Aula 23

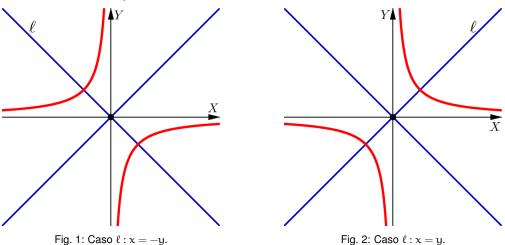
1. Exemplos diversos

Exemplo 1

Determine a equação da hipérbole equilátera, \mathcal{H} , que passa pelo ponto Q=(-1,-5) e tem os eixos coordenados como assíntotas.

Solução.

Como as assíntotas da hipérbole são os eixos coordenados e a reta focal é uma das bissetrizes das assíntotas, temos que $\ell : x = -y$ ou $\ell : x = y$.



Se a reta focal ℓ fosse a reta x=-y, a hipérbole estaria inteiramente contida no 2° e 4° quadrantes, o que é um absurdo, pois o ponto Q=(-1,-5), pertencente à hipérbole \mathcal{H} , está no 3° quadrante.

Logo, $\ell : x = y$.

Além disso, o centro C da hipérbole, ponto de intersecção das assíntotas, é a origem. Então, seus focos são da forma $F_1=(-\mathfrak{m},-\mathfrak{m})$ e $F_2=(\mathfrak{m},\mathfrak{m})$, para algum $\mathfrak{m}\in\mathbb{R},\,\mathfrak{m}>0$.

Como $c=d(F_1,C)=d(F_2,C),$ $c^2=\alpha^2+b^2$ e $\alpha=b$, já que a hipérbole é equilátera, temos que: $\alpha^2+\alpha^2=c^2=m^2+m^2$, ou seja, $\alpha=m$.

Assim, um ponto P = (x, y) pertence à hipérbole \mathcal{H} se, e só se,

$$\left| \sqrt{(x+m)^2 + (y+m)^2} - \sqrt{(x-m)^2 + (y-m)^2} \right| = 2m$$

$$\iff \sqrt{(x+m)^2 + (y+m)^2} = \pm 2m + \sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff (x+m)^2 + (y+m)^2 = 4m^2 + (x-m)^2 + (y-m)^2 \pm 4m\sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff x^2 + 2mx + m^2 + y^2 + 2my + m^2 = 4m^2 + x^2 - 2mx + m^2 + y^2 - 2my + m^2$$

$$\pm 4m\sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff 2mx + 2my = 4m^2 - 2mx - 2my \pm 4m\sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff 4mx + 4my = 4m^2 \pm 4m\sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff x + y = m \pm \sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff x + y - m = \pm \sqrt{(x-m)^2 + (y-m)^2}$$

$$\iff (x+y-m)^2 = (x-m)^2 + (y-m)^2$$

$$\iff x^2 + y^2 + 2xy + m^2 - 2mx - 2my = x^2 - 2mx + m^2 + y^2 - 2my + m^2$$

$$\iff 2xy = m^2$$

$$\iff xy = \frac{m^2}{2}.$$

Como $Q=(-1,-5)\in\mathcal{H}$, temos que $\frac{m^2}{2}=(-1)(-5)$, isto é, $m^2=10$. Logo, xy=5 é a equação da hipérbole \mathcal{H} . \square

Exemplo 2

Seja $\mathcal C$ uma cônica centrada no ponto C=(1,2), de excentricidade $e=\frac{1}{2}$, reta focal paralela ao eixo-OX e d(F,L)=3, onde $\mathcal L$ é a diretriz correspondente ao foco F de $\mathcal C$.

Classifique a cônica e determine seus vértices, seus focos, suas diretrizes e sua equação.

Solução.

