# Aula 19

Continuamos com o nosso estudo da equação

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

# 1. Hipérbole

### Definição 1

Uma **hipérbole**,  $\mathcal{H}$ , de **focos**  $F_1$  e  $F_2$ , é o conjunto do plano que consiste de todos os pontos P tais que o módulo da diferença das distâncias a  $F_1$  e  $F_2$  é igual a uma constante  $2\alpha > 0$ , menor do que a distância entre os focos  $2c \geq 0$ .

$$\mathcal{H} = \{ P \mid |d(P, F_1) - d(P, F_2)| = 2\alpha \}$$
  
 
$$0 \le \alpha < c; \quad d(F_1, F_2) = 2c$$

# Observação 1

Para todo ponto P do plano, temos que

$$|d(P, F_1) - d(P, F_2)| \le d(F_1, F_2)$$
,

e a igualdade ocorre se, e somente se, P pertence à semi-reta de origem  $F_1$  que não contém  $F_2$ , ou à semi-reta de origem  $F_2$  que não contém  $F_1$ . Em particular, como  $2\alpha < 2c$ , nenhum ponto sobre as semi-retas acima pertence à hipérbole.



Fig. 1: Semi-retas que contêm apenas um dos focos.

De fato, pela desigualdade triangular, temos que

$$d(P, F_1) \le d(P, F_2) + d(F_2, F_1),$$

е

$$d(P, F_2) < d(P, F_1) + d(F_1, F_2).$$

Logo,

$$-d(F_1, F_2) \le d(P, F_1) - d(P, F_2) \le d(F_1, F_2)$$

ou seja,

$$|d(P, F_1) - d(P, F_2)| \le d(F_1, F_2)$$
.

 $\begin{subarray}{ll} \textit{Al\'em disso, temos que} \ |d(P,F_1)-d(P,F_2)| = d(F_1,F_2) \ \textit{se, e s\'o se, } \ d(P,F_1)-d(P,F_2) = d(F_1,F_2) \ , \\ \textit{ou seja, } \ d(P,F_1) = d(P,F_2) + d(F_1,F_2), \ \ \textit{ou} \ \ d(P,F_1) - d(P,F_2) = -d(F_1,F_2) \ , \ \textit{isto \'e, } \ d(P,F_2) = d(P,F_1) + d(F_1,F_2) \ . \\ \end{subarray}$ 

Se  $d(P, F_1) = d(P, F_2) + d(F_2, F_1)$ , temos que  $F_2 \in F_1P$ , ou seja, P pertence à semi-reta de origem  $F_2$  que não contém  $F_1$ .

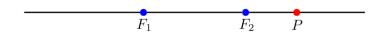


Fig. 2: F<sub>2</sub> entre F<sub>1</sub> e P.

Se  $d(P, F_2) = d(P, F_1) + d(F_1, F_2)$ , temos que  $F_1 \in PF_2$ , isto é, P pertence à semi-reta de origem  $F_1$  que não contém  $F_2$ .

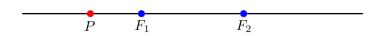


Fig. 3: F<sub>1</sub> entre P e F<sub>2</sub>.

Por isso, tomamos  $c > \alpha$  na definição da hipérbole, pois se  $c < \alpha$  e  $d(F_1, F_2) = 2c$ , o conjunto  $\{P \mid |d(P, F_1) - d(P, F_2)| = 2\alpha\}$ 

representaria o conjunto vazio, e se  $c = \alpha$ , o conjunto acima representaria a união da semi-reta de origem  $F_1$  que não contém  $F_2$  com a semi-reta de origem  $F_2$  que não contém  $F_1$ .

#### **Terminologia**

- Os pontos F<sub>1</sub> e F<sub>2</sub> são os focos da hipérbole.
- A reta ℓ que contém os focos é a reta focal (Fig. 1).
- A intersecção da hipérbole com a reta focal  $\ell$  consiste de exatamente dois pontos,  $A_1$  e  $A_2$ , chamados **vértices** da hipérbole. De fato, pela observação 1, temos que se  $A \in \mathcal{H} \cap \ell$ , então  $A \in F_1F_2$ . Seja  $A_1 \in F_1F_2 \cap \mathcal{H}$  tal que  $d(A_1, F_1) = x$ .

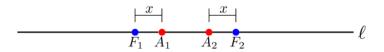


Fig. 4: Posicionamento dos vértices em relação aos focos da hipérbole na reta focal.

Como  $d(F_1, F_2) = 2c$ , temos

$$\begin{split} |d(A_1,F_1)-d(A_1,F_2)| &= 2\alpha &\iff |x-(2c-x)| = 2\alpha \Longleftrightarrow |2x-2c| = 2\alpha \\ &\iff 2c-2x = 2\alpha \Longleftrightarrow x = c-\alpha \,. \end{split}$$

Logo o ponto  $A_1$  de  $F_1F_2$  distante c - a de  $F_1$  pertence à hipérbole.

Analogamente, temos que o ponto  $A_2$  de  $F_1F_2$  distante c-a de  $F_2$  pertence à hipérbole  $\mathcal{H}$ 

- O segmento  $A_1A_2$  é denominado eixo focal da hipérbole e seu comprimento é  $d(A_1,A_2)=2\alpha$ .
- O ponto médio C do eixo focal  $A_1A_2$  é o **centro** da hipérbole. Esse ponto é, também, o ponto médio do segmento  $F_1F_2$ , delimitado pelos focos:  $C = \frac{A_1 + A_2}{2} = \frac{F_1 + F_2}{2}$ .

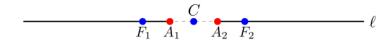


Fig. 5: Posicionamento dos focos, vértices e centro da hipérbole na reta focal.

