2\mathsf{I}_{\mathsf{V}}(\mathsf{x},\mathsf{y}) = (-\mathsf{x}-\mathsf{y},-\mathsf{y}) + (2\mathsf{x},2\mathsf{y}) = (\mathsf{x}-\mathsf{y},\mathsf{y}).$$

Para a compreensão da demonstração do Teorema de Hamilton-Cayley a seguinte observação é muito importante.

Observação: Toda matriz quadrada de ordem n cujos coeficientes são polinômios em $K[\lambda]$ de grau no máximo \mathfrak{m} ou o polinômio nulo pode ser escrita como

$$A = A_0 + A_1 \lambda + \cdots + A_m \lambda^m,$$

 $\mathrm{onde}\ A_0,A_1,\ldots,A_m\in M_{n\times n}(K).$

Vejamos o procedimento com um exemplo.

Exemplo 33 Consideremos
$$A = \begin{pmatrix} 4 + 3\lambda^2 - \lambda^3 & 2 + \lambda - \lambda^2 + \lambda^3 \\ 2 + 3\lambda + 2\lambda^2 & \sqrt{3} + 2\lambda^2 + 5\lambda^3 \end{pmatrix} \in M_{2\times 2}(\mathbb{R}[\lambda]).$$

$$A = \begin{pmatrix} 4 & 2 \\ 2 & \sqrt{3} \end{pmatrix} + \begin{pmatrix} 0\lambda & \lambda \\ 3\lambda & 0\lambda \end{pmatrix} + \begin{pmatrix} 3\lambda^2 & -\lambda^2 \\ 2\lambda^2 & 2\lambda^2 \end{pmatrix} + \begin{pmatrix} -\lambda^3 & \lambda^3 \\ 0\lambda^3 & 5\lambda^3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 2 \\ 2 & \sqrt{3} \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \lambda + \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \lambda^2 + \begin{pmatrix} -1 & 1 \\ 0 & 5 \end{pmatrix} \lambda^3$$

Teorema 3 (Hamilton-Cayley)

Sejam Vum K-espaço vetorial com $\dim_K V=\mathfrak{n}\geq 1,\,T$ um operador linear em V e $p(\lambda)$ o polinômio característico de T. Então, p(T) = 0.

Demonstração: Seja α uma base qualquer de V e seja $A = T]_{\alpha}^{\alpha}$. Mostraremos $\mathrm{que}\ \mathfrak{p}(T)]_{\alpha}^{\alpha}=\mathfrak{p}(A)=0\in M_{n\times n}(K),\ \mathrm{concluindo}\ \mathrm{que}\ \mathfrak{p}(T)=0.$

Seja $p(\lambda) = \det(\lambda I - A)$. Seja $B = \operatorname{adj}(\lambda I - A)$. Temos que B é uma matriz n por n cujos coeficientes são polinômios na indeterminada λ com coeficientes em K e de grau no máximo n-1.

Escrevemos
$$B = B_0 + B_1 \lambda + \dots + B_{n-1} \lambda^{n-1}$$
, com $B_j \in M_{n \times n}(K)$, (I)

Da propriedade da adjunta clássica, segue que:

$$B(\lambda I - A) = \det(\lambda I - A)I = p(\lambda)I \quad (II)$$

Escrevemos

$$p(\lambda) = a_0 + a_1 \lambda + \dots + a_{n-1} \lambda^{n-1} + \lambda^n, \quad (III)$$

com $a_i \in K$, para $j = 1, \ldots, n-1$.

Substituindo (I) e (III) em (II), temos:

$$(B_0 + B_1\lambda + \dots + B_{n-1}\lambda^{n-1})(\lambda I - A) = (a_0 + a_1\lambda + \dots + a_{n-1}\lambda^{n-1} + \lambda^n)I.$$

Esta é uma igualdade de matrizes polinomiais. Comparando as matrizes dos coeficientes dos termos de mesmo grau, temos que:

$$(0)$$
 $-B_0A = a_0I$ (coeficiente de λ^0)

$$(1) \hspace{1cm} B_0 - B_1 A \hspace{1cm} = \hspace{1cm} \alpha_1 I \hspace{1cm} (\text{coeficiente de } \lambda)$$

$$(2) \hspace{1cm} B_1 - B_2 A \hspace{2mm} = \hspace{2mm} \alpha_2 I \hspace{1cm} ({\rm coeficiente} \hspace{2mm} {\rm de} \hspace{2mm} \lambda^2)$$

$$\begin{array}{lll} (\mathfrak{j}) & & B_{\mathfrak{j}-1}-B_{\mathfrak{j}}A & = & \mathfrak{a}_{\mathfrak{j}}I & \text{ (coeficiente de }\lambda^{\mathfrak{j}}) \\ : & & : \end{array}$$

$$\begin{array}{cccc} (n-1) & B_{n-2} - B_{n-1} A & = & a_{n-1} I & (\text{coeficiente de } \lambda^{n-1}) \\ (n) & B_{n-1} & = & I & (\text{coeficiente de } \lambda^n) \end{array}$$