A cônica $\mathcal C$ é uma elipse, pois $e=\frac{1}{2}<1.$ Então,

$$3 = d(F, \mathcal{L}) = d(C, \mathcal{L}) - d(C, F) = \frac{\alpha}{e} - c = \frac{\alpha}{e} - \alpha e \iff 3 = 2\alpha - \frac{\alpha}{2} = \frac{3\alpha}{2} \iff \alpha = 2.$$

Sendo a=2, temos que $c=ae=2\times\frac{1}{2}=1$ e $b=\sqrt{a^2-c^2}=\sqrt{4-1}=\sqrt{3}.$

Além disso, a reta ℓ : y=2, paralela ao eixo-OX, é a reta focal da cônica \mathcal{C} . Logo,

$$C: \frac{(x-1)^2}{4} + \frac{(y-2)^2}{3} = 1$$

é a equação canônica da elipse.

Nessa elipse:

• $A_1 = (-1, 2)$ e $A_2 = (3, 2)$ são os vértices sobre a reta focal.

- $B_1 = (1, 2 \sqrt{3})$ e $B_2 = (1, 2 + \sqrt{3})$ são os vértices sobre a reta não-focal.
- $F_1 = (0,2)$ e $F_2 = (2,2)$ são os focos.
- \mathcal{L}_1 : $x=1-\frac{\alpha}{e}=-3$ e \mathcal{L}_2 : $x=1+\frac{\alpha}{e}=5$ são as diretrizes correspondentes aos focos F_1 e F_2 , respectivamente. \square

Exemplo 3

Seja \mathcal{C} uma cônica centrada no ponto (1,2), de excentricidade e=2, reta focal paralela ao eixo-OY e $d(F,\mathcal{L})=3$, onde \mathcal{L} é a diretriz correspondente ao foco F de \mathcal{C} .

Classifique a cônica e determine seus vértices, seus focos, suas diretrizes e sua equação.

Solução.

A cônica \mathcal{C} é uma hipérbole, pois e = 2 > 1. Então,

$$3 = d(F, \mathcal{L}) = d(F, C) - d(C, \mathcal{L}) = c - \frac{a}{e} = ae - \frac{a}{e} \iff 3 = 2a - \frac{a}{2} = \frac{3a}{2} \iff a = 2.$$

Logo,
$$c = ae = 4$$
 e $b = \sqrt{c^2 - a^2} = \sqrt{16 - 4} = \sqrt{12} = 2\sqrt{3}$.

Como a reta focal ℓ : x = 1 é paralela ao eixo-OY, temos que:

$$C: \frac{(y-2)^2}{4} - \frac{(x-1)^2}{12} = 1$$
,

é a equação da hipérbole, com:

- vértices: $A_1 = (1,0)$ e $A_2 = (1,4)$.
- vértices imaginários: $B_1 = (1 2\sqrt{3}, 2)$ e $B_2 = (1 + 2\sqrt{3}, 2)$.
- focos: $F_1 = (1, -2)$ e $F_2 = (1, 6)$.
- diretrizes: \mathcal{L}_1 : $y=2-\frac{\alpha}{e}=1$ e \mathcal{L}_2 : $y=2+\frac{\alpha}{e}=3$, correspondentes aos focos F_1 e F_2 , respectivamente.
- assíntotas: $x 1 = \pm \sqrt{3} (y 2)$.

Exemplo 4

Classifique, em função do parâmetro $k \in \mathbb{R}$, a família de curvas

$$4x^2 + ky^2 + 8kx + 20k + 24 = 0$$

indicando, nos casos não-degenerados, se a reta focal é paralela ao eixo-OX ou ao eixo-OY.

Solução.