Observe que 
$$d(C, F_1) = d(C, F_2) = c$$
 e  $d(C, A_1) = d(C, A_2) = a$ .

• A reta  $\ell'$  que passa pelo centro C e é perpendicular à reta focal  $\ell$  é a **reta não-focal** da hipérbole. Como  $\ell'$  é a mediatriz do segmento  $F_1F_2$ , a hipérbole não intersecta a reta não-focal  $\ell'$ , pois se  $P \in \ell'$ , temos

$$|d(P, F_1) - d(P, F_2)| = 0 \neq 2\alpha.$$

• O segmento  $B_1B_2$  perpendicular ao eixo focal que tem C como ponto médio e comprimento 2b, onde  $b^2=c^2-\alpha^2$ , é

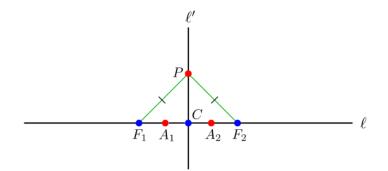


Fig. 6: Pontos do eixo não-focal não pertencem à hipérbole.

denominado eixo não-focal da hipérbole, e B1 e B2 são os vértices imaginários da hipérbole

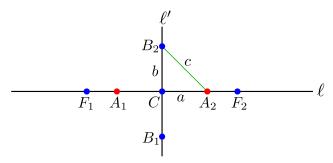


Fig. 7: Relação dos comprimentos a, b e c.

- O número  $e = \frac{c}{a}$  é chamado a **excentricidade** da hipérbole. Note que e > 1, pois c > a.
- O retângulo de base da hipérbole  $\mathcal{H}$  é o retângulo que tem os pontos  $A_1$ ,  $A_2$ ,  $B_1$  e  $B_2$  como pontos médios de seus lados e as retas que contêm as diagonais do retângulo de base da hipérbole  $\mathcal{H}$  são as assíntotas de  $\mathcal{H}$ .

Portanto as assíntotas da hipérbole  $\mathcal{H}$  são as retas que passam pelo centro da hipérbole e tem inclinação  $\pm \frac{b}{a}$  em relação à reta focal.

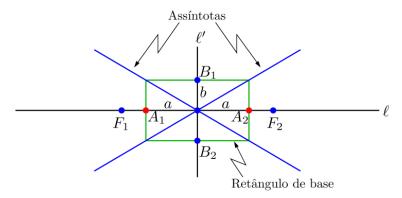


Fig. 8: Retângulo de base e assíntotas da hipérbole  $\mathcal{H}$ .

Pelo Teorema de Pitágoras, as diagonais do retângulo de base de  $\mathcal{H}$  têm comprimento 2c e a distância do centro de  $\mathcal{H}$  a qualquer vértice do retângulo de base é igual a c.

• Dizemos que uma hipérbole é **equilátera** se o comprimento do eixo focal é igual ao comprimento do eixo não-focal, isto é, a = b.

Então, o retângulo de base de uma hipérbole equilátera é, na realidade, um quadrado. Em particular, as retas que contêm as suas diagonais, isto é, suas assíntotas, intersectam-se perpendicularmente.

Duas hipérboles tais que o eixo focal de cada uma é igual ao eixo não-focal da outra são denominadas hipérboles conjugadas. Como os retângulos de base de duas hipérboles conjugadas são iguais, elas têm o mesmo centro, mesmas assíntotas e os focos a uma mesma distância do centro.

### Observação 2

**1.** A hipérbole  $\mathcal{H}$  é simétrica em relação à reta focal, à reta não-focal e ao centro.

De fato, se  $P \in \mathcal{H}$  e P' é o simétrico de P em relação à reta focal, então

$$\triangle F_2 PQ \equiv \triangle F_2 P'Q \qquad \textbf{e} \qquad \triangle F_1 PQ \equiv \triangle F_1 P'Q \,.$$

Em particular,  $F_2P \equiv F_2P'$  e  $F_1P \equiv F_1P'$ . Logo

$$2\alpha = |d(P,F_1) - d(P,F_2)| = |d(P',F_1) - d(P',F_2)| \Longrightarrow P' \in \mathcal{H}.$$

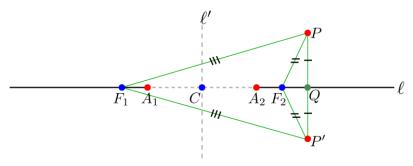


Fig. 9: Simetria da hipérbole em relação à reta focal.

Se  $P \in \mathcal{H}$  e P'' é o simétrico de P em relação ao centro, então

$$\triangle PCF_2 \equiv \triangle P''CF_1$$
  $e$   $\triangle F_1CP \equiv \triangle P''CF_2$ .

Em particular,  $F_2P \equiv F_1P''$  e  $F_1P \equiv F_2P''$ . Logo,

$$2\alpha = |d(P,F_1) - d(P,F_2)| = |d(P'',F_2) - d(P'',F_1)| \Longrightarrow P'' \in \mathcal{H} \,.$$

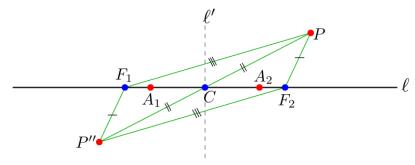


Fig. 10: Simetria da hipérbole em relação ao centro.

A simetria em relação à reta não-focal se verifica de maneira análoga, usando congruência de triângulos.

# 2. Forma canônica da hipérbole

Vamos obter a equação da hipérbole em relação a um sistema de eixos ortogonais OXY em alguns casos especiais.