Para cada j = 1, ..., n multiplicamos a equação (j) por A^{j} , obtendo:

$$-B_0A = a_0I$$

$$(1)'$$
 $B_0A - B_1A^2 = a_1A$

$$(2)' B_1 A^2 - B_2 A^3 = a_2 A^2$$

$$\begin{array}{lll} \vdots & & & \vdots \\ (j)' & & B_{j-1}A^j - B_jA^{j+1} & = & \alpha_jA^j \end{array}$$

$$(n-1)'$$
 $B_{n-2}A^{n-1} - B_{n-1}A^n = a_{n-1}A^{n-1}$
 $(n)'$ $B_{n-1}A^n = A^n$.

Somando membro a membro, obtemos:

$$0=\alpha_0I+\alpha_1A+\alpha_2A^2+\cdots+\alpha_{n-1}A^{n-1}+A^n=\mathfrak{p}(A).\ \blacksquare$$

Quem são os polinômios $f(x) \in K[x]$ tais que f(T) = 0, onde T é um

operador linear em um K-espaço vetorial de dimensão $n \ge 1$? A Proposição a seguir responde essa questão.

Proposição 5

Seja V um K-espaço vetorial de dimensão $n \geq 1$ e seja $T: V \longrightarrow V$ um operador linear. Seja $I = \{f(x) \in K[x] ; f(T) = 0\}$. Então, existe um único polinômio mônico $\mathfrak{m}(x) \in K[x] \setminus K$ tal que $I = \{g(x)\mathfrak{m}(x) \; ; \; g(x) \in K[x]\}$. Em particular, m(x) divide f(x) e m(x) é o polinômio mônico de menor grau que se anula em T.

Demonstração: Vamos mostrar, primeiramente, que existe um polinômio $m(x) \in K[x] \setminus K \text{ tal que } I = \{g(x)m(x) ; g(x) \in K[x]\}.$

Observamos que $I \neq \{0\}$ pois, pelo Teorema de Hamilton-Cayley, o polinômio característico de T $p(x) \in I$.

Consideremos $S = \{ \operatorname{grau}(f(x)) ; f(x) \in I \in f(x) \neq 0 \}$. Temos que $S \neq \emptyset$ e $S \subset \mathbb{N}$. Pelo princípio da boa ordenação, S tem menor elemento, digamos s. Então, existe polinômio $m(x) \in K[x], m(x) \neq 0$, com grau(m(x)) = s e m(T) = 0.

Afirmamos que $I = \{ g(x)m(x) ; g(x) \in K[x] \}.$

De fato, sejam $J = \{ g(x)m(x) ; g(x) \in K[x] \}, \alpha$ uma base de V e $A = T]^{\alpha}_{\alpha}$

Seja $f(x) \in J$. Então existe $g(x) \in K[x]$ tal que f(x) = g(x)m(x). Como $\mathfrak{m}(x) \in I$, então $\mathfrak{m}(A) = 0$ e $\mathfrak{f}(A) = \mathfrak{g}(A)\mathfrak{m}(A) = \mathfrak{g}(A) \cdot 0 = 0$, que é equivalente, a f(T) = g(T)m(T) = 0, logo $f(x) = g(x)m(x) \in I \in J \subset I$.

Consideremos agora $f(x) \in I$. Pela divisão euclidiana de f(x) por m(x), existem polinômios unicamente determinados q(x) e r(x) tais que

$$f(x) = q(x)m(x) + r(x),$$

onde r(x) = 0 ou $0 \le \operatorname{grau}(r(x)) < \operatorname{grau}(m(x)) = s$.

Assim.

$$r(x) = f(x) - q(x)m(x) e r(A) = f(A) - q(A)m(A) = 0 - q(A) \cdot 0 = 0.$$

Portanto, r(T) = 0. O caso $r(x) \neq 0$ não pode ocorrer, em virtude de contradizer a escolha de m(x), logo concluímos que r(x) = 0. Portanto, $f(x) = q(x)m(x) \in J$, mostrando que $I \subset J$.

Seja $a_s \neq 0$ o coeficiente líder de m(x). Escrevemos

$$\begin{array}{lll} m(x) & = & \alpha_s x^s + \alpha_{s-1} x^{s-1} + \dots + \alpha_1 x + \alpha_0 \\ & = & \alpha_s \underbrace{(x^s + \alpha_s^{-1} \alpha_{s-1} x^{s-1} + \dots + \alpha_s^{-1} \alpha_1 x + \alpha_s^{-1} \alpha_0)}_{m_1(x) \text{ \'e mônico}} \\ & = & \alpha_s m_1(x), \alpha_s \neq 0 \text{ e } m_1(x) \text{ mônico.} \end{array}$$

Como f(A) = 0 se, e somente se, $\alpha f(A) = 0$, para todo $\alpha \in K$, $\alpha \neq 0$. Então, $m_1(A) = 0$, com grau $(m_1(x)) = s$ e $m_1(x)$ mônico. Logo, existe um único polinômio mônico de menor grau que se anula em T.

