Aula 14

Nesta aula vamos definir dois novos produtos entre vetores do espaço, o **produto vetorial** e o **produto misto**. Para isso, primeiro vamos apresentar o conceito de **orientação**.

1. Orientação do espaço

Seja $\{\overrightarrow{u_1},\overrightarrow{u_2},\overrightarrow{u_3}\}$ um terno ordenado de **vetores linearmente independentes**. Observemos esse terno de uma posição tal que o terceiro vetor, $\overrightarrow{u_3}$, esteja dirigido para nossos olhos. A seguir, consideremos a rotação de menor ângulo do primeiro vetor, $\overrightarrow{u_1}$, até que ele fique colinear com o vetor $\overrightarrow{u_2}$ e com o mesmo sentido. Dizemos que **o terno** $\{\overrightarrow{u_1},\overrightarrow{u_2},\overrightarrow{u_3}\}$ **é positivo** se a rotação efetuada for no sentido anti-horário, e **negativo**, se a rotação for no sentido horário.

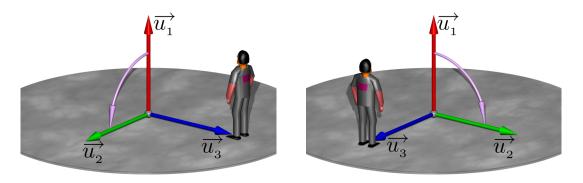


Fig. 1: Terno de orientação positiva.

Fig. 2: Terno de orientação negativa.

Observação 1

(a) Essa convenção é conhecida como regra da mão direita, pois se $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ é um terno positivo, e esticarmos os dedos indicador, médio, anular e mínimo na direção e sentido do vetor $\overrightarrow{u_1}$ e depois fecharmos a mão na direção e sentido do vetor $\overrightarrow{u_2}$, o polegar esticado apontará na direção e sentido do vetor $\overrightarrow{u_3}$.

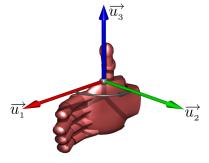


Fig. 3: Regra da mão direita.

(b) $Se\left\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\right\}$ é um terno positivo, ao efetuarmos um número par de permutações (troca entre dois vetores consecutivos da lista), continuaremos obtendo um terno positivo. Enquanto que um número ímpar de permutações dá lugar a um terno negativo. Isto é,

$$\begin{array}{l} \text{Se } \{\overrightarrow{u_1},\overrightarrow{u_2},\overrightarrow{u_3}\} \\ \text{\'e um terno positivo} \end{array} \Longrightarrow \left\{ \begin{array}{l} \{\overrightarrow{u_1},\overrightarrow{u_2},\overrightarrow{u_3}\} \;, \, \{\overrightarrow{u_2},\overrightarrow{u_3},\overrightarrow{u_1}\} \;, \, \{\overrightarrow{u_3},\overrightarrow{u_1},\overrightarrow{u_2}\} \; \text{\~a\~ao ternos positivos.} \\ \{\overrightarrow{u_1},\overrightarrow{u_3},\overrightarrow{u_2}\} \;, \, \{\overrightarrow{u_3},\overrightarrow{u_2},\overrightarrow{u_1}\} \;, \, \{\overrightarrow{u_2},\overrightarrow{u_1},\overrightarrow{u_3}\} \; \text{\~a\~ao ternos negativos.} \end{array} \right.$$

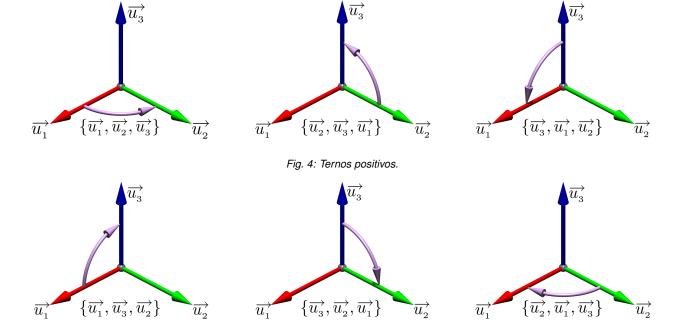


Fig. 5: Ternos negativos.

(c) Se num terno orientado mudramos o sinal de um ou dos três vetores, então a orientação do terno muda. Isto é, se $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ é um terno positivo (negativo), então os ternos

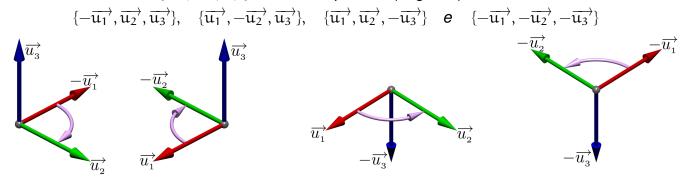


Fig. 6: Ternos negativos obtidos mediante troca de sinal um número impar de vezes.

são negativos (respectivamente, positivos).

Se mudarmos o sinal de dois vetores, a orientação não muda. Isto é, se $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ é um terno positivo (negativo), então os seguintes ternos também serão positivos (respectivamente, negativos):

$$\{-\overrightarrow{u_1},-\overrightarrow{u_2},\overrightarrow{u_3}\},\quad \{-\overrightarrow{u_1},\overrightarrow{u_2},-\overrightarrow{u_3}\},\quad \textbf{e}\quad \{\overrightarrow{u_1},-\overrightarrow{u_2},-\overrightarrow{u_3}\}.$$

IM-UFF

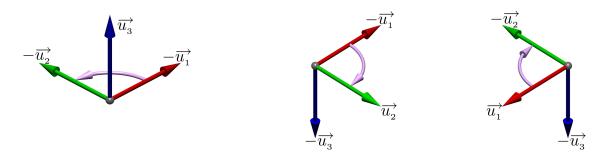


Fig. 7: Ternos positivos obtidos mediante troca de sinal um número par de vezes.

2. Produto Vetorial

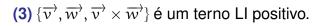
Sejam \overrightarrow{v} e \overrightarrow{w} vetores no espaço. O **produto vetorial** de \overrightarrow{v} e \overrightarrow{w} é o único vetor, designado por $\overrightarrow{v} \times \overrightarrow{w}$, definido pelas seguintes propriedades:

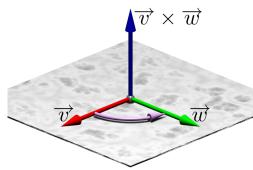
(a)
$$\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$$
 se \overrightarrow{v} e \overrightarrow{w} são colineares ou $\overrightarrow{v} = \overrightarrow{0}$ ou $\overrightarrow{w} = \overrightarrow{0}$.