### Hipérbole com centro na origem e reta focal coincidente com o eixo OX

Nesse caso, temos  $F_1=(-c,0),\ F_2=(c,0),\ A_1=(-a,0),\ A_2=(a,0),\ B_1=(0,-b),\ B_2=(0,b)$  e C=(0,0). Logo,

$$\begin{split} P &= (x,y) \in \mathcal{H} \Longleftrightarrow |d(P,F_1) - d(P,F_2)| = 2\alpha \\ \iff \begin{cases} d(P,F_1) - d(P,F_2) = 2\alpha & \text{(ramo direito de $\mathcal{H}$)} \\ \text{OU} \\ d(P,F_1) - d(P,F_2) = -2\alpha & \text{(ramo esquerdo de $\mathcal{H}$)} \end{cases} \\ \iff \begin{cases} \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2\alpha & \text{(ramo direito de $\mathcal{H}$)} \\ \text{OU} \\ \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = -2\alpha & \text{(ramo esquerdo de $\mathcal{H}$)}. \end{cases} \end{split}$$

Continuando o desenvolvimento de maneira análoga ao caso da elipse, e lembrando que  $b^2=c^2-\alpha^2$ , chegamos a:

$$P = (x, y) \in \mathcal{H} \iff (c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2) \iff b^2x^2 - a^2y^2 = a^2b^2.$$

Portanto,  $P = (x, y) \in \mathcal{H}$  se, e somente se, as coordenadas x e y satisfazem a equação

$$\boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1},$$

chamada forma canônica da equação da hipérbole de centro na origem e reta focal coincidente com o eixo-OX.

As assíntotas dessa hipérbole são as retas que passam pela origem (centro) e têm inclinação  $\pm \frac{b}{a}$  em relação ao eixo-OX (reta focal). Logo, as assíntotas são as retas  $y=\pm \frac{b}{a}x$ , ou seja,

$$bx - ay = 0$$
 e  $bx + ay = 0$ .

### Esboço da Hipérbole

$$\text{Como } \frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 = \frac{x^2 - a^2}{a^2} \text{, temos que } y = \pm \frac{b}{a} \, \sqrt{x^2 - a^2} \, \text{, onde } x \geq a \text{ ou } x \leq -a.$$

Sendo 
$$y'=\frac{bx}{a\sqrt{x^2-a^2}}>0$$
 (crescente) e  $y''=\frac{-ab}{(x^2-a^2)^{3/2}}<0$  (côncava), para todo

 $x\in(\alpha,+\infty)$ , temos que o gráfico da função  $y=rac{b}{a}\,\sqrt{x^2-lpha^2},\,x\in[\alpha,+\infty)$  é da forma:

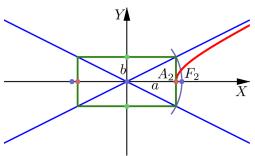


Fig. 11: Gráfico da função  $y = \frac{b}{a} \sqrt{x^2 - a^2}, x \in [a, +\infty].$ 

Pela simetria da hipérbole em relação ao eixo-OX (reta focal) e em relação ao eixo-OY (reta não-focal), obtemos o seu gráfico:

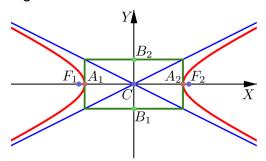


Fig. 12: Gráfico da hipérbole  $\mathcal{H}: \frac{x^2}{\alpha^2} - \frac{y^2}{b^2} = 1$ .

Podemos, agora, explicar o porquê do nome **assíntota** para as retas que contêm as diagonais do retângulo de base.

Sejam P=(x,y) um ponto da hipérbole, isto é,  $b^2x^2-a^2y^2=a^2b^2$ , e  $r_+$ : bx-ay=0 uma de suas assíntotas. Então,

$$\begin{split} d(P,r_+) &= \frac{|bx - ay|}{\sqrt{b^2 + a^2}} = \frac{|bx - ay|}{\sqrt{b^2 + a^2}} \times \frac{|bx + ay|}{|bx + ay|} \\ &= \frac{|b^2x^2 - a^2y^2|}{\sqrt{b^2 + a^2}} \times \frac{1}{|bx + ay|} = \frac{a^2b^2}{\sqrt{b^2 + a^2}} \times \frac{1}{|bx + ay|}. \end{split}$$

Logo  $d(P, r_+) \to 0$ , quando  $x \to +\infty$  e  $y \to +\infty$  ou  $x \to -\infty$  e  $y \to -\infty$ .

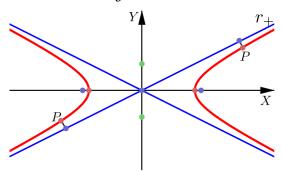


Fig. 13:  $d(P, r_+) \to 0$ , quando  $x \to \pm \infty$  e  $y \to \pm \infty$ .

De modo análogo, podemos verificar que  $d(P, r_-) \to 0$ , quando  $x \to +\infty$  e  $y \to -\infty$  ou  $x \to -\infty$  e  $y \to +\infty$ , onde  $P = (x, y) \in \mathcal{H}$  e  $r_- : bx + ay = 0$  é a outra assíntota da hipérbole.

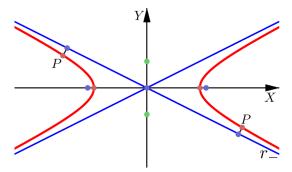


Fig. 14:  $d(P, r_+) \rightarrow 0$ , quando  $x \rightarrow \pm \infty$  e  $y \rightarrow \mp \infty$ .

# Hipérbole com centro na origem e reta focal coincidente com o eixo OY

Neste caso, temos  $F_1=(0,-c),\ F_2=(0,c),\ A_1=(0,-a),\ A_2=(0,a),\ B_1=(-b,0)$  e  $B_2=(b,0).$ 

Procedendo como no caso anterior, obtemos que a equação da hipérbole é:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
 Forma canônica da hipérbole de centro na origem e reta focal coincidente com o eixo-OY.

onde  $b^2=c^2-a^2$ . Neste caso, as assíntotas são as retas  $x=\pm \frac{b}{a}y$ , ou seja,

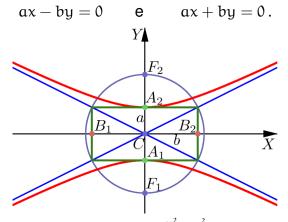


Fig. 15: Hipérbole  $\mathcal{H}: \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ .

# 3. Hipérbole com centro no ponto $\overline{O} = (x_0, y_0)$

### Caso I. Reta focal paralela ao eixo-OX

Como o centro  $\overline{O}=(x_0,y_0)$  pertence à reta focal, temos que  $\ell:y=y_0$  é a equação cartesiana da reta focal.

Além disso, como

$$d(F_1, \overline{O}) = d(F_2, \overline{O}) = c$$

onde  $F_1$  e  $F_2$  são os focos da elipse, temos que  $F_1 = (x_0 - c, y_0)$  e  $F_2 = (x_0 + c, y_0)$ .

Seja  $P = (\overline{x} + x_0, \overline{y} + y_0)$  um ponto pertencente à hipérbole, onde

$$x = \overline{x} + x_0$$
,  $y = \overline{y} + y_0$ ,

são suas coordenadas no sistema OXY e  $\overline{x}$ ,  $\overline{y}$  são suas coordenadas no sistema  $\overline{O} \, \overline{X} \, \overline{Y}$ , obtido transladando o sistema OXY para a origem  $\overline{O} = (x_0, y_0)$ .

Então, P pertence à hipérbole se, e somente se,

$$|d(P, F_1) - d(P, F_2)| = 2\alpha$$

ou seja,

$$\iff |d((\overline{x}+x_0,\overline{y}+y_0),(x_0-c,y_0))-d((\overline{x}+x_0,\overline{y}+y_0),(x_0+c,y_0))|=2\alpha$$

$$\iff |d((\overline{x}, \overline{y}), (-c, 0)) - d((\overline{x}, \overline{y}), (c, 0))| = 2a$$

$$\iff \frac{\overline{x}^2}{a^2} - \frac{\overline{y}^2}{b^2} = 1 \iff \frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1.$$

Logo a forma canônica da equação da hipérbole com centro no ponto  $(x_0,y_0)$  e reta focal paralela ao eixo-OX é

$$\boxed{\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1} \,, \quad \text{onde} \quad b^2 = c^2 - a^2$$

Os focos são  $F_1=(x_0-c,y_0)$   $F_2=(x_0+c,y_0)$ ; a reta focal é  $\ell:y=y_0$ ; os vértices são  $A_1=(x_0-\alpha,y_0)$  e  $A_2=(x_0+\alpha,y_0)$ ; a reta não-focal é  $\ell':x=x_0$ ; os vértices imaginários são  $B_1=(x_0,y_0-b)$  e  $B_2=(x_0,y_0+b)$ , e as assíntotas são as retas  $b(x-x_0)-\alpha(y-y_0)=0$  e  $b(x-x_0)+\alpha(y-y_0)=0$ .

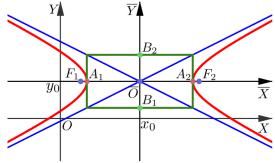


Fig. 16: Gráfico da hipérbole  $\mathcal{H}: \frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$  .

### Caso II. Reta focal paralela ao eixo-OY

Procedendo como no caso anterior, se verifica que a forma canônica da equação da hipérbole com centro no ponto  $(x_0, y_0)$  e reta focal paralela ao eixo—OY é

$$\frac{(y-y_0)^2}{a^2} - \frac{(x-x_0)^2}{b^2} = 1, \quad \text{onde} \quad b^2 = c^2 - a^2$$

Neste caso, os focos são  $F_1=(x_0,y_0-c)$   $F_2=(x_0,y_0+c)$ ; a reta focal é  $\ell:x=x_0$ ; os vértices são  $A_1=(x_0,y_0-a)$  e  $A_2=(x_0,y_0+a)$ ; a reta não focal é  $\ell':y=y_0$ ; os vértices imaginários são  $B_1=(x_0-b,y_0)$  e  $B_2=(x_0+b,y_0)$ , e as assíntotas são as retas  $a(x-x_0)-b(y-y_0)=0$  e  $a(x-x_0)+b(y-y_0)=0$ .

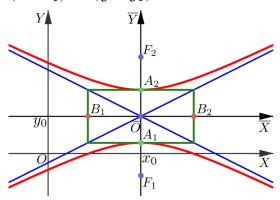


Fig. 17: Gráfico da elipse  $\mathcal{H}: \frac{(y-y_0)^2}{\alpha^2} - \frac{(x-x_0)^2}{b^2} = 1$  .

# 4. Equação do segundo grau com B = 0 e AC < 0.

Seja  $\mathcal{H}$  a hipérbole com centro no ponto  $(x_0, y_0)$  e reta focal paralela ao eixo-OX:

$$\mathcal{H}: \frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1 \, .$$

Desenvolvendo, obtemos

$$b^2x^2 - a^2y^2 - 2x_0b^2x + 2y_0a^2y + x_0^2b^2 - a^2y_0^2 - a^2b^2 = 0$$
,

que é da forma

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$$

onde  $A = b^2$ , B = 0,  $C = -a^2$ ,  $D = -2x_0b^2$ ,  $E = 2y_0a^2$ ,  $F = x_0^2b^2 - a^2y_0^2 - a^2b^2$ . Em particular, os coeficientes  $A \in C$  têm sinais opostos e B = 0. Podemos verificar que o mesmo ocorre quando desenvolvemos a equação da hipérbole de reta focal paralela ao eixo-OY.