Completando o quadrado na equação, temos que:

$$4x^{2} + ky^{2} + 8kx + 20k + 24 = 0$$

$$\iff 4(x^{2} + 2kx) + ky^{2} = -20k - 24$$

$$\iff 4(x^{2} + 2kx + k^{2}) + ky^{2} = -20k - 24 + 4k^{2}$$

$$\iff 4(x + k)^{2} + ky^{2} = 4(k^{2} - 5k - 6)$$

$$\iff 4(x + k)^{2} + ky^{2} = 4(k + 1)(k - 6).$$

Estudo do sinal dos coeficientes $k \in (k+1)(k-6)$ da equação:

	$-\infty < k < -1$	k = -1	-1 < k < 0	k = 0	0 < k < 6	k = 6	$6 < k < +\infty$
k	_	_	_	0	+	+	+
(k+1)(k-6)	+	0	_	_	_	0	+

Então, para:

- $k \in (-\infty, -1)$, a equação representa uma hipérbole de centro (-k, 0) e reta focal = eixo-OX.
- k = -1, a equação $4(x-1)^2 y^2 = 0$ representa o par de retas concorrentes $y = \pm 2(x-1)$ que passam pelo ponto (1,0).
- $k \in (-1,0)$, a equação representa uma hipérbole de centro (-k,0) e reta focal $\ell : x = -k$ paralela ao eixo-OY.
- k = 0, a equação $4x^2 = -24$ representa o conjunto vazio.
- $k \in (0,6)$, a equação representa o conjunto vazio, pois $4(x+k)^2 + ky^2 \ge 0$ e 4(k+1)(k-6) < 0 nesse intervalo.
- k = 6, a equação $4(x + 6)^2 + 6y^2 = 0$ representa o ponto (-6, 0).
- $k \in (6, +\infty)$, a equação, que pode ser escrita na forma:

$$\frac{\frac{(x+k)^2}{4(k+1)(k-6)}}{\frac{4}{4}} + \frac{y^2}{\frac{4(k+1)(k-6)}{k}} = 1,$$

representa uma elipse de centro (-k,0) e reta focal $\ell=$ eixo-OX, pois $\frac{4(k+1)(k-6)}{4}>\frac{4(k+1)(k-6)}{k}$ nesse intervalo. \Box

Exemplo 5

Sejam OXY um sistema de eixos ortogonais e $O\overline{X}\overline{Y}$ o sistema de eixos ortogonais obtido por uma rotação positiva de um ângulo θ dos eixos OX e OY, onde $\cos\theta=\frac{4}{5}$ e $\sin\theta=\frac{3}{5}$.

Uma parábola $\mathcal P$ nas coordenadas \overline{x} e \overline{y} tem foco no ponto $F = \left(\frac{12}{5}, \frac{16}{5}\right)$ e vértice no ponto $V = \left(\frac{12}{5}, -\frac{9}{5}\right)$.

- (a) Determine a equação da parábola nas coordenadas \overline{x} e \overline{y} , e nas coordenadas x e y.
- (b) Determine o foco, o vértice, a reta focal e a diretriz da parábola nas coordenadas x e y.
- (c) Faça um esboço da curva no sistema de eixos OXY, indicando seus elementos.

Solução.

(a) Como $p = d(F, V) = \frac{25}{5} = 5$ e, nas coordenadas \overline{x} e \overline{y} , a reta focal $\ell : \overline{x} = \frac{12}{5}$ é paralela ao eixo $-O\overline{Y}$ e o foco F encontra-se acima do vértice V, temos que

$$\mathcal{P}: \left(\overline{x} - \frac{12}{5}\right)^2 = 20\left(\overline{y} + \frac{9}{5}\right)$$

é a equação da parábola, cuja diretriz é a reta $\mathcal{L}: \overline{y} = -\frac{9}{5} - p = -\frac{9}{5} - 5 = -\frac{34}{5}$.

Usando as relações de mudança de coordenadas:

$$\overline{x} = \cos \theta \ x + \sin \theta \ y = \frac{1}{5} (4x + 3y)$$

$$\overline{y} = -\sin \theta \ x + \cos \theta \ y = \frac{1}{5} (-3x + 4y) \ ,$$
(1)

obtemos que a equação da parábola, nas coordenadas x e y, é dada por:

$$\left(\frac{1}{5}(4x+3y) - \frac{12}{5}\right)^2 = 20\left(\frac{1}{5}(-3x+4y) + \frac{9}{5}\right)$$