(b) Se $\overrightarrow{v} \neq \overrightarrow{0}$ e $\overrightarrow{w} \neq \overrightarrow{0}$ não são colineares, então $\overrightarrow{v} \times \overrightarrow{w}$ é definido como sendo o único vetor que satisfaz às seguintes condições:

(1)
$$\|\overrightarrow{v} \times \overrightarrow{w}\| = \|\overrightarrow{v}\| \|\overrightarrow{w}\| \operatorname{sen} \angle(\overrightarrow{v}, \overrightarrow{w})$$
,

(2) $\overrightarrow{v} \times \overrightarrow{w}$ é perpendicular a \overrightarrow{v} e \overrightarrow{w} (em particular, $\overrightarrow{v} \times \overrightarrow{w}$ é perpendicular a qualquer plano paralelo aos vetores \overrightarrow{v} e \overrightarrow{w}).





Observação 2

- Se \overrightarrow{v} e \overrightarrow{w} são vetores não-nulos, temos Fig. 8: O produto vetorial. $\sec \angle(\overrightarrow{v},\overrightarrow{w}) = 0 \Longleftrightarrow \angle(\overrightarrow{v},\overrightarrow{w}) = 0^{\circ} \text{ ou } 180^{\circ} \Longleftrightarrow \overrightarrow{v} \text{ e } \overrightarrow{w} \text{ são colineares }.$
- Se $\overrightarrow{v} \neq \overrightarrow{0}$ e $\overrightarrow{w} \neq \overrightarrow{0}$ são vetores não-colineares, então sen $\angle(\overrightarrow{v}, \overrightarrow{w}) \neq 0$. Logo $\|\overrightarrow{v} \times \overrightarrow{w}\| \neq 0$ e, em particular, \overrightarrow{v} , \overrightarrow{w} e $\overrightarrow{v} \times \overrightarrow{w}$ são LI, já que $\overrightarrow{v} \times \overrightarrow{w}$ é perpendicular a \overrightarrow{v} e \overrightarrow{w} .

Interpretação geométrica da norma do produto vetorial

Sejam $\overrightarrow{v} = \overrightarrow{OA} \neq \overrightarrow{0}$ e $\overrightarrow{w} = \overrightarrow{OB} \neq \overrightarrow{0}$ vetores não colineares. Seja P tal que OAPB é um paralelogramo, que designamos \mathcal{P} .

Então, a altura de \mathcal{P} , considerando o segmento OA como base, é $|\overrightarrow{OB}|$ sen $\angle(\overrightarrow{OA}, \overrightarrow{OB})$.

Logo,

Isto é, a norma do produto vetorial de $\overrightarrow{v} = \overrightarrow{OA}$ com $\overrightarrow{w} = \overrightarrow{OB}$ é a área do paralelogramo que tem por lados adjacentes os segmentos OA e OB.

Fig. 9: Interpretação geométrica do produto vetorial.

Note que, se \overrightarrow{v} e \overrightarrow{w} são colineares, ou $\overrightarrow{v}=\overrightarrow{0}$ ou $\overrightarrow{w}=\overrightarrow{0}$, então o paralelogramo $\mathcal P$ fica reduzido a um segmento ou a um ponto (paralelogramo degenerado), e tem, portanto, área zero. Como, nesses casos, $\|\overrightarrow{v}\times\overrightarrow{w}\|=0$, a interpretação geométrica continua válida.

Propriedades básicas do produto vetorial

No seguinte teorema apresentamos as propriedades básicas do produto vetorial.

Teorema 1

Sejam \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} vetores no espaço e seja $\lambda \in \mathbb{R}$.

Então, valem as seguintes propriedades:

(a) $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$ se, e somente se, \overrightarrow{v} e \overrightarrow{w} são colineares ou um deles é o vetor nulo.

Logo, se $\overrightarrow{v} \neq \overrightarrow{0}$ e $\overrightarrow{w} \neq \overrightarrow{0}$ não são colineares, então $\{\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{v} \times \overrightarrow{w}\}$ é um terno LI positivo.

(b)
$$\overrightarrow{v} \times \overrightarrow{w} = -\overrightarrow{w} \times \overrightarrow{v}$$
.

(c)
$$(\lambda \overrightarrow{v}) \times \overrightarrow{w} = \lambda (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{v} \times (\lambda \overrightarrow{w}).$$

$$(\mathbf{d}) \ \overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w} \quad \mathbf{e} \quad (\overrightarrow{u} + \overrightarrow{v}) \times w = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w}.$$

Nota.

A propriedade (b) diz que o produto vetorial é anti-comutativo, isto é, a ordem dos fatores altera o produto. A propriedade (c) diz que o produto vetorial é distributivo em relação à adição.

Prova.

(a) Se um dos vetores \overrightarrow{v} ou \overrightarrow{w} é nulo ou eles são colineares então, pela definição de produto vetorial, $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$.

Reciprocamente, suponhamos que $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$ e verifiquemos que, necessariamente, um deles deve ser nulo ou eles são colineares.

Para tanto, lembre que se P e Q são proposições, a implicação $P \Longrightarrow Q$ equivale a $\sim Q \Longrightarrow \sim P$, onde $\sim P$ significa a negação de P.

Em nosso caso P é a proposição " $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$ " e Q é a proposição:

$$Q : "\overrightarrow{v} = 0 \text{ ou } \overrightarrow{w} = \overrightarrow{0} \text{ ou } \angle(\overrightarrow{v}, \overrightarrow{w}) = 0 \text{ ou } 180^{\circ} ".$$

Logo, demonstrar a implicação $P \Longrightarrow Q$ equivale a demonstrar $\sim Q \Longrightarrow \sim P$.

A negação de P é \sim P : $\overrightarrow{v} \times \overrightarrow{w} \neq \overrightarrow{0}$ e a negação de Q é \sim Q : " $\overrightarrow{v} \neq 0$, $\overrightarrow{w} \neq 0$ e $\angle(\overrightarrow{v}, \overrightarrow{w})$ é diferente de 0° e de 180° ".

Supondo ~ Q verdadeira, a demonstração de ~ P segue, praticamente, da definição.

De fato, se $\overrightarrow{v} \neq 0$, $\overrightarrow{w} \neq \overrightarrow{0}$ e $\angle(\overrightarrow{v}, \overrightarrow{w})$ não é 0° nem 180°, temos $\|\overrightarrow{v}\| \neq 0$, $\|\overrightarrow{w}\| \neq 0$ e sen $\angle(\overrightarrow{v}, \overrightarrow{w}) \neq 0$.