Reciprocamente, temos a seguinte proposição:

## Proposição 1

Se os coeficientes A e C na equação

$$Ax^2 + Cy^2 + Dx + Ey + F = 0 \tag{*}$$

têm sinais opostos, então a equação representa:

uma hipérbole de eixos paralelos aos eixos coordenados;

ou

• um par de retas concorrentes.

#### Prova.

Suponhamos que A > 0 e C < 0. Então,

$$\begin{split} Ax^2 + Dx - &(-Cy^2 - Ey) = -F, \\ \frac{\left(x^2 + \frac{D}{A}x\right)}{-C} - \frac{\left(y^2 + \frac{E}{C}y\right)}{A} = \frac{F}{AC}, \\ \frac{\left(x + \frac{D}{2A}\right)^2}{-C} - \frac{\left(y + \frac{E}{2C}\right)^2}{A} = \frac{F}{AC} - \frac{D^2}{4A^2C} - \frac{E^2}{4AC^2}, \\ \frac{\left(x + \frac{D}{2A}\right)^2}{-C} - \frac{\left(y + \frac{E}{2C}\right)^2}{A} = \frac{4ACF - CD^2 - AE^2}{4A^2C^2}, \end{split}$$

Logo a equação  $(\star)$  representa uma hipérbole com eixos paralelos aos eixos coordenados se  $4ACF - CD^2 - AE^2 \neq 0$ , e  $(\star)$  representa o par de retas concorrentes

$$y + \frac{E}{2C} = \pm \sqrt{\frac{-A}{C}} \left( x + \frac{D}{2A} \right) ,$$

se 
$$4ACF - CD^2 - AE^2 = 0$$

O caso em que a equação do segundo grau  $Ax^2 + Cy^2 + Dx + Ey + F = 0$ , com AC < 0, representa um par de retas concorrentes, é chamado de **caso degenerado da hipérbole**.

### **Exemplo 1**

Determine se as equações abaixo representam uma hipérbole ou uma hipérbole degenerada. Caso seja uma hipérbole, determine seus principais elementos.

(a) 
$$9x^2 - 25y^2 - 225 = 0$$
.

Solução.

Como  $9x^2 - 25y^2 = 225$ , obtemos, dividindo por 225, a equação

$$\frac{x^2}{25} - \frac{y^2}{9} = 1,$$

que representa uma hipérbole com:

- a = 5, b = 3 e  $c = \sqrt{a^2 + b^2} = \sqrt{25 + 9} = \sqrt{34}$ .
- *centro*: C = (0, 0).
- reta focal:  $\ell = eixo OX : u = 0$ .
- reta não-focal:  $\ell' = eixo-OY : x = 0$ .

- *vértices*:  $A_1 = (-5, 0)$  *e*  $A_2 = (5, 0)$ .
- vértices imaginários (na reta não-focal):  $B_1 = (0, -3)$  e  $B_2 = (0, 3)$ .
- focos:  $F_1 = (-\sqrt{34}, 0)$  e  $F_2 = (\sqrt{34}, 0)$ .
- assíntotas:  $y = \pm \frac{3}{5}x$ , ou seja  $3x \pm 5y = 0$ .

**(b)** 
$$x^2 - 2y^2 + 6x + 4y + 9 = 0$$
.

#### Solução.

Completando os quadrados, obtemos:

$$x^{2} + 6x - 2(y^{2} - 2y) = -9$$

$$\iff (x^{2} + 6x + 9) - 2(y^{2} - 2y + 1) = -9 + 9 - 2$$

$$\iff (x + 3)^{2} - 2(y - 1)^{2} = -2$$

$$\iff (y - 1)^{2} - \frac{(x + 3)^{2}}{2} = 1.$$

Logo, a equação representa uma hipérbole com:

• 
$$a = 1$$
,  $b = \sqrt{2}$  e  $c = \sqrt{a^2 + b^2} = \sqrt{1 + 2} = \sqrt{3}$ .

- *centro*: C = (-3, 1).
- reta focal:  $\ell$  : x = -3, paralela ao eixo-OY.
- reta não-focal:  $\ell'$ : y = 1, paralela ao eixo-OX.
- *vértices*:  $A_1 = (-3, 0)$  *e*  $A_2 = (-3, 2)$ .
- vértices imaginários (na reta não-focal):  $B_1 = (-3 \sqrt{2}, 1)$  e  $B_2 = (-3 + \sqrt{2}, 1)$ .
- focos:  $F_1 = (-3, 1 \sqrt{3})$  e  $F_2 = (-3, 1 + \sqrt{3})$ .
- assíntotas  $(x + 3) = \pm \sqrt{2}(y 1)$ , ou seja,  $x + \sqrt{2}y = -3 + \sqrt{2}$  e  $x \sqrt{2}y = -3 \sqrt{2}$ .

(c) 
$$9x^2 - 16y^2 + 90x - 128y - 31 = 0$$
.

#### Solução.

Completando os quadrados, obtemos:

$$9(x^{2} + 10x) - 16(y^{2} + 8y) = 31$$

$$\iff 9(x^{2} + 10x + 25) - 16(y^{2} + 8y + 16) = 31 + 9 \times 25 - 16 \times 16$$

$$\iff 9(x + 5)^{2} - 16(y + 4)^{2} = 0$$

$$\iff 9(x + 5)^{2} = 16(y + 4)^{2}$$

$$\iff 3(x + 5) = \pm 4(y + 4)$$

$$\iff 3(x + 5) \pm 4(y + 4) = 0.$$

Logo, a equação representa o par de retas, 3x + 4y = -31 e 3x - 4y = 1, que se cortam no ponto (-5, -4).

### **Exemplo 2**

Determine a equação da hipérbole equilátera com focos nos pontos  $(-\sqrt{8},0)$  e  $(\sqrt{8},0)$ .