Definição 14 (Polinômio mínimo de um operador)

Seja V um K-espaço vetorial de dimensão $n \geq 1$ e seja $T: V \longrightarrow V$ um operador linear. O polinômio mínimo de T é m(x), o polinômio mônico de menor grau no conjunto

$$I = \{ f(x) \in K[x] ; f(T) = 0 \} = \{ g(x)m(x) ; g(x) \in K[x] \}.$$

Em particular,

$$f(x) \in K[x] e f(T) = 0 se$$
, e somente se, $m(x)$ divide $f(x)$.

Corolário 1

Sejam V um K-espaço vetorial de dimensão $n \ge 1$, $T: V \longrightarrow V$ um operador linear, p(x) e m(x), respectivamente, os polinômios característico e mínimo de T. Então, m(x) divide p(x).

Demonstração: Como p(T) = 0, pela Proposição anterior, temos que existe $g(x) \in K[x]$ tal que p(x) = g(x)m(x). Logo, m(x) divide p(x).

Podemos dar uma caracterização dos operadores diagonalizáveis em termos do polinômio mínimo. Para isto, precisamos do seguinte resultado.

Lema 1

Sejam V um K-espaço vetorial de dimensão $n \ge 1$, $T: V \longrightarrow V$ um operador linear, p(x) e m(x), respectivamente, os polinômios característico e mínimo de T. Então, p(x) divide $m(x)^n$.

Demonstração: Seja α uma base de V e $A=T]^{\alpha}_{\alpha}$.

Suponhamos que $m(x)=t^s+c_1x^{s-1}+\cdots+c_{s-1}x+c_s$, com $c_j\in K$, para $j=1,\ldots,s$. Consideremos as matrizes

$$\begin{array}{rcl} B_0 & = & I \\ B_1 & = & A + c_1 I \\ B_2 & = & A^2 + c_1 A + c_2 I \\ & \vdots \\ B_{s-2} & = & A^{s-2} + c_1 A^{s-3} + \dots + c_{s-3} A + c_{s-2} I \\ B_{s-1} & = & A^{s-1} + c_1 A^{s-2} + \dots + c_{s-2} A + c_{s-1} I. \end{array}$$
 Então,

$$\begin{array}{rcl} B_0 &=& I \\ B_1 - AB_0 &=& c_1 I \\ B_2 - AB_1 &=& c_2 I \\ & \vdots \\ B_{s-1} - AB_{s-2} &=& c_{s-1} I \\ \text{Al\'em disso}, \\ -AB_{s-1} &=& -(A^s + c_1 A^{s-1} + \cdots + c_{s-1} A) \\ &=& -(A^s + c_1 A^{s-1} + \cdots + c_{s-1} A + c_s I) + c_s I \\ &=& -m(A) + c_s I \\ &=& c_s I. \end{array}$$

Definimos a matriz polinomial

$$B(x) = B_0 x^{s-1} + B_1 x^{s-2} + \dots + B_{s-2} x + B_{s-1}.$$

Então,

$$\begin{array}{lll} (xI-A)B(x) & = & (xI-A)(B_0x^{s-1}+B_1x^{s-2}+\cdots+B_{s-2}x+B_{s-1}) \\ & = & (B_0x^s+B_1x^{s-1}+\cdots+B_{s-1}x)+ \\ & & -(AB_0x^{s-1}+AB_1x^{s-2}+\cdots+AB_{s-2}x+AB_{s-1}) \\ & = & B_0x^s+(B_1-AB_0)x^{s-1}+\cdots+(B_{s-1}-AB_{s-2})x+ \\ & -AB_{s-1} \\ & = & Ix^s+c_1Ix^{s-1}+c_2Ix^{s-2}+\cdots+c_{s-1}Ix+c_sI \\ & = & (x^s+c_1x^{s-1}+c_2x^{s-2}+\cdots+c_{s-1}x+c_s)I \\ & = & m(x)I \end{array}$$

Calculando o determinante em ambos os lados da igualdade acima, obtemos:

$$\det(xI - A)\det(B(x)) = \det(m(x)I) = m(x)^{n}.$$

Como $\det(B(x))$ é um polinômio com coeficientes em K e o polinômio característico de T é $p(x) = \det(xI - A)$, então $p(x) \cdot \det(B(x)) = m(x)^n$, que é equivalente a p(x) divide $m(x)^n$.

Proposição 6

Sejam V um K-espaço vetorial de dimensão $n \ge 1, T: V \longrightarrow V$ um operador linear, p(x) e m(x), respectivamente, os polinômios característico e mínimo de T. Então, m(x) e p(x) têm os mesmos fatores irredutíveis em K[x].

Demonstração: Seja q(x) um fator irredutível de m(x). Como q(x) divide m(x) e m(x) divide p(x), então existem f(x) e g(x) em K[x] tais que

$$m(x)=q(x)f(x) \ \mathrm{e} \ p(x)=m(x)g(x),$$

logo p(x) = (q(x)f(x))g(x). Assim, q(x) divide p(x).