Logo $\|\overrightarrow{v} \times \overrightarrow{w}\| = \|\overrightarrow{v}\| \|\overrightarrow{w}\| \operatorname{sen} \angle(\overrightarrow{v}, \overrightarrow{w}) \neq 0$ e, portanto, $\overrightarrow{v} \times \overrightarrow{w} \neq \overrightarrow{0}$, como queríamos demonstrar.

(b) Se $\overrightarrow{v} = \overrightarrow{0}$ ou $\overrightarrow{w} = \overrightarrow{0}$ ou os vetores \overrightarrow{v} e \overrightarrow{w} são colineares então, pela definição do produto vetorial, temos $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$ e $\overrightarrow{w} \times \overrightarrow{v} = \overrightarrow{0}$.

Logo $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0} = -\overrightarrow{w} \times \overrightarrow{v}$.

Suponhamos, agora, que $\overrightarrow{v} \neq \overrightarrow{0}$ e $\overrightarrow{w} \neq \overrightarrow{0}$ não são colineares.

Então $\overrightarrow{v} \times \overrightarrow{w} \neq \overrightarrow{0}$, $\overrightarrow{w} \times \overrightarrow{v} \neq \overrightarrow{0}$ e os ternos $\{\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{v} \times \overrightarrow{w}\}$ e $\{\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{w} \times \overrightarrow{v}\}$ são LI positivos.

Sejam O, A e B pontos no espaço, tais que, $\overrightarrow{v} = \overrightarrow{OA}$ e $\overrightarrow{w} = \overrightarrow{OB}$ e designemos por π o plano determinado por O, A e B.

Os vetores $\overrightarrow{v} \times \overrightarrow{w}$ e $\overrightarrow{w} \times \overrightarrow{v}$ são colineares, pois ambos são perpendiculares ao plano π . Então existe $\lambda \in \mathbb{R}$ tal que $\overrightarrow{w} \times \overrightarrow{v} = \lambda(\overrightarrow{v} \times \overrightarrow{w})$.

 $\begin{aligned} & \text{Como } \|\overrightarrow{v}\times\overrightarrow{w}\| = \|\overrightarrow{v}\|\,\|\overrightarrow{w}\|\,\,\text{sen}\,\angle(\overrightarrow{v},\overrightarrow{w}) = \|\overrightarrow{w}\|\,\|\overrightarrow{v}\|\,\,\text{sen}\,\angle(\overrightarrow{w},\overrightarrow{v}) = \|\overrightarrow{w}\times\overrightarrow{v}\|, \text{temos } |\lambda| = 1, \\ & \text{ou seia, } \lambda = 1 \,\,\text{ou } \lambda = -1 \,. \end{aligned}$

Logo $\overrightarrow{w} \times \overrightarrow{v} = \pm (\overrightarrow{v} \times \overrightarrow{w}).$

Como o terno $\{\overrightarrow{v},\overrightarrow{w},\overrightarrow{v}\times\overrightarrow{w}\}$ é positivo, o terno $\{\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\times\overrightarrow{w}\}$ é negativo e, portanto, o terno $\{\overrightarrow{w},\overrightarrow{v},-(\overrightarrow{v}\times\overrightarrow{w})\}$ volta a ser positivo. Além disso, o terno $\{\overrightarrow{w},\overrightarrow{v},\overrightarrow{v},\overrightarrow{w}\times\overrightarrow{v}\}$ é também positivo. Conseqüentemente, devemos ter $\overrightarrow{w}\times\overrightarrow{v}=-(\overrightarrow{v}\times\overrightarrow{w})$.

(c) Verifiquemos apenas a identidade $(\lambda \overrightarrow{\nu}) \times \overrightarrow{\mathfrak{u}} = \lambda (\overrightarrow{\nu} \times \overrightarrow{w})$. A prova da outra identidade se faz de modo análogo.

Se $\lambda = 0$, então $\lambda \overrightarrow{v} = \overrightarrow{0}$. Logo $(\lambda \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{0} = \lambda (\overrightarrow{v} \times \overrightarrow{w})$.

Se \overrightarrow{v} e \overrightarrow{w} são colineares ou um deles é o vetor nulo, o mesmo ocorre com $\lambda \overrightarrow{v}$ e \overrightarrow{w} . Logo, $(\lambda \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{0} = \lambda (\overrightarrow{v} \times \overrightarrow{w})$.

Suponhamos, então, que $\lambda \neq 0$ e que os vetores \overrightarrow{v} e \overrightarrow{w} são não-nulos e não são colineares.

Seja P um ponto do espaço e seja σ o plano que passa por P e é paralelo aos vetores \overrightarrow{v} e \overrightarrow{w} .

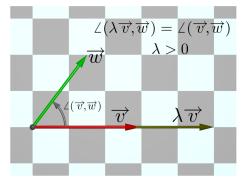
Como o plano σ coincide com o plano que passa por P e é paralelo aos vetores $\lambda \overrightarrow{v}$ e \overrightarrow{w} , os vetores $\overrightarrow{v} \times \overrightarrow{w}$ e $(\lambda \overrightarrow{v}) \times \overrightarrow{w}$ são ambos perpendiculares a σ , isto é, são vetores colineares.

Então existe um número $\mu \in \mathbb{R}$ tal que, $(\lambda \overrightarrow{v}) \times \overrightarrow{w} = \mu(\overrightarrow{v} \times \overrightarrow{w})$. Em particular,

$$\|(\lambda \overline{\nu}) \times \overline{w}\| = \|\mu(\overline{\nu} \times \overline{w})\| = |\mu| \, \|\overline{\nu} \times \overline{w}\|.$$

Isto é,

$$\begin{split} \|\lambda \overrightarrow{v}\| \ \|\overrightarrow{w}\| \ \text{sen} \, \angle (\lambda \overrightarrow{v}, \overrightarrow{w}) &= |\mu| \ \|\overrightarrow{v}\| \ \|\overrightarrow{w}\| \ \text{sen} \, \angle (\overrightarrow{v}, \overrightarrow{w}) \\ |\lambda| \ \|\overrightarrow{v}\| \ \text{sen} \, \angle (\lambda \overrightarrow{v}, \overrightarrow{w}) &= |\mu| \ \|\overrightarrow{v}\| \ \text{sen} \, \angle (\overrightarrow{v}, \overrightarrow{w}) \\ |\lambda| \ \text{sen} \, \angle (\lambda \overrightarrow{v}, \overrightarrow{w}) &= |\mu| \ \text{sen} \, \angle (\overrightarrow{v}, \overrightarrow{w}) \end{split}$$



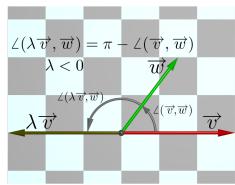


Fig. 10: Determinação do ângulo.