#### Solução.

Como  $F_1 = (-\sqrt{8}, 0)$  e  $F_2 = (\sqrt{8}, 0)$ , temos que o centro da hipérbole é  $C = \frac{F_1 + F_2}{2} = (0, 0)$  e a reta focal é o eixo-OX. Sendo a hipérbole equilátera, temos a = b. Como  $c = \sqrt{8}$  e  $c^2 = a^2 + b^2$ , obtemos  $8 = a^2 + a^2 = 2a^2$ , isto é,  $a^2 = 4$ . Logo, a = b = 2 e

$$\mathcal{H}: \frac{x^2}{4} - \frac{y^2}{4} = 1,$$

é a equação da hipérbole.

Além disso,  $A_1 = (-2,0)$  e  $A_2 = (2,0)$  são os vértices,  $B_1 = (0,-2)$  e  $B_2 = (0,2)$  são os vértices imaginários e  $x = \pm y$  são as assíntotas da hipérbole  $\mathcal{H}$ .

### **Exemplo 3**

Mostre que a excentricidade de qualquer hipérbole equilátera é  $\sqrt{2}$ .

#### Solução.

Como 
$$a=b$$
 e  $c^2=a^2+b^2$ , temos que  $c^2=2a^2$ , ou seja,  $c=\sqrt{2}a$ . Logo,  $e=\frac{c}{a}=\frac{\sqrt{2}a}{a}=\sqrt{2}$ .  $\square$ 

### **Exemplo 4**

Os vértices de uma hipérbole são os pontos (0,3) e (0,-3), e um de seus focos é o ponto (0,5). Determine a equação da hipérbole, o comprimento do seu eixo focal e suas assíntotas.

#### Solução.

A hipérbole tem centro  $C = \frac{(0,3) + (0,-3)}{2} = (0,0)$ ; reta focal=eixo-OY; c = d((0,0),(0,5)) = 5; a = d((0,0),(0,3)) = 3; (0,-5) é o outro foco;  $b^2 = c^2 - a^2 = 25 - 9 = 16$ .

Então  $\mathcal{H}: \frac{y^2}{9} - \frac{x^2}{16} = 1$  é a equação da hipérbole,  $y = \pm \frac{4}{3}y$  são as suas assíntotas e  $2\alpha = 6$  o comprimento do seu eixo focal.  $\square$ 

## **Exemplo 5**

O centro de uma hipérbole é a origem, sua reta focal é um dos eixos coordenados e uma de suas assíntotas é a reta 2x - 5y = 0. Determine a equação da hipérbole  $\mathcal{H}$ , supondo que o ponto  $(4,6) \in \mathcal{H}$ .

#### Solução.

Como o centro é a origem e a reta focal (eixo-OX ou eixo-OY) é uma bissetriz das assíntotas, a reta 2x + 5y = 0 é a outra assíntota. Vamos analisar os dois casos possíveis:

Reta focal = eixo-OX.

Neste caso,  $\mathcal{H}: \frac{x^2}{\mathfrak{a}^2} - \frac{y^2}{\mathfrak{b}^2} = 1$  e  $\frac{b}{\mathfrak{a}} = \frac{2}{5}$ , isto é,  $b = \frac{2}{5}\mathfrak{a}$ . Como  $(4,6) \in \mathcal{H}$ , temos que  $\frac{16}{\mathfrak{a}^2} - \frac{36}{\frac{4\mathfrak{a}^2}{25}} = 1$ , ou seja,  $0 > 16 \times 4 - 25 \times 36 = 4\mathfrak{a}^2$ , o qual é absurdo, pois  $4\mathfrak{a}^2 \geq 0$ .

Reta focal = eixo-OY.

Neste caso, 
$$\mathcal{H}: \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
 e  $\frac{b}{a} = \frac{5}{2}$ , isto é,  $a = \frac{2}{5}b$  . Como  $(4,6) \in \mathcal{H}$ , temos que  $\frac{36}{4b^2} - \frac{16}{b^2} = 1$ , ou seja,  $36 \times 25 - 16 \times 4 = 4b^2$ . Logo,  $b^2 = 9 \times 25 - 16 = 209$ ,  $a^2 = \frac{836}{25}$  e  $\mathcal{H}: \frac{y^2}{856} - \frac{x^2}{209} = 1$  é a equação da hipérbole.  $\Box$ 

### **Exemplo 6**

Determine os vértices, os focos e a excentricidade da hipérbole conjugada da hipérbole  $9x^2 - 4u^2 = 36$ .

#### Solução.

A hipérbole  $\mathcal{H}: 9x^2-4y^2=36$ , que também pode ser escrita na forma  $\mathcal{H}: \frac{x^2}{4}-\frac{y^2}{9}=1$ , tem centro na origem, reta focal = eixo-OX,  $\alpha=2$ , b=3 e  $c=\sqrt{\alpha^2+b^2}=\sqrt{13}$ .

Então a hipérbole  $\mathcal{H}'$ , conjugada da hipérbole  $\mathcal{H}$ , tem centro na origem, a'=b=3, b'=a=2,  $c'=c=\sqrt{13}$  e reta focal = eixo-OY.

Logo  $\mathcal{H}': \frac{y^2}{9} - \frac{x^2}{4} = 1$  é a equação da hipérbole conjugada da hipérbole  $\mathcal{H}$ ,  $F_1 = (0, -\sqrt{13})$  e  $F_2 = (0, \sqrt{13})$  são seus focos,  $A_1 = (0, -3)$  e  $A_2 = (0, 3)$  são seus vértices e  $e = \frac{c}{a} = \frac{\sqrt{13}}{3}$  é a sua excentricidade.  $\square$ 

## Exemplo 7

Determinar o ângulo agudo de interseção das assíntotas da hipérbole  $9x^2-y^2-36x-2y+44=0$ .