Reciprocamente, suponhamos que q(x) seja um fator irredutível de

p(x), então q(x) divide p(x). Pelo Lema anterior, p(x) divide $m(x)^n$. Logo, existem f(x) e g(x) em K[x] tais que

$$p(x) = f(x)q(x) e m(x)^n = g(x)p(x),$$

logo $\mathfrak{m}(x)^n = \mathfrak{g}(x)(\mathfrak{f}(x)\mathfrak{q}(x))$. Assim, $\mathfrak{q}(x)$ divide $\mathfrak{m}(x)^n$. Como $\mathfrak{q}(x)$ é irredutível, então $\mathfrak{q}(x)$ divide $\mathfrak{m}(x)$.

Lembramos que se q(x) é irredutível em K[x] e divide um produto de fatores em K[x], então q(x) divide um dos fatores.

Exemplo 34

Vamos determinar os polinômios característicos e mínimos das seguintes ma-

trizes:
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

$$\operatorname{Como} \lambda I - A = \left(\begin{array}{cc} \lambda - 2 & -3 \\ 0 & \lambda - 2 \end{array} \right), \, \operatorname{ent} \tilde{\operatorname{ao}} \, \operatorname{\mathfrak{p}}(\lambda) = (\lambda - 2)^2. \, \operatorname{Pela} \operatorname{Proposição} \operatorname{6} \operatorname{e}$$

pelo Corolário 1, as possibilidades para o polinômio mínimo são: $f(\lambda) = \lambda - 2$ ou $g(\lambda) = (\lambda - 2)^2$. Em virtude de $f(A) = A - 2I \neq 0$, temos $m(\lambda) = g(\lambda) = (\lambda - 2)^2$.

$$\label{eq:como} \mathrm{Como}\ \lambda I - B \,=\, \left(\begin{array}{ccc} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 1 \end{array}\right),\ \mathrm{ent\tilde{ao}}\ \mathfrak{p}(\lambda) \,=\, (\lambda - 1)^2 (\lambda - 2).$$

Pela Proposição 6 e pelo Corolário 1, as possibilidades para o polinômio mínimo são: $f(t) = (\lambda - 1)(\lambda - 2)$ ou $g(T) = (\lambda - 1)^2(\lambda - 2)$. Temos f(B) = (B - I)(B - 2I) = 0, logo $m(\lambda) = f(\lambda) = (\lambda - 1)(\lambda - 2)$.

$$\operatorname{Como} \lambda I - C = \left(\begin{array}{ccc} \lambda - 2 & 0 & 0 \\ 0 & \lambda - 2 & -2 \\ 0 & 0 & \lambda - 1 \end{array} \right), \, \operatorname{ent} \tilde{\operatorname{ao}} \, \mathfrak{p}(\lambda) = (\lambda - 1)(\lambda - 2)^2. \, \operatorname{Pela}$$

Proposição 6 e pelo Corolário 1, as possibilidades para o polinômio mínimo são: $f(\lambda)=(\lambda-1)(\lambda-2)$ ou $g(\lambda)=(\lambda-1)(\lambda-2)^2$. Verificamos que f(C)=(C-I)(C-2I)=0, logo $m(\lambda)=f(\lambda)=(\lambda-1)(\lambda-2)$.

Determine B-I e B-2I e calcule (B-I)(B-2I).

Determine $C - I \in C - 2I \in C$ calcule (C - I)(C - 2I).

Vamos dar condições necessárias e suficientes para um operador linear em um espaço vetorial de dimensão finita ser diagonalizável em termos do polinômio mínimo. Para isto, precisamos do seguinte resultado.

Lema 2

Seja V um K-espaço vetorial de dimensão $n \ge 1$ e seja $T: V \longrightarrow V$ um operador linear. Se $f(x), g(x), h(x) \in K[x]$ são polinômios mônicos tais que $f(x) = g(x)h(x), \operatorname{mdc}_{K[x]}(g(x), h(x)) = 1$ e f(T) = 0, então

(a) $V = U \oplus W$, onde $U = \text{Núcleo}(\mathfrak{g}(\mathsf{T}))$ e $W = \text{Núcleo}(\mathfrak{h}(\mathsf{T}))$ e os subespaços U e W são invariantes por T .

Vale a recíproca do item (b).

(b) Se f(x) é o polinômio mínimo de T, então g(x) é o polinômio mínimo de $T_1 = T|_U$, a restrição de T a U, e h(x) é o polinômio mínimo de $T_2 = T|_W$, a restrição de T a W.

Demonstração:

(a) Como $\operatorname{mdc}_{K[x]}(g(x),h(x))=1$, existem $a(x),b(x)\in K[x]$ tais que 1 = a(x)h(x) + b(x)g(x).