Observamos que, se $\lambda > 0$, então $\angle(\lambda \overrightarrow{v}, \overrightarrow{w}) = \angle(\overrightarrow{v}, \overrightarrow{w})$.

Enquanto que, se $\lambda < 0$, $\angle(\lambda \overrightarrow{\nu}, \overrightarrow{w}) = \pi - \angle(\overrightarrow{\nu}, \overrightarrow{w})$.

$$\mathsf{Logo}\,\mathsf{sen}\,\angle(\lambda\overrightarrow{\nu},\overrightarrow{w})=\mathsf{sen}(\pi-\angle(\overrightarrow{\nu},\overrightarrow{w}))=\mathsf{sen}\,\angle(\overrightarrow{\nu},\overrightarrow{w}).$$

Em qualquer caso, a identidade anterior se reduz a

$$|\lambda| = |\mu|\,,\quad \text{ou seja}\,,\quad \ \mu = \pm \lambda\,.$$

Portanto,
$$(\lambda \overrightarrow{\nu}) \times \overrightarrow{w} = \lambda (\overrightarrow{\nu} \times \overrightarrow{w})$$
 ou $(\lambda \overrightarrow{\nu}) \times \overrightarrow{w} = -\lambda (\overrightarrow{\nu} \times \overrightarrow{w})$.

Verifiquemos que a segunda alternativa não ocorre.

Se $\lambda > 0$, então os vetores \overrightarrow{v} e $\lambda \overrightarrow{v}$ têm o mesmo sentido. Logo os vetores $\overrightarrow{v} \times \overrightarrow{w}$, $(\lambda \overrightarrow{v}) \times \overrightarrow{w}$ e $\lambda (\overrightarrow{v} \times \overrightarrow{w})$ têm, também, o mesmo sentido. Assim, $(\lambda \overrightarrow{v}) \times \overrightarrow{w} = \lambda (\overrightarrow{v} \times \overrightarrow{w})$.

Se $\lambda < 0$, então os vetores \overrightarrow{v} e $\lambda \overrightarrow{v}$ têm sentidos opostos e os vetores $\lambda(\overrightarrow{v} \times \overrightarrow{w})$ e $\overrightarrow{v} \times \overrightarrow{w}$ têm, também, sentidos opostos.

Como $\{\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{v} \times \overrightarrow{w}\}$ é um terno positivo, o terno $\{\lambda \overrightarrow{v}, \overrightarrow{w}, \overrightarrow{v} \times \overrightarrow{w}\}$ é negativo e o terno $\{\lambda \overrightarrow{v}, \overrightarrow{w}, \lambda (\overrightarrow{v} \times \overrightarrow{w})\}$ volta a ser positivo.

Sendo $\{\lambda \overrightarrow{v}, \overrightarrow{w}, (\lambda \overrightarrow{v}) \times \overrightarrow{w}\}$, pela definição do produto vetorial, um terno positivo, os vetores $\lambda(\overrightarrow{v} \times \overrightarrow{w})$ e $(\lambda \overrightarrow{v}) \times \overrightarrow{w}$ têm o mesmo sentido, e como têm também a mesma norma e a mesma direção, eles são iguais.

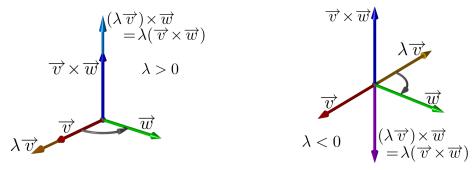


Fig. 11: Determinação do sentido do produto vetorial em termos de λ .

(d) A propriedade distributiva será demonstrada mais adiante.

3. Produto misto de três vetores no espaço

Definição 1

O produto misto dos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} do espaço é o número real definido por

$$\boxed{\left[\overrightarrow{\mathsf{u}},\overrightarrow{\mathsf{v}},\overrightarrow{\mathsf{w}}\right] = \langle \overrightarrow{\mathsf{u}} \times \overrightarrow{\mathsf{v}},\overrightarrow{\mathsf{w}}\rangle}$$

Observação 3

Uma observação básica a ser feita sobre a definição do produto misto é a seguinte:

Se dois fatores no produto misto são iguais, então o produto misto é igual a zero:

$$\left[\overrightarrow{u},\overrightarrow{u},\overrightarrow{v}\right]=\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{u}\right]=\left[\overrightarrow{v},\overrightarrow{u},\overrightarrow{u}\right]=0$$

Com efeito, temos

- $[\overrightarrow{u}, \overrightarrow{u}, \overrightarrow{v}] = \langle \overrightarrow{u} \times \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{0}, \overrightarrow{v} \rangle = 0$;
- $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u}] = \langle \overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{u} \rangle = 0$, pois $\overrightarrow{u} \times \overrightarrow{v}$ é um vetor perpendicular a \overrightarrow{u} e a \overrightarrow{v} ;
- $[\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{u}] = \langle \overrightarrow{v} \times \overrightarrow{u}, \overrightarrow{u} \rangle = 0$, pois $\overrightarrow{v} \times \overrightarrow{u}$ é um vetor perpendicular a \overrightarrow{v} e a \overrightarrow{u} .

Interpretação geométrica do produto misto

Sejam O, A, B e C pontos não-coplanares e consideremos os vetores $\overrightarrow{u} = \overrightarrow{OA}$, $\overrightarrow{v} = \overrightarrow{OB}$ e $\overrightarrow{w} = \overrightarrow{OC}$.

Seja \mathcal{P} o paralelepípedo que tem arestas adjacentes OA, OB e OC.