#### Solução.

A equação da hipérbole se escreve na forma:

$$\begin{split} 9(x^2 - 4x) - (y^2 + 2y) &= -44 \\ 9(x - 2)^2 - (y + 1)^2 &= -44 + 36 - 1 = -9 \\ \frac{(y + 1)^2}{9} - (x - 2)^2 &= 1 \,. \end{split}$$

Então C=(2,-1) é o centro, a reta focal é  $\ell: x=2$  (paralela ao eixo-OY),  $\alpha=3, \ b=1$ ;  $c=\sqrt{\alpha^2+b^2}=\sqrt{10}$  e as assíntotas são:  $x-2=\pm\frac{1}{3}(y+1)$ , ou seja, y=3x-7 e y=-3x+5.

Logo tg  $\beta = 3$ , tg  $\alpha = -3$ ,  $\theta = \alpha - \beta$  e

$$tg \theta = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta} = \frac{-6}{1 - 9} = \frac{3}{4},$$

onde  $\beta$  e  $\alpha$  são os ângulos que as retas y=3x-7 e y=-3x+5, respectivamente, fazem com o semi-eixo OX positivo, e  $\theta$  é o ângulo agudo entre as assíntotas.  $\Box$ 

### **Exemplo 8**

As retas r : 2x + y = 3 e s : 2x - y = 1 são as assíntotas de uma hipérbole que passa pelo ponto (6,2). Determine sua equação.

#### Solução.

O centro C=(x,y) da hipérbole é o ponto de interseção das assíntotas, isto é, (x,y) é a solução do sistema:

$$\begin{cases} 2x + y = 3 \\ 2x - y = 1. \end{cases}$$

Logo C = (1,1) é o centro, e a reta focal é a reta x = 1 ou a reta y = 1, que são as retas bissetrizes das assíntotas. Vamos analisar os dois casos possíveis.

• Reta focal  $\ell$ : y = 1, paralela ao eixo-OX.

Neste caso,  $\mathcal{H}: \frac{(x-1)^2}{\alpha^2} - \frac{(y-1)^2}{b^2} = 1$  e  $\frac{b}{\alpha} = 2$ , ou seja,  $b = 2\alpha$ . Como  $b^2 = 4\alpha^2$  e  $(6,2) \in \mathcal{H}$ , temos que  $\mathcal{H}: 4(x-1)^2 - (y-1)^2 = 4\alpha^2$  e  $4 \times 25 - 1 = 99 = 4\alpha^2$ .

Portanto, 
$$\mathcal{H}: 4(x-1)^2-(y-1)^2=99$$
, ou seja,  $\mathcal{H}: \frac{(x-1)^2}{\frac{99}{4}}-\frac{(y-1)^2}{99}=1$ .

• Reta focal  $\ell$  : x = 1, paralela ao eixo-OY.

Neste caso,  $\mathcal{H}: \frac{(y-1)^2}{a^2} - \frac{(x-1)^2}{b^2} = 1$  e  $\frac{b}{a} = \frac{1}{2}$ , ou seja, a = 2b. Como  $a^2 = 4b^2$  e  $(6,2) \in \mathcal{H}$ , temos que  $\mathcal{H}: (y-1)^2 - 4(x-1)^2 = 4b^2$  e  $1 - 4 \times 25 = 4b^2 = -99 < 0$ , o que é absurdo.

Assim, a equação procurada corresponde ao primeiro caso:  $\mathcal{H}:4(x-1)^2-(y-1)^2=99$ .  $\square$ 

### **Exemplo 9**

Mostre que as assíntotas de uma hipérbole não a intersectam.

#### Solução.

Podemos supor, sem perda de generalidade (escolhendo o sistema de coordenadas de maneira adequada), que a hipérbole é dada pela equação:

$$\mathcal{H}: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

ou seja,  $\mathcal{H} : b^2 x^2 - a^2 y^2 = a^2 b^2$ .

Como  $r_+$ : bx - ay = 0 e  $r_-$ : bx + ay = 0 são as assíntotas da hipérbole e

$$\mathcal{H}: (bx - ay)(bx + ay) = a^2b^2$$

temos que  $r_+ \cap \mathcal{H} = \emptyset$  e  $r_- \cap \mathcal{H} = \emptyset$ , pois  $(bx - ay)(bx + ay) = 0 \neq a^2b^2$  se  $(x,y) \in r_- \cup r_+$ .  $\square$ 

### **Exemplo 10**

Mostre que uma reta r paralela a uma assíntota de uma hipérbole intersecta a curva em apenas um ponto.

### Solução.

Podemos supor, sem perda de generalidade, que a hipérbole é dada pela equação:

$$\mathcal{H}: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

Como  $bx \pm ay = 0$  são as assíntotas da hipérbole, temos que r é da forma  $r:bx \pm ay = m$ , onde  $m \neq 0$ .

Seja 
$$r:bx+ay=m$$
. Então,  $P=(x,y)\in r\cap \mathcal{H}$  se, e somente se,  $bx+ay=m$  e 
$$a^2b^2=b^2x^2-a^2y^2=(bx+ay)(bx-ay)=m(bx-ay),$$

isto é, se, e somente se, bx + ay = m e  $bx - ay = \frac{a^2b^2}{m}$ .

$$\text{Como as retas } \ell_1: bx + \alpha y = m \text{ e } \ell_2: bx - \alpha y = \frac{\alpha^2 b^2}{m} \text{ são concorrentes, pois } \begin{vmatrix} b & \alpha \\ b & -\alpha \end{vmatrix} = -2\alpha b \neq 0,$$

temos que  $r \cap \mathcal{H}$  consiste de um único ponto, dado pela interseção das retas  $\ell_1$  e  $\ell_2$ .

