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 rotation is a rigid transformation of real 3 dimensional space leaving the origin fixed.

 Such a transformation is necessarily linear, and is represented with respect to the
 standard basis i, j, k by a rotation matrix, A. The columns of A are the images of i, j,
 and k under the rigid motion, and so comprise a right-handed triple of orthogonal unit
 vectors. Therefore, ATA = I and det(A) = 1.

 In general, a square matrix A that satisfies ATA = I is called orthogonal. Using the
 matrix product notation xTy and the inner product notation x y interchangeably (for
 vectors x and y), observe that Asx Ay = (Ax)TAy = xTATA y = XTy = X . y. Thus,

 orthogonal matrices preserve inner products, and in particular, preserve angles and
 lengths.

 For the special case of a 3 x 3 orthogonal matrix with unit determinant, it can be

 shown that 1 is an eigenvalue, and that the corresponding eigenspace is one dimen-
 sional, as follows. Since the matrix preserves lengths, its eigenvalues must all have

 magnitude 1. The product of the eigenvalues is the determinant, and must therefore
 equal 1, as well. Thus, aside from the trivial case of the identity matrix, there must be
 a unique eigenvalue equal to 1, and a pair of complex conjugates r = cos 0 + i sin 0
 and s = cos 0 - i sin 6. As an unrepeated eigenvalue, 1 has a one-dimensional
 eigenspace, as asserted.

 The eigenspace for the eigenvalue 1 is a line of fixed points for the transformation.

 It will now be shown that the transformation is geometrically a rotation about this
 fixed line. Every vector may be resolved into orthogonal components parallel to the

 fixed line and in the plane perpendicular to the fixed line. By virtue of linearity, it
 suffices to show that the transformation acts as a rotation on the perpendicular plane.
 Accordingly, consider the special case of a vector perpendicular to the fixed line. Its
 image has equal length, and must also be perpendicular to the fixed line. Therefore, it
 is possible to rotate the vector about the fixed line to obtain the image vector.

 Moreover, preservation of the angle between vectors implies that any two vectors in
 the perpendicular plane must be rotated by the same amount. Thus, the transforma-
 tion acts on the perpendicular plane as a rotation about the fixed line, as desired.

 To summarize the preceding paragraphs, a 3 x 3 matrix represents a rotation if and

 only if it is orthogonal with unit determinant. A nontrivial rotation matrix possesses a
 one-dimensional eigenspace corresponding to the eigenvalue 1, and this eigenspace is,
 in fact, the axis of the rotation. With this background established, the discussion

 proceeds to the main topic of the paper.

 Analysis Permit me to set the stage. I was interested in developing a computer

 program to generate the rotation matrix linking two right-handed coordinate systems
 in R3, given some information about their relative orientations. As a side topic, I
 wished to find the axis of the rotation, that is, to find one eigenvector corresponding to

 the eigenvalue 1. Let the rotation matrix A have entries a ij A solution of (A - I )x = 0
 must be orthogonal to the first two rows of A - I. Denoting the mth row of A by
 (row m), the first two rows of A - I are (row 1) - i and (row 2) - j. A vector

 orthogonal to both is obtained by taking the vector product c. This results in

 c = (row 1) x (row 2) -i x (row 2) + j x (row 1) + i x j.

 Now, since A is a rotation matrix, its columns form a right handed triple. The same

 may be said of AT, so the rows of A also form a right handed triple. In particular, (row
 1) x (row 2) = (row 3). Applying this result and simplifying the remaining three cross
 products leads to
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 [a311 [0 1 a31 0
 c= a32 -i-a23 + 0 + 0

 -a33] a22 L-all L
 a a3+al [ 31 + 13 1

 = a32 + a23

 1 + a33 - a22 - a,,

 Of course, the vector c might equal zero (if the first two rows of A - I are dependent)
 but in this case a cross product of a different pair can be calculated. This provides
 enough information for a computer program, and concludes the analysis phase of
 discovery.

 Algebra The formula for c derived above has too much symmetry to be left alone.
 Among possible rearrangements, the following pleases the eye:

 [a13 1 [a3 [ 0
 c= a23 + a32 + a

 P33 - a33- 1 -all -a22 - a33

 -row 3 + column 3 + [1 - tr(A)]k.

 Next, observe that column 3 is just Ak, and similarly, row 3 is ATk. Thus, we have

 c = Ak + ATk + [1 -tr(A)]k

 = (A + AT + [1-tr(A)] I)k.

 Is there any reason for the vector k to be singled out in this fashion? Surely a similar
 formula involving i or j must exist. It is even tempting to believe that replacing k with
 any vector produces a vector c in the eigenspace corresponding to the eigenvalue 1.
 How might such an assertion be proved?