Considerando o paralelogramo \mathcal{T} de lados adjacentes OA e OB como base de \mathcal{P} , temos:

Volume
$$(\mathcal{P}) = \text{Área}(\mathcal{T}) \cdot \text{altura}(\mathcal{P})$$

Como Área $(\mathcal{T}) = \|\overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}}\|$ e altura $(\mathcal{P}) = \|\overrightarrow{w}\| |\cos \angle (\overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}}, \overrightarrow{w})|$, temos:

Volume
$$(\mathcal{P}) = \|\overrightarrow{u} \times \overrightarrow{v}\| \cdot \|\overrightarrow{w}\| |\cos \angle (\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w})| = |\langle \overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w} \rangle|,$$

ou seja, o volume de \mathcal{P} é o módulo do produto misto dos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} :

$$\mathsf{Volume}\left(\mathcal{P}\right) = \left| \left[\overrightarrow{\mathfrak{u}}, \overrightarrow{\mathfrak{v}}, \overrightarrow{\mathfrak{w}} \right] \right|$$

ou, em termos dos vértices O, A, B e C:

$$\mathsf{Volume}\left(\mathcal{P}\right) = \left| \left[\overrightarrow{\mathsf{OA}}, \overrightarrow{\mathsf{OB}}, \overrightarrow{\mathsf{OC}}\right] \right|$$

Por outro lado, **se os pontos** O, A, B **e** C **são coplanares**, isto é, os vetores

$$\overrightarrow{u} = \overrightarrow{OA}$$
, $\overrightarrow{v} = \overrightarrow{OB}$ e $\overrightarrow{w} = \overrightarrow{OC}$

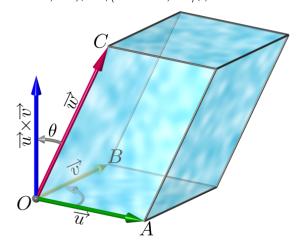


Fig. 12: Interpretação geométrica do produto misto.

não são LI, o paralelepípedo fica reduzido a um paralelogramo, a um segmento ou a um ponto, tendo, portanto, **volume zero**. Esse fato concorda, como veremos abaixo, com o seguinte fato:

Se
$$\overrightarrow{\mathfrak{u}}$$
, $\overrightarrow{\mathfrak{v}}$ e \overrightarrow{w} não são LI, então $\left[\overrightarrow{\mathfrak{u}},\overrightarrow{\mathfrak{v}},\overrightarrow{w}\right]=0$

Propriedades básicas do produto misto

Teorema 2

Sejam \overrightarrow{u} , $\overrightarrow{u_0}$, \overrightarrow{v} , $\overrightarrow{v_0}$, \overrightarrow{w} e $\overrightarrow{w_0}$ vetores no espaço e seja $\lambda \in \mathbb{R}$. Então

- (a) $[\overrightarrow{\mathfrak{u}},\overrightarrow{\mathfrak{v}},\overrightarrow{\mathfrak{w}}]=0$ se, e somente se, $\overrightarrow{\mathfrak{u}}$, $\overrightarrow{\mathfrak{v}}$ e $\overrightarrow{\mathfrak{w}}$ não são LI (ou seja, são vetores coplanares).
- (b) $\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right] > 0$ se, e somente se, $\left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right\}$ é um terno LI positivo.

 $\textit{Logo}\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right]<0 \textit{ se, e somente se, } \{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\} \textit{ \'e um terno LI negativo.}$

(c) O sinal do produto misto muda quando permutamos dois fatores consecutivos. Isto é,

$$\boxed{ \left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w},\overrightarrow{w}\right] = \left[\overrightarrow{w},\overrightarrow{u},\overrightarrow{v}\right] = \left[\overrightarrow{v},\overrightarrow{w},\overrightarrow{u}\right] = -\left[\overrightarrow{v},\overrightarrow{u},\overrightarrow{w}\right] = -\left[\overrightarrow{u},\overrightarrow{w},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\right]} = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{v},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow{w}\right] = -\left[\overrightarrow{w},\overrightarrow{w},\overrightarrow$$

$$(\mathbf{d}) \ [\lambda \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = [\overrightarrow{u}, \lambda \overrightarrow{v}, \overrightarrow{w}] = [\overrightarrow{u}, \lambda \overrightarrow{v}, \overrightarrow{w}] = [\overrightarrow{u}, \overrightarrow{v}, \lambda \overrightarrow{w}] = \lambda \ [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] \ .$$

(e)
$$[\overrightarrow{u} + \overrightarrow{u}_0, \overrightarrow{v}, \overrightarrow{w}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + [\overrightarrow{u}_0, \overrightarrow{v}, \overrightarrow{w}]$$
.

(f)
$$[\overrightarrow{u}, \overrightarrow{v} + \overrightarrow{v_0}, \overrightarrow{w}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + [\overrightarrow{u}, \overrightarrow{v_0}, \overrightarrow{w}].$$

(g)
$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} + \overrightarrow{w_0}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w_0}]$$
.

Prova.

- (a) Suponhamos que $\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right]=\langle\overrightarrow{u}\times\overrightarrow{v},\overrightarrow{w}\rangle=0$. Então ocorre uma das seguintes alternativas:
 - Algum(s) dos vetores \overrightarrow{u} , \overrightarrow{v} ou \overrightarrow{w} é nulo;
 - $\bullet \overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0};$
 - $(\overrightarrow{u} \times \overrightarrow{v}) \perp \overrightarrow{w};$

Se a primeira alternativa ocorre então, claramente, os vetores são coplanares. Se a segunda alternativa ocorre, os vetores \overrightarrow{u} e \overrightarrow{v} são colineares; em particular, \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são coplanares.

Se acontecer a terceira alternativa, então, necessariamente, o vetor \overrightarrow{w} é paralelo a um plano paralelo aos vetores \overrightarrow{u} e \overrightarrow{v} , pois \overrightarrow{u} × \overrightarrow{w} é perpendicular, simultaneamente, a \overrightarrow{u} e \overrightarrow{v} .

Logo \overrightarrow{w} é uma combinação linear dos vetores \overrightarrow{u} e \overrightarrow{v} , isto é, os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são coplanares.

Reciprocamente, suponhamos que os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são coplanares e mostremos que $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0$.

Se $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$ ou $\overrightarrow{w} = \overrightarrow{0}$, então, claramente, $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0$.

Se \overrightarrow{u} e \overrightarrow{v} são colineares, então $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0$, já que $\overrightarrow{u} \times \overrightarrow{v} = 0$.

Suponhamos que \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} são não-nulos e \overrightarrow{u} e \overrightarrow{v} são não-colineares.

Como \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são coplanares, existem $\lambda, \mu \in \mathbb{R}$, tais que, $\overrightarrow{w} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$.