Então,
$$I_V = a(T)h(T) + b(T)g(T)$$
. Aplicando em $v \in V$ temos
$$v = I_V(v) = (a(T)h(T))(v) + (b(T)g(T))(v). \tag{*}$$
 Sejam $u = (a(T)h(T))(v)$ e $w = (b(T)g(T))(v)$.

Afirmamos que $u \in U = \text{Núcleo}(g(T))$ e $w \in W = \text{Núcleo}(h(T))$.

De fato,

$$\begin{array}{lllll} g(T)(\mathfrak{u}) & = & g(T)\big(a(T)h(T)(\nu)\big) & e & h(T)(w) & = & h(T)\big(b(T)g(T)(\nu)\big) \\ & = & \big(g(T)a(T)h(T)\big)(\nu) & = & \big(h(T)b(T)g(T)\big)(\nu) \\ & = & \big(a(T)g(T)h(T)\big)(\nu) & = & \big(b(T)g(T)h(T)\big)(\nu) \\ & = & a(T)\big(g(T)h(T)(\nu)\big) & = & b(T)\big(g(T)h(T)(\nu)\big) \\ & = & a(T)\big(f(T)(\nu)\big) & = & b(T)\big(f(T)(\nu)\big) \\ & = & a(T)(0_V) & = & b(T)(0_V) \\ & = & 0_V & = & 0_V. \end{array}$$

Portanto, v = u + w, onde $u \in U$ e $w \in W$. Logo, V = U + W.

Para que a soma seja uma soma direta, falta apenas mostrarmos que $U \cap W = \{0_V\}.$

Seja $v \in \text{Núcleo}(g(T)) \cap \text{Núcleo}(h(T))$. De (\star) , temos

$$\begin{array}{lll} \nu & = & \big(a(T)h(T)\big)(\nu) + \big(b(T)g(T)\big)(\nu) \\ & = & a(T)\big(h(T)(\nu)\big) + b(T)\big(g(T)(\nu)\big) \\ & = & a(T)(0_V) + b(T)(0_V) \\ & = & 0_V + 0_V \\ & = & 0_V. \end{array}$$

Vamos mostrar que U = Núcleo(g(T)) e W = Núcleo(h(T)) são invariantes por T.

$$\begin{split} \operatorname{Seja} \, \mathfrak{u} &\in U = \operatorname{N\'ucleo}(\mathfrak{g}(T)). \ \operatorname{Temos} \, \mathfrak{g}(T)(\mathfrak{u}) = \mathfrak{0}_V \, \operatorname{e} \\ \mathfrak{g}(T)\big(T(\mathfrak{u})\big) &= \big(\mathfrak{g}(T) \circ T\big)(\mathfrak{u}) = \big(T \circ \mathfrak{g}(T)\big)(\mathfrak{u}) = T\big(\mathfrak{g}(T)(\mathfrak{u})\big) = T(\mathfrak{0}_V) = \mathfrak{0}_V. \\ \operatorname{Portanto}, \, T(\mathfrak{u}) &\in U = \operatorname{N\'ucleo}(\mathfrak{g}(T)) \, \operatorname{e} \, U \, \, \operatorname{\acute{e}invariante por} \, T. \end{split}$$

Seja
$$w \in W = \text{Núcleo}(h(T))$$
. Temos $h(T)(w) = 0_V$ e $h(T)(T(w)) = (h(T) \circ T)(w) = (T \circ h(T))(w) = T(h(T)(w)) = T(0_V) = 0_V$. Portanto, $T(w) \in W = \text{Núcleo}(h(T))$ e W é invariante por T .

Usamos a definição de composição de funções; que operadores lineares polinomiais em T comutam; que f(T) = g(T)h(T) ef(T) = 0, isto é, $f(T)(v) = 0_V$, para todo $\nu \in V$; e que $\mathfrak{a}(T)$ e $\mathfrak{b}(T)$ são lineares.

(b) Sabemos que $V=U\oplus W$. Como U e W são invariantes por T, então $T_1=T|_U$ e $T_2=T|_W$ definem operadores lineares em U e W, a saber,

Sejam β e γ bases, respectivamente, de U e W. Então, $\alpha = \beta \cup \gamma$ é uma base de V. Sejam $A = T]_{\alpha}^{\alpha}$, $B = T_1]_{\beta}^{\beta}$ e $C = T_2]_{\gamma}^{\gamma}$. Então, $A = \begin{pmatrix} B & 0_{r \times s} \\ 0_{s \times r} & C \end{pmatrix}$, onde B e C são matrizes quadradas de ordens, respectivamente, $r = \dim_K U$ e $s = \dim_K W$, com $r + s = \dim_K V = n$, e as matrizes $0_{r \times s}$, $0_{s \times r}$ são nulas.