$$\iff (4x+3y-12)^2 = \frac{20\times25}{5}(-3x+4y+9)$$

$$\iff (4x+3y)^2 - 24(4x+3y) + 144 = 100(-3x+4y+9)$$

$$\iff 16x^2 + 24xy + 9y^2 - 96x - 72y + 144 = -300x + 400y + 900$$

$$\iff \mathcal{P}: 16x^2 + 24xy + 9y^2 + 204x - 472y - 756 = 0$$

(b) Pelas relações de mudança de coordenadas (1), temos que, $\ell:\frac{1}{5}(4x+3y)=\frac{12}{5}$, isto é, $\ell:4x+3y=12$ é a equação da reta focal, e $\mathcal{L}:\frac{1}{5}(-3x+4y)=-\frac{34}{5}$, isto é, $\mathcal{L}:-3x+4y=-34$ é a equação da diretriz nas coordenadas x e y.

E, pelas relações de mudança de coordenadas:

$$x = \cos \theta \ \overline{x} - \sin \theta \ \overline{y} = \frac{1}{5} (4\overline{x} - 3\overline{y})$$
$$y = \sin \theta \ \overline{x} + \cos \theta \ \overline{y} = \frac{1}{5} (3\overline{x} + 4\overline{y}),$$

obtemos que

$$F = \left(\frac{1}{5}\left(\frac{48}{5} - \frac{48}{5}\right), \frac{1}{5}\left(\frac{36}{5} + \frac{64}{5}\right)\right) = (0,4)$$

é o foco e

$$V = \left(\frac{1}{5}\left(\frac{48}{5} + \frac{27}{5}\right), \frac{1}{5}\left(\frac{36}{5} - \frac{36}{5}\right)\right) = (3,0)$$

é o vértice da parábola nas coordenadas x e y.

(c) Na figura 3 mostramos o esboço da parábola P. □

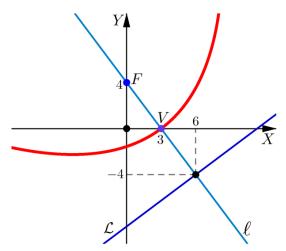


Fig. 3: Parábola $\mathcal{P}: 16x^2 + 24xy + 9y^2 + 204x - 472y - 756 = 0$.

Exemplo 6

Esboçe, detalhadamente, a região do plano dada pelo sistema de inequações:

$$\mathcal{R}: \begin{cases} x^2 + y^2 \ge 4 \\ 16x^2 + y^2 - 8y \ge 0 \\ -4x^2 + y^2 - 4y \le 0 \\ |x| < 2. \end{cases}$$

Solução.

A região \mathcal{R} é a intersecção das seguintes quatro regiões do plano:

$$\mathcal{R}_1 = \{(x, y) \mid x^2 + y^2 \ge 4\}$$

$$\mathcal{R}_2 = \{(x, y) \mid 16x^2 + y^2 - 8y \ge 0\}$$

$$\mathcal{R}_3 = \{(x, y) \mid -4x^2 + y^2 - 4y \le 0\}$$

$$\mathcal{R}_4 = \{(x, y) \mid |x| \le 2\}.$$

Descrição da região R₁.

A região \mathcal{R}_1 consiste dos pontos exteriores à circunferência $\mathcal{C}_1: x^2 + y^2 = 4$ de centro na origem e raio 2.

Descrição da região R₂.

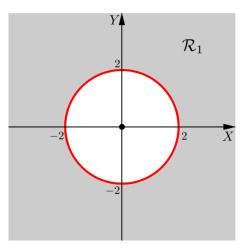


Fig. 4: Circunferência \mathcal{C}_1 e região \mathcal{R}_1 .