Pelas propriedades do produto interno e do produto vetorial, temos

$$\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{v},\overrightarrow{w}\right] = \left[\overrightarrow{u},\overrightarrow{v},\lambda\overrightarrow{u} + \mu\overrightarrow{v}\right] = \langle \overrightarrow{u} \times \overrightarrow{v},\lambda\overrightarrow{u} + \mu\overrightarrow{v} \rangle = \lambda \langle \overrightarrow{u} \times \overrightarrow{v},\overrightarrow{u} \rangle + \mu \langle \overrightarrow{u} \times \overrightarrow{v},\overrightarrow{v} \rangle = 0 \ .$$

Finalmente, observamos que a equivalência

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0 \Longleftrightarrow \overrightarrow{u}, \overrightarrow{v} \text{ e } \overrightarrow{w} \text{ são coplanares,}$$

significa o mesmo que a equivalência

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] \neq 0 \iff \overrightarrow{u}, \overrightarrow{v} \text{ e } \overrightarrow{w} \text{ não são coplanares, isto é, são LI.}$$

$$\textbf{(b)} \ \mathsf{Temos} \ \left[\overrightarrow{\mathfrak{u}}, \overrightarrow{\mathfrak{v}}, \overrightarrow{\mathfrak{w}}\right] = \langle \overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}}, \overrightarrow{\mathfrak{w}} \rangle = \|\overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}}\| \, \|\overrightarrow{\mathfrak{w}}\| \, \cos \angle (\overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}}, \overrightarrow{\mathfrak{w}})$$

Sejam O, A, B e C pontos do espaço tais que

$$\overrightarrow{u} = \overrightarrow{OA}, \overrightarrow{v} = \overrightarrow{OB} e \overrightarrow{w} = \overrightarrow{OC}.$$

Seja π o plano que contém os pontos O, A e B, e seja $\mathcal S$ o semi-espaço determinado pelo plano π , para o qual $\overrightarrow{u} \times \overrightarrow{v}$ aponta para $\mathcal S$.

Como $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u} \times \overrightarrow{v}\}$ é um terno positivo, o terno $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é positivo se, e somente se, $C \in \mathcal{S}$. Isto é, se, e somente se, o ângulo $\angle(\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w})$ for agudo.

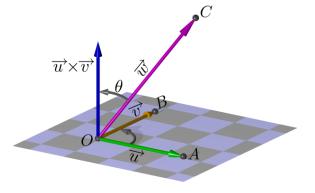


Fig. 13: Propriedade (b).

Ou seja, se, e somente se, $\cos \angle (\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w}) > 0$, o que equivale a $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = \|\overrightarrow{u} \times \overrightarrow{v}\| \|\overrightarrow{w}\| \cos \angle (\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w}) > 0.$

A equivalência $\left[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right]<0 \Longleftrightarrow \left\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\right\}$ é um terno negativo, é demonstrada da mesma maneira.

(c) Se \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são coplanares, então todos os produtos mistos apresentados no quadro do enunciado são iguais a zero.

Suponhamos, então, que \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são LI (não-coplanares).

Como o volume de um paralelepípedo não se altera se mudarmos a ordem das suas arestas, isto é, se considerarmos outra de suas faces como base, temos:

$$|[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w},\overrightarrow{w}]| = |[\overrightarrow{w},\overrightarrow{u},\overrightarrow{v}]| = |[\overrightarrow{v},\overrightarrow{w},\overrightarrow{w}]| = |[\overrightarrow{v},\overrightarrow{w},\overrightarrow{w}]| = |[\overrightarrow{v},\overrightarrow{w},\overrightarrow{w}]| = |[\overrightarrow{w},\overrightarrow{w},\overrightarrow{v},\overrightarrow{v}]| = |[\overrightarrow{w},\overrightarrow{v},\overrightarrow{v},\overrightarrow{w}]|.$$

Os ternos $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ e $\{\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v}\}$ determinam a mesma orientação no espaço (ambos são positivos ou ambos são negativos), pois um é obtido a partir do outro permutando os vetores um número par de vezes.

Pelo item (b), concluímos que os produtos mistos $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ e $[\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v}]$ têm o mesmo sinal e, portanto, são iguais.

As outras identidades se demonstram da mesma forma.

(d) Pelas propriedades do produto vetorial e do produto interno, temos

$$\left[\lambda \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\right] = \left\langle (\lambda \overrightarrow{u}) \times \overrightarrow{v}, \overrightarrow{w} \right\rangle = \left\langle \lambda (\overrightarrow{u} \times \overrightarrow{v}), \overrightarrow{w} \right\rangle = \lambda \left\langle \overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{w} \right\rangle = \lambda \left[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \right] \; .$$

As outras identidades se demonstram da mesma forma.

(e) Pelas propriedades do produto interno e as identidades de permutação dos fatores no produto misto (não usaremos aqui a propriedade distributiva do produto vetorial que ainda não foi demonstrada), temos

como queríamos demonstrar.

(f) e (g) Nesses itens, as identidades se demonstram como a identidade do item (e).

Demonstração da propriedade distributiva do produto vetorial

Vamos, agora, completar a prova do Teorema 1, demonstrando a propriedade distributiva do produto vetorial (item (d) do Teorema 1):

Prova.

O nosso objetivo é demonstrar a identidade

$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}.$$

A outra identidade, $(\overrightarrow{u} + \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w}$, se prova de maneira análoga.

Seja
$$\overrightarrow{z} = \overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) - \overrightarrow{u} \times \overrightarrow{v} - \overrightarrow{u} \times \overrightarrow{w}$$
.

Para atingir o nosso objetivo, devemos demonstrar que $\overrightarrow{z} = \overrightarrow{0}$.

Basta então, demonstrar que $\langle \overrightarrow{z}, \overrightarrow{z} \rangle = 0$.

Pelas propriedades do produto interno e do produto misto, temos:

$$\begin{split} \langle \overrightarrow{z}^{\flat}, \overrightarrow{z}^{\flat} \rangle &= \langle \overrightarrow{u}^{\flat} \times (\overrightarrow{v}^{\flat} + \overrightarrow{w}^{\flat}) - \overrightarrow{u}^{\flat} \times \overrightarrow{v}^{\flat} - \overrightarrow{u}^{\flat} \times \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat} \rangle \\ &= \langle \overrightarrow{u}^{\flat} \times (\overrightarrow{v}^{\flat} + \overrightarrow{w}^{\flat}), \overrightarrow{z}^{\flat} \rangle - \langle \overrightarrow{u}^{\flat} \times \overrightarrow{v}^{\flat}, \overrightarrow{z}^{\flat} \rangle - \langle \overrightarrow{u}^{\flat} \times \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat} \rangle \\ &= [\overrightarrow{u}^{\flat}, \overrightarrow{v}^{\flat} + \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat}] - [\overrightarrow{u}^{\flat}, \overrightarrow{v}^{\flat}, \overrightarrow{z}^{\flat}] - [\overrightarrow{u}^{\flat}, \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat}] - [\overrightarrow{u}^{\flat}, \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat}] - [\overrightarrow{u}^{\flat}, \overrightarrow{w}^{\flat}, \overrightarrow{z}^{\flat}] = 0 \end{split}$$

Como queríamos demonstrar.