Observamos, primeiramente, que como A é uma matriz diagonal em blocos, então $A^j=\left(\begin{array}{cc} B^j & 0 \\ 0 & C^j \end{array}\right)\!,$ para todo $\mathfrak{j}\,\geq\,1,$ também é uma matriz

diagonal em blocos; assim como $\alpha_j A^j, \ \alpha_j \in K, \ \mathrm{e} \ \sum_{j=0}^m \alpha_j A^j = \ell(A), \ \mathrm{onde}$

 $\ell(x) = \sum_{j=0}^m \alpha_j x^j, \text{ com blocos de ordens } r \in s, \text{ as mesmas ordens dos blocos de } A.$

 $\mathrm{Logo,\ para\ qualquer\ polin\^{o}mio}\ \ell(x) \in K[x]\ \mathrm{temos}\ \ell(A) = \left(\begin{array}{cc} \ell(B) & 0 \\ 0 & \ell(C) \end{array}\right).$

Suponhamos que f(x) seja o polinômio mínimo de T e sejam $m_1(x)$ e $m_2(x)$ os polinômios mínimos de T_1 e T_2 , respectivamente.

Como $m_1(B) = 0$ e $m_2(C) = 0$, então

$$\begin{array}{lll} m_1(A)m_2(A) & = & \left(\begin{array}{ccc} m_1(B) & 0 \\ 0 & m_1(C) \end{array} \right) \left(\begin{array}{ccc} m_2(B) & 0 \\ 0 & m_2(C) \end{array} \right) \\ & = & \left(\begin{array}{ccc} m_1(B)m_2(B) & 0 \\ 0 & m_1(C)m_2(C) \end{array} \right) \\ & = & \left(\begin{array}{ccc} 0 \cdot m_2(B) & 0 \\ 0 & m_1(C) \cdot 0 \end{array} \right) \\ & = & \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right) \end{array}$$

é a matriz nula de ordem $\mathfrak n.$ Logo, f(x), o polinômio mínimo de T, divide $\mathfrak m_1(x)\mathfrak m_2(x).$

Observamos que como o subespaço U é invariante por T e $T_1 = T|_U$, então $(\alpha T^j)|_U = \alpha T^j_1$, para todo $j \geq 1$ e para todo $\alpha \in K$. Assim, dado $\ell(x) = \sum_{j=0}^m \alpha_j x^j$ temos que $\ell(T)|_U = \ell(T_1)$. Analogamente, W é invariante por T, $T_2 = T|_W$ e $(\alpha T^j)|_W = \alpha T^j_2$, para todo $j \geq 1$ e para todo $\alpha \in K$, logo $\ell(T)|_W = \ell(T_2)$.

Verifique essa propriedade. Faça o Exercício 10.

Veja o Exercício 11.

Como $U = \text{Núcleo}(\mathfrak{g}(T))$ e $W = \text{Núcleo}(\mathfrak{h}(T))$, então obtemos que $0 = g(T)|_{U} = g(T_1) e 0 = h(T)|_{W} = h(T_2)$. Assim, g(B) = 0 e h(C) = 0, portanto $m_1(x)$ divide g(x) e $m_2(x)$ divide h(x). Logo, $m_1(x)m_2(x)$ divide g(x)h(x) = f(x).

Portanto, $f(x) = am_1(x)m_2(x)$, para algum $a \in K$. Como $f(x), m_1(x)$ e $m_2(x)$ são mônicos, então a = 1. Assim, $g(x)h(x) = m_1(x)m_2(x)$.

Como g(x) divide $m_1(x)m_2(x)$ e $\mathrm{mdc}_{K[x]}(g(x),m_2(x))=1$, então g(x)divide $m_1(x)$. Assim, $g(x) = am_1(x)$, para algum $a \in K$. Sendo ambos os polinômios mônicos, concluímos que a = 1 e $g(x) = m_1(x)$.

Portanto, $m_1(x)h(x) = m_1(x)m_2(x)$. Cancelando $m_1(x)$, obtemos $h(x) = m_2(x).$

Agora estamos prontos para a caracterização de operadores diagonalizáveis pelo polinômio mínimo.

Proposição 7 (Operador diagonalizável e o polinômio mínimo)

Sejam V um K-espaço vetorial com $\dim_K(V) = n \ge 1 \text{ e } T : V \longrightarrow V$ um operador K-linear. O operador T é diagonalizável se, e somente se, o polinômio mínimo de T é $m(x) = (x - \lambda_1) \cdot \ldots \cdot (x - \lambda_s)$, onde $\lambda_1, \ldots, \lambda_s \in K$ são os seus autovalores distintos.

Demonstração: Suponhamos que T seja diagonalizável. Pelo Teorema 2, o polinômio característico de T é da forma $p(x) = (x - \lambda_1)^{n_1} \cdot \ldots \cdot (x - \lambda_s)^{n_s}$, onde $\lambda_1, \ldots, \lambda_s$ são os autovalores distintos de T, $n = \dim_K V = n_1 + \cdots + n_s$, $n_j = \dim_K V_{\lambda_j}$, para $j = 1, \dots, s$, e $V = V_{\lambda_1} \oplus \dots \oplus V_{\lambda_s}$.