 The conjecture is this: for any vector v, (A + AT + [1 - tr(A)]l I)v is an eigenvector
 with eigenvalue 1. That is,

 A(A + AT+ [1-tr(A)] I)v = (A + AT + [1-tr(A)] I)v.

 To establish this for all v requires showing that the matrices multiplying v on each
 side of the equation are equal. Rearranging the necessary identity yields

 A2 + I + [1 - tr(A)] A = A + AT + [1 - tr(A)] I

 and hence

 A2 _tr(A)A + tr(A)I-AT= 0.

 Finally, since A is nonsingular, we may multiply both sides by A to obtain

 A3-tr(A)A2+tr(A)A-I=0.

 Thus, the conjecture at hand is equivalent to a certain polynomial identity for A. This
 immediately suggests consideration of the characteristic polynomial of A.

 Let p(x) be the characteristic polynomial of A. As mentioned earlier, p has roots 1,
 r = cos 0 + i sin6, and s = cos 0 - i sin6. Moreover, rs = 1 and r+ s = 2cos 6. Then,
 the factored form p(x) = (x - 1)(x - r)(x - s) may be multiplied out to give
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 p(x) = x3- (1 + r+ s)x2 + (1 + r+ s)x-

 =x3-(1+2cosO)x2+ (1+2cosO)x-1

 = x3- tr(A)x2 + tr(A)x - 1.

 Now we note that p(A) = 0, and the desired identity is established. What was
 discovered through analysis has been more generally supported by algebra.

 Geometry In this section a geometric explanation will be presented for the result
 established algebraically above. Paraphrased, this result states that for any vector v,
 Av + ATv + [1 - tr(A)]v lies on the axis of rotation A. Assume that A represents a
 rotation of space through an angle 4 about a fixed axis. (Note here that no connection
 has been established between 4 and 0 at this point.) To simplify notation, identify
 vectors with points in space in the usual way, and perform vector operations on points

 accordingly. Thus, given a point R, we apply the rotation A to find S = A(R) and the
 inverse rotation AT to find T = AT(R). The points R, S, and T all lie on a cone whose
 axis is the axis of rotation, and with vertex at the origin. This situation is illustrated in
 FIGURE 1 as a perspective view, and in FIGURES 2 and 3 as top and side views,
 respectively.

 T

 FIGURE '1

 P/ R ~ ~

 0

 FIGURE 2 FIGURE 3
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 Let Q= .5(S + T), the midpoint of segment ST. Clearly, some vector parallel to R

 can be drawn at Q so that it terminates at a point U on the axis of rotation. In fact,

 this vector must have length UQ and be parallel to unit vector - R/(OR), hence it is
 given by - (UQ/OR)R. From FIGURE 3, the ratio UQ/OR is equal to PQ/PR. Now

 the vector from point Q to point U is given by the vector difference U - Q. Thus,

 with f = PQ/PR, we have U- Q = - fR or U = Q- f-R. To relate f to the angle 4),
 observe in FIGURE 2 that PR = PS giving f = PQ/PS = cos ,. Combining these results
 produces U = .5(S + T) - cos ,)R as a point on the axis of rotation. Furthermore, 2U
 is also on the axis of rotation, and is given by 2U = S + T - 2 cos ,R = (A + AT -
 2 cos 4)R. It remains but to show that - 2 cos 4 = 1 - tr(A) and the geometric
 construction will reestablish the result of the preceding section.

 Since tr(A) is invariant under similarity transformations, we may choose to repre-

 sent the rotation relative to an orthonormal basis in which the third element lies on
 the axis of rotation. The corresponding matrix is easily seen to be

 cos ? _ sin 4 0

 T sin,) cos4 01,

 0 0 1

 where the ambiguous signs depend on the direction of the rotation. Regardless, the

 trace is evidently 1 + 2 cos 4, as required.

 Classroom presentations In describing this material to you, the reader, quite a bit of

 background has been presented or assumed: characterization of rotations as unit
 determinant orthogonal matrices, the Cayley-Hamilton theorem, invariance of tr(A)
 under changes of basis, etc. Depending on the background knowledge of the students
 involved, some modifications may be required for classroom presentation. One possi-
 ble approach is to assume from the outset that A is a geometric rotation about a fixed
 axis. The existence of a unique one-dimensional eigenspace is then evident. If need be,
 the algebraic part of the discussion can be omitted in favor of passing directly from
 the cross product argument to the geometric construction. Indeed, one may even
 leave the connection between cos 4) and tr(A) unproved and use the geometric
 discussion as a plausibility argument. The most general version of the result could
 then be established for vectors i and j by using cross products, and extended to all
 vectors by linearity. This approach can also be assigned as an exercise. At the other

 extreme, with sufficient background, the students should be able to follow the
 development presented here. For these students especially, this topic provides a
 simple example of the interplay between various approaches to a problem, and
 illustrates one way that mathematical discoveries are propagated.
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