4. Expressão do produto vetorial em coordenadas

O nosso objetivo agora é obter a expressão do produto vetorial e do produto misto usando as coordenadas dos vetores fatores em relação a um sistema de coordenadas ortogonais dado.

Definição 2

Vetores $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ e $\overrightarrow{e_3}$ unitários e mutuamente ortogonais são chamados **ortonormais**.

Observação 4

Se os vetores $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ e $\overrightarrow{e_3}$ são ortonormais, então são LI (não-coplanares).

De fato, suponhamos pelo absurdo, que $\overrightarrow{e_3} = \lambda \overrightarrow{e_1} + \mu \overrightarrow{e_2}$.

Como
$$\overrightarrow{e_1} \perp \overrightarrow{e_3}$$
, temos $\langle \overrightarrow{e_1}, \overrightarrow{e_3} \rangle = 0$, ou seja,

$$0 = \langle \overrightarrow{e_1}, \overrightarrow{e_3} \rangle = \langle \overrightarrow{e_1}, \lambda \overrightarrow{e_1} + \mu \overrightarrow{e_2} \rangle = \lambda \langle \overrightarrow{e_1}, \overrightarrow{e_1} \rangle + \mu \langle \overrightarrow{e_1}, \overrightarrow{e_2} \rangle = \lambda \cdot 1 + \mu \cdot 0 = \lambda,$$

pois
$$\|\overrightarrow{e_1}\|^2 = \langle \overrightarrow{e_1}, \overrightarrow{e_1} \rangle = 1$$
 e $\overrightarrow{e_1} \perp \overrightarrow{e_2}$, isto é, $\langle \overrightarrow{e_1}, \overrightarrow{e_2} \rangle = 0$.

Analogamente, como $\overrightarrow{e_2} \perp \overrightarrow{e_3}$, temos $\langle \overrightarrow{e_2}, \overrightarrow{e_3} \rangle = 0$, ou seja,

$$0 = \langle \overrightarrow{e_2}, \overrightarrow{e_3} \rangle = \langle \overrightarrow{e_2}, \lambda \overrightarrow{e_1} + \mu \overrightarrow{e_2} \rangle = \lambda \langle \overrightarrow{e_2}, \overrightarrow{e_1} \rangle + \mu \langle \overrightarrow{e_2}, \overrightarrow{e_2} \rangle = \lambda \cdot 0 + \mu \cdot 1 = \mu \,,$$

$$\text{pois } \|\overrightarrow{e_2}\|^2 = \langle \overrightarrow{e_2}, \overrightarrow{e_2} \rangle = 1 \text{ e } \overrightarrow{e_2} \perp \overrightarrow{e_1} \text{, isto \'e, } \langle \overrightarrow{e_2}, \overrightarrow{e_1} \rangle = 0.$$

Consequentemente, $\overrightarrow{e_3} = \lambda \overrightarrow{e_1} + \mu \overrightarrow{e_2} = \overrightarrow{0}$, uma contradição, pois $\|\overrightarrow{e_3}\| = 1$.

Proposição 1

Seja $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ um terno positivo de vetores unitários e mutuamente ortogonais, isto é, um terno ortonormal positivo. Então valem as seguintes igualdades:

$$\overrightarrow{e_1} \times \overrightarrow{e_2} = \overrightarrow{e_3}, \qquad \overrightarrow{e_2} \times \overrightarrow{e_3} = \overrightarrow{e_1}, \qquad \overrightarrow{e_3} \times \overrightarrow{e_1} = \overrightarrow{e_2},
\overrightarrow{e_2} \times \overrightarrow{e_1} = -\overrightarrow{e_3}, \qquad \overrightarrow{e_3} \times \overrightarrow{e_2} = -\overrightarrow{e_1}, \qquad \overrightarrow{e_1} \times \overrightarrow{e_3} = -\overrightarrow{e_2},
\overrightarrow{e_1} \times \overrightarrow{e_1} = \overrightarrow{0}, \qquad \overrightarrow{e_2} \times \overrightarrow{e_2} = \overrightarrow{0}, \qquad \overrightarrow{e_3} \times \overrightarrow{e_3} = \overrightarrow{0}.$$

Prova.

Temos que $\|\overrightarrow{e_1} \times \overrightarrow{e_2}\| = \|\overrightarrow{e_1}\| \|\overrightarrow{e_2}\|$ sen $90^{\circ} = 1 \cdot 1 \cdot 1 = 1$.

Como $\overrightarrow{e_1} \times \overrightarrow{e_2}$ e $\overrightarrow{e_3}$ são vetores unitários e colineares, pois ambos são perpendiculares, simultaneamente, a $\overrightarrow{e_1}$ e $\overrightarrow{e_2}$, temos $\overrightarrow{e_1} \times \overrightarrow{e_2} = \pm \overrightarrow{e_3}$.

Além disso, como $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ e $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_1}\times\overrightarrow{e_2}\}$ são ternos positivos, concluímos que $\overrightarrow{e_1}\times\overrightarrow{e_2}=\overrightarrow{e_3}$.

As outras identidades se demonstram de maneira análoga.

Dispositivo prático para o cálculo do produto vetorial

Seja $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ um terno ortonormal positivo.

Sabemos que o produto $\overrightarrow{e_i} \times \overrightarrow{e_j}$, $i \neq j$, é igual a $\overrightarrow{e_k}$ ou a $-\overrightarrow{e_k}$, com $k \neq i$ e $k \neq j$.

A determinação exata é feita da seguinte maneira:

- $\overrightarrow{e_i} \times \overrightarrow{e_j} = \overrightarrow{e_k}$ se o menor caminho de $\overrightarrow{e_i}$ para $\overrightarrow{e_j}$ no diagrama ao lado for no sentido **anti-horário** (giro positivo).
- $\overrightarrow{e_i} \times \overrightarrow{e_j} = -\overrightarrow{e_k}$ se o menor caminho de $\overrightarrow{e_i}$ para $\overrightarrow{e_j}$ no diagrama ao lado for no sentido **horário** (giro negativo).