Pela Proposição 6, o polinômio mínimo e o polinômio característico têm os mesmos fatores irredutíveis em K[x]. Logo, $f(x) = (x - \lambda_1) \cdot \ldots \cdot (x - \lambda_s)$ divide $\mathfrak{m}(x)$.

Afirmamos que f(T) = 0.

De fato, dado $\nu \in V$, existe $\nu_k \in V_{\lambda_k}$ unicamente determinado, para todo $k=1,\ldots,s,$ tal que $\nu=\sum_{k=1}^{n}\nu_{k}.$ Temos que

$$\begin{split} f(T)(\nu_k) &\stackrel{(1)}{=} \left(\prod_{j=1}^s \left(T - \lambda_j I_V \right) \right) (\nu_k) \\ &\stackrel{(2)}{=} \left(\left(\prod_{1 \leq j \neq k \leq s} \left(T - \lambda_j I_V \right) \right) \left(T - \lambda_k I_V \right) \right) (\nu_k) \\ &\stackrel{(3)}{=} \left(\prod_{1 \leq j \neq k \leq s} \left(T - \lambda_j I_V \right) \right) \left(\left(T - \lambda_k I_V \right) (\nu_k) \right) \end{split}$$

Se $q(x) \in K[x]$ é irredutível e divide $m_2(x)$, então q(x)divide h(x) e q(x) não divide g(x), pois $\mathrm{mdc}_{K[x]}(g(x),h(x))=1.$

Em (1) usamos a definição do operador f(T); em (2), que operadores polinomiais em T comutam; em (3), a definição de composição de funções; em (4), que $v_k \in V_{\lambda_k}$; e em (5), que a composição de operadores lineares é linear.

IIFF

$$\stackrel{(4)}{=} \left(\prod_{1 \leq j \neq k \leq s} \left(\mathsf{T} - \lambda_j \mathsf{I}_{\mathsf{V}} \right) \right) (\mathfrak{0}_{\mathsf{V}}) \stackrel{(5)}{=} \mathfrak{0}_{\mathsf{V}}.$$

Logo, $f(T)(v) = f(T) \left(\sum_{k=1}^{s} v_k \right) = \sum_{k=1}^{s} f(T)(v_k) = \sum_{k=1}^{s} 0_V = 0_V$, para todo $v \in V$, que é equivalente a f(T) = 0.

Pela Proposição 5, $\mathfrak{m}(x)$ divide f(x). Como f(x) e $\mathfrak{m}(x)$ são mônicos, obtemos $\mathfrak{m}(x) = f(x)$.

Reciprocamente, suponhamos que o polinômio mínimo do operador T seja $m(x)=(x-\lambda_1)\cdot\ldots\cdot(x-\lambda_s)$, onde $\lambda_1,\ldots,\lambda_s$ são os autovalores distintos de T. Pela Proposição 6, os fatores irredutíveis do polinômio característico de T são os mesmos de m(x), portanto $p(x)=(x-\lambda_1)^{n_1}\cdot\ldots\cdot(x-\lambda_s)^{n_s}$. Sabemos que $\dim_K V=\operatorname{grau}(p(x))=n_1+\cdots+n_s$. A demonstração é por indução sobre s, o número de autovalores distintos de T.

Se s=1 e $m(x)=x-\lambda_1$, então $p(x)=(x-\lambda_1)^n$, onde $n=\dim_K V$. Como $m(T)=T-\lambda_1 I=0$, então $T=\lambda_1 I$ e todo $v\in V,\, v\neq 0_V$ é autovetor de T, isto é, $V=V_{\lambda_1}$ e T é diagonalizável.

Suponhamos o resultado válido para operadores lineares com autovalores distintos $\lambda_1,\,\ldots,\,\lambda_r$ e polinômio mínimo $\prod_{j=1}^r (x-\lambda_j),$ onde $1\leq r < s.$

Seja $T:V\longrightarrow V$ um operador linear com autovalores distintos $\lambda_1,\,\ldots,\,\lambda_s$ e polinômio mínimo $m(x)=(x-\lambda_1)\cdot\ldots\cdot(x-\lambda_s),$ onde s>1.

$$\begin{split} \operatorname{Definimos} \, g(x) &= \prod_{j=1}^{s-1} (x-\lambda_j) \, \operatorname{e} \, h(x) = x-\lambda_s. \, \operatorname{Ent\~ao}, \, m(x) = g(x)h(x) \\ \operatorname{e} \, \operatorname{mdc}_{K[x]}(g(x),h(x)) &= 1. \, \operatorname{Pelo} \, \operatorname{Lema} \, \operatorname{anterior}, \, \operatorname{item} \, (a), \, V = U \oplus W, \, \operatorname{onde} \\ U &= \operatorname{N\'ucleo}(g(T)) \, \operatorname{e} \, W = \operatorname{N\'ucleo}(h(T)) = \operatorname{N\'ucleo}(T-\lambda_s I_V) \, \operatorname{s\~ao} \, \operatorname{subespa\'cos} \\ \operatorname{de} \, V \, \operatorname{invariantes} \, \operatorname{por} \, T. \end{split}$$

Pelo Lema anterior item (b), g(x) e h(x) são os polinômios mínimos de T_1 e T_2 , respectivamente.