De modo análogo, podemos provar que  $r \cap \mathcal{H}$  consiste de um único ponto se r é da forma  $bx - ay = m, m \neq 0.$ 

## **Exemplo 11**

A reta tangente a uma hipérbole  $\mathcal{H}$  num ponto  $P \in \mathcal{H}$  é a única reta não paralela às assíntotas que intersecta  $\mathcal{H}$  só nesse ponto.

Mostre que a reta tangente à hipérbole  $\mathcal{H}: b^2x^2-\alpha^2y^2=\alpha^2b^2$ , em um ponto  $P=(x_0,y_0)$  sobre a curva, tem por equação

$$b^2 x_0 x - a^2 y_0 y = a^2 b^2.$$

#### Solução.

Seja

$$r:\left\{\begin{array}{l} x=x_0+mt\\ y=y_0+nt \end{array}\right.;\quad t\in\mathbb{R},$$

a reta tangente à hipérbole  $\mathcal{H}$  no ponto  $P = (x_0, y_0) \in \mathcal{H}$ .

Então, 
$$Q = (x_0 + mt, y_0 + nt) \in \mathcal{H} \cap r$$
 se, e somente se, 
$$b^2(x_0 + mt)^2 - a^2(y_0 + nt)^2 = a^2b^2$$
 
$$\iff b^2(x_0^2 + 2mx_0t + m^2t^2) - a^2(y_0^2 + 2ny_0t + n^2t^2) = a^2b^2$$
 
$$\iff (b^2m^2 - a^2n^2)t^2 + (2x_0mb^2 - 2y_0na^2)t + b^2x_0^2 - a^2y_0^2 - a^2b^2 = 0$$
 
$$\iff (b^2m^2 - a^2n^2)t^2 + (2x_0mb^2 - 2y_0na^2)t = 0,$$

já que  $b^2x_0^2 - a^2y_0^2 = a^2b^2$ .

Como  $b^2m^2 - a^2n^2 = (bm - an)(bm + an)$ , temos que  $b^2m^2 - a^2n^2 = 0$  se, e somente se, bm - an = 0 ou bm + an = 0, se, e somente se,  $\begin{vmatrix} m & n \\ a & b \end{vmatrix} = 0$  ou  $\begin{vmatrix} m & n \\ -a & b \end{vmatrix} = 0$  se, e somente se,  $(m,n) \parallel (a,b)$  ou  $(m,n) \parallel (-a,b)$ .

Além disso, como as assíntotas  $r_+$ : bx - ay = 0 e  $r_-$ : bx + ay = 0 são perpendiculares, respectivamente, aos vetores (b, -a) e (b, a), temos que (a, b) e (-a, b) são vetores paralelos às retas  $r_+$  e  $r_-$ , respectivamente.

Logo  $b^2m^2 - a^2n^2 = 0$  se, e somente se, r é paralela à assíntota  $r_+$  ou à assíntota  $r_-$  da hipérbole. Então  $b^2m^2 - a^2n^2 \neq 0$ , já que, por definição, r não é paralela às assíntotas.

Sendo que  $b^2m^2-\alpha^2n^2\neq 0$  e  $r\cap \mathcal{H}$  consiste de um único ponto, temos que

$$2x_0b^2m - 2y_0a^2n = 0$$

ou seja,  $(m, n) \perp (2x_0b^2, -2y_0a^2)$ .

Logo o vetor  $(x_0b^2, -y_0a^2)$  é perpendicular à reta r. Assim,

$$r: b^2x_0x - a^2y_0y = b^2x_0^2 - a^2y_0^2 = a^2b^2$$

já que  $P=(x_0,y_0)\in r$  e  $b^2x_0^2-\alpha^2y_0^2=\alpha^2b^2.$   $_{\square}$ 

### **Exemplo 12**

Determine os valores de  $m \in \mathbb{R}$  para os quais as retas da família  $r_m : y = mx - 1$  são tangentes à hipérbole  $\mathcal{H} : 4x^2 - 9y^2 = 36$ .

#### Solução.

A reta  $r_m$  é tangente a  $\mathcal H$  se, e somente se,  $r_m \cap \mathcal H$  consiste apenas de um ponto e  $r_m$  não é paralela às assíntotas.

Como a hipérbole  $\mathcal{H}: \frac{x^2}{9} - \frac{y^2}{4} = 1$  tem centro na origem, reta focal = eixo-OX,  $\alpha = 3$  e b = 2, suas assíntotas,  $y = \pm \frac{2}{3}x$ , têm inclinação  $\pm \frac{2}{3}$  em relação ao eixo-OX. Logo m  $\neq \pm \frac{2}{3}$ , ou seja,  $9m^2 - 4 \neq 0$ .

Além disso,  $r_{\mathfrak{m}}\cap \mathcal{H}$  consiste de um único ponto. Isto é, a equação

$$4x^2 - 9(mx - 1)^2 = 36 \iff (4 - 9m^2)x^2 + 18mx - 45 = 0$$

tem apenas uma solução.

Logo a equação acima tem discriminante

$$\begin{split} \Delta &= (18m)^2 + 4 \times 45(4 - 9m^2) = 0 \\ \iff 18m^2 + 10(4 - 9m^2) = 0 \\ \iff -72m^2 + 40 = 0 \\ \iff m^2 = \frac{40}{72} \iff m^2 = \frac{5}{9} \iff m = \pm \frac{\sqrt{5}}{3} \,. \end{split}$$

Assim,  $y=\frac{\sqrt{5}}{3}x-1$  e  $y=-\frac{\sqrt{5}}{3}x-1$  são as retas tangentes à hipérbole que pertencem à família de retas  $r_m$ .  $\square$