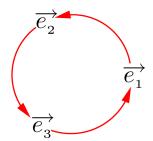


Fig. 14: Dispositivo prático.

O produto vetorial em coordenadas

Seja OXYZ um sistema de eixos ortogonais positivo. Isto é, se

$$\overrightarrow{e_1}=(1,0,0)\,,\ \overrightarrow{e_2}=(0,1,0)\ \text{e}\ \overrightarrow{e_3}=(0,0,1)\,,$$

então o terno $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ um terno ortonormal positivo.

Se $\overrightarrow{\mathfrak{u}}=(\mathfrak{x},\mathfrak{y},z)$ e $\overrightarrow{\mathfrak{v}}=(\mathfrak{x}',\mathfrak{y}',z')$ são vetores no espaço expressos em termos de suas coordenadas com respeito ao sistema OXYZ, então

$$\overrightarrow{u} = x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}$$
 e $\overrightarrow{v} = x'\overrightarrow{e_1} + y'\overrightarrow{e_2} + z'\overrightarrow{e_3}$.

Usando as propriedades do produto vetorial do Teorema 1, temos:

$$\overrightarrow{u'} \times \overrightarrow{v'} = (x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}) \times (x'\overrightarrow{e_1} + y'\overrightarrow{e_2} + z'\overrightarrow{e_3})$$

$$= (x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}) \times (x'\overrightarrow{e_1}) + (x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}) \times (y'\overrightarrow{e_2})$$

$$+ (x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}) \times (z'\overrightarrow{e_3})$$

$$= (x\overrightarrow{e_1}) \times (x'\overrightarrow{e_1}) + (y\overrightarrow{e_2}) \times (x'\overrightarrow{e_1}) + (z\overrightarrow{e_3}) \times (x'\overrightarrow{e_1})$$

$$+ (x\overrightarrow{e_1}) \times (y'\overrightarrow{e_2}) + (y\overrightarrow{e_2}) \times (y'\overrightarrow{e_2}) + (z\overrightarrow{e_3}) \times (y'\overrightarrow{e_2})$$

$$+ (x\overrightarrow{e_1}) \times (z'\overrightarrow{e_3}) + (y\overrightarrow{e_2}) \times (z'\overrightarrow{e_3}) + (z\overrightarrow{e_3}) \times (z'\overrightarrow{e_3})$$

$$= xx'(\overrightarrow{e_1} \times \overrightarrow{e_1}) + yx'(\overrightarrow{e_2} \times \overrightarrow{e_1}) + zx'(\overrightarrow{e_3} \times \overrightarrow{e_1})$$

$$+ xy'(\overrightarrow{e_1} \times \overrightarrow{e_2}) + yy'(\overrightarrow{e_2} \times \overrightarrow{e_2}) + zy'(\overrightarrow{e_3} \times \overrightarrow{e_2})$$

$$+ xz'(\overrightarrow{e_1} \times \overrightarrow{e_3}) + yz'(\overrightarrow{e_2} \times \overrightarrow{e_3}) + zz'(\overrightarrow{e_3} \times \overrightarrow{e_3})$$

$$= xx'\overrightarrow{0} + yx'(-\overrightarrow{e_3}) + zx'\overrightarrow{e_2}$$

$$+ xy'\overrightarrow{e_3} + yy'\overrightarrow{0} + zy'(-\overrightarrow{e_1})$$

$$+ xz'(-\overrightarrow{e_2}) + yz'\overrightarrow{e_1} + zz'\overrightarrow{0}$$

$$= (yz' - zy')\overrightarrow{e_1} + (zx' - xz')\overrightarrow{e_2} + (xy' - yx')\overrightarrow{e_3}.$$

Logo

$$\overrightarrow{u} \times \overrightarrow{v} = (yz' - zy')\overrightarrow{e_1} - (xz' - zx')\overrightarrow{e_2} + (xy' - yx')\overrightarrow{e_3}.$$

Escrevendo os coeficientes dos vetores como determinantes 2×2 , temos

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} y & z \\ y' & z' \end{vmatrix} \overrightarrow{e_1} - \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} \overrightarrow{e_2} + \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \overrightarrow{e_3} = \left(\begin{vmatrix} y & z \\ y' & z' \end{vmatrix}, - \begin{vmatrix} x & z \\ x' & z' \end{vmatrix}, \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \right)$$

Um dispositivo prático para efetuar esse cálculo consiste em calcular o seguinte "determinante simbólico" desenvolvendo pela primeira fila:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ x & y & z \\ x' & y' & z' \end{vmatrix} = \begin{vmatrix} y & z \\ y' & z' \end{vmatrix} \overrightarrow{e_1} - \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} \overrightarrow{e_2} + \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \overrightarrow{e_3}$$

Exemplo 1

Determinar o produto vetorial $\overrightarrow{u} \times \overrightarrow{v}$, onde $\overrightarrow{u} = (1,2,3)$ e $\overrightarrow{v} = (2,-1,1)$.

Solução.

Temos:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} \overrightarrow{e_1} - \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} \overrightarrow{e_2} + \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \overrightarrow{e_3} = 5\overrightarrow{e_1} + 5\overrightarrow{e_2} - 5\overrightarrow{e_3}.$$

Logo
$$\overrightarrow{\mathfrak{u}} \times \overrightarrow{\mathfrak{v}} = (5,5,-5)$$
 . \square

Exemplo 2

Sejam $P_0 = (1, -1, 2)$, P = (1, 3, 1) e Q = (1, -1, 0). Calcule a área do paralelogramo \mathcal{P} que tem como arestas adjacentes os segmentos P_0P e P_0Q .

Solução.

Sendo $\overrightarrow{P_0P'}=(0,4,-1)$ e $\overrightarrow{P_0Q'}=(0,0,-2)$, temos:

$$\overrightarrow{P_0P} \times \overrightarrow{P_0Q} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ 0 & 4 & -1 \\ 0 & 0 & -2 \end{vmatrix} = \begin{vmatrix} 4 & -1 \\ 0 & -2 \end{vmatrix} \overrightarrow{e_1} - \begin{vmatrix} 0 & -1 \\ 0 & -2 \end{vmatrix} \overrightarrow{e_2} + \begin{vmatrix} 0 & 4 \\ 0 & 0 \end{vmatrix} \overrightarrow{e_3} = -8\overrightarrow{e_1} = (-8, 0, 0).$$

Portanto, Área $(\mathcal{P}) = \|\overrightarrow{P_0P} \times \overrightarrow{P_0Q}\| = \|(-8,0,0)\| = 8$.