Por hipótese de indução, T_1 e T_2 são diagonalizáveis. Tomando uma base δ_1 de U formada por autovetores de T_1 , associados aos autovalores distintos $\lambda_1, \ldots, \lambda_{s-1}$ de T_1 , e uma base δ_2 de W formada por autovetores de T_2 , associados ao autovalor λ_s de T_2 , temos que $\delta = \delta_1 \cup \delta_2$ é uma base de V formada por autovetores de T.

Para todo $u \in U$, temos $T_1(u) = T(u)$ e, para todo $w \in W$, temos $T_2(w) = T(w)$.

Exercícios

1. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por T(x,y) = (2x + y, 2y).

- (a) Determine os polinômios característico e mínimo de T.
- (b) T é diagonalizável?
- (c) Determine T^{-1} como um polinômio em T com coeficientes reais.
- 2. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x, y, z) = (x + y, y, z).
 - (a) Determine os polinômios característico e mínimo de T.
 - (b) T é diagonalizável?
 - (c) Determine T^{-1} como um operador polinomial em T.
- 3. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por T(x,y) = (2x, x+y). Determine o operador f(T), onde $f(x) = x^2 - x + 3$.
- 4. Sejam V um K-espaço vetorial de dimensão $n \geq 1$ e T um operador linear. Sejam $f(x) = a_{\ell}x^{\ell} + \cdots + a_{1}x + a_{0} \in g(x) = b_{m}x^{m} + \cdots + b_{1}x + b_{0}$ em K[x]. Mostre que f(T)g(T) = g(T)f(T).
- 5. Dada $A = T_{\alpha}^{\alpha}$, onde α é a base canônica do \mathbb{R}^5 , determine os polinômios característico e mínimo de $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^5$.

(a)
$$\begin{pmatrix} 5 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
 (c)
$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

- 6. Seja $D: P_5(\mathbb{R}) \longrightarrow P_5(\mathbb{R})$ o operador derivação. Determine os polinômios característico e mínimo de D.
- 7. Seja $D^2: P_5(\mathbb{R}) \longrightarrow P_5(\mathbb{R})$ o operador derivação de segunda ordem. Determine os polinômios característico e mínimo de D^2 .
- 8. Seja $D^3: P_5(\mathbb{R}) \longrightarrow P_5(\mathbb{R})$ o operador derivação de terceira ordem. Determine os polinômios característico e mínimo de D^3 .
- 9. Sejam V um K-espaço vetorial de dimensão $n \geq 1$ e $T: V \longrightarrow V$ um operador linear tal que $T^2 = T$.
 - (a) Mostre que T é diagonalizável.

Operadores polinomiais em T comutam.

- (b) Mostre que se $T\neq 0,$ então existe uma base β de V tal que $T]_{\beta}^{\beta}=\begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix}, \text{ onde } I_{r} \text{ \'e a matriz identidade de ordem } r=\dim_{K}\mathrm{Imagem}(T).$
- $\begin{array}{l} {\rm 10. \ \, Sejam \, } B \in M_{r \times r}(K), \, C \in M_{s \times s}(K), \, n = r + s \, \, {\rm e} \, \, A \in M_{n \times n}(K) \, \, {\rm a \, \, matriz} \\ {\rm em \, \, blocos \, \, definida \, por \, } A = \left(\begin{array}{c} B & 0 \\ 0 & C \end{array} \right). \end{array}$
 - (a) Mostre, por indução sobre $m \ge 1$, que $A^m = \begin{pmatrix} B^m & 0 \\ 0 & C^m \end{pmatrix}$.
 - $\begin{array}{ll} \text{(b) Seja } \ell(x) = \alpha_n x^n + \dots + \alpha_1 x + \alpha_0 \in K[x]. \ \, \text{Mostre que } \ell(A) = \\ \left(\begin{array}{cc} \ell(B) & 0 \\ 0 & \ell(C) \end{array} \right). \end{array}$
- 11. Seja $T:V\longrightarrow V$ um operador linear K-linear, onde V é um K-espaço vetorial de dimensão $n\geq 1$. Seja U um subespaço de V invariante por T e $T_1=T|_U$ o operador linear definido por

$$T_1: U \longrightarrow U$$

 $u \longmapsto T(u)$

- (a) Mostre que $T^{j}|_{U} = T^{j}_{1}$, para todo $j \geq 1$.
- (b) Mostre que $(\alpha T^j)|_U = \alpha T_1^j,$ para todo $j \geq 1$ e para todo $\alpha \in K.$
- $\mathrm{(c)} \ \mathrm{Seja} \ \ell(x) = \sum_{j=0}^m \alpha_j x^j \in K[x]. \ \mathrm{Mostre} \ \mathrm{que} \ \ell(T)|_U = \ell(T_1).$

Álgebra Linear II