Para descrever a região \mathcal{R}_2 vamos, primeiro, determinar a cônica $\mathcal{C}_2:16x^2+y^2-8y=0.$

Completando o quadrado na equação da curva C_2 obtemos:

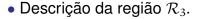
$$\begin{aligned} 16x^2 + y^2 - 8y &= 0 &\iff 16x^2 + (y^2 - 8y + 16) = 16 \\ &\iff 16x^2 + (y - 4)^2 = 16 \\ &\iff \mathcal{C}_2 : x^2 + \frac{(y - 4)^2}{16} = 1 \,. \end{aligned}$$

Então, \mathcal{C}_2 é a elipse de centro (0,4); reta focal $\ell=\text{eixo-OY}$; reta não-focal: $\ell': y=4; \ \alpha^2=16, \ b^2=1, \ \text{ou seja}, \ \alpha=4 \ \text{eb}=1;$ vértices sobre a reta focal $A_1=(0,0)$ e $A_2=(0,8)$; vértices sobre a reta não-focal $B_1=(-1,4)$ e $B_2=(1,4)$.

Portanto,

$$\mathcal{R}_2: 16x^2 + y^2 - 8y \ge 0 \iff \mathcal{R}_2: x^2 + \frac{(y-4)^2}{16} \ge 1$$

consiste dos pontos do plano exteriores ou sobre a elipse C_2 .



Para descrever a região \mathcal{R}_3 vamos identificar a cônica

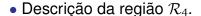
$$C_3: -4x^2 + y^2 - 4y = 0.$$

Completando o quadrado na equação de C_3 , temos:

$$-4x^{2} + y^{2} - 4y = 0 \iff -4x^{2} + (y^{2} - 4y + 4) = 4$$
$$\iff -4x^{2} + (y - 2)^{2} = 4$$
$$\iff \mathcal{C}_{3} : -x^{2} + \frac{(y - 2)^{2}}{4} = 1,$$

que é a equação da hipérbole de centro: (0,2), reta focal: $\ell = \text{eixo-OY}$; reta não-focal: $\ell' : y = 2$, paralela ao eixo-OX; $\alpha^2 = 4$ e $b^2 = 1$, ou seja, $\alpha = 2$ e b = 1; vértices: $A_1 = (0,0)$ e $A_2 = (0,4)$ e vértices imaginários: $B_1 = (-1,2)$ e $B_2 = (1,2)$.

A hipérbole divide o plano em três regiões, duas delas limitadas pelos ramos da hipérbole e a outra situada entre eles. Como as coordenadas do centro (0,2) satisfazem $-4x^2+y^2-4y\leq 0$, concluímos que a região \mathcal{R}_3 consiste dos pontos entre os ramos da hipérbole ou sobre eles, isto é, \mathcal{R}_3 é a região que contém o centro e inclui os ramos da hipérbole.



Temos que $|x| \le 2 \iff -2 \le x \le 2$. Portanto, a região \mathcal{R}_4 é o conjunto:

$$\{(x,y) \mid -2 < x < 2, y \in \mathbb{R}\},\$$

que consiste dos pontos da faixa vertical limitada pelas retas r_1 : x = 2 e r_2 : x = -2.

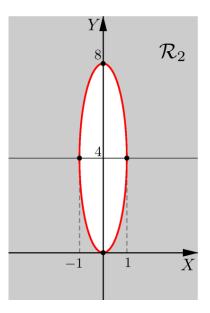


Fig. 5: Elipse C_2 e região \mathcal{R}_2 .

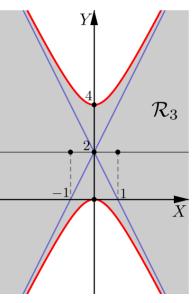


Fig. 6: Hipérbole C_3 e região R_3 .

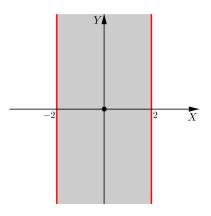


Fig. 7: Retas r₁ e r₂ e região R₄.

Descrição da região R.

Finalmente, a região \mathcal{R} consiste dos pontos exteriores à circunferência \mathcal{C}_1 , exteriores à elipse \mathcal{C}_2 , que estão entre os ramos da hipérbole \mathcal{C}_3 e na faixa \mathcal{R}_4 , podendo, também, pertencer a uma das curvas do bordo C_1 , C_2 , C_3 ou a uma das retas r_1 ou r_2 , como vemos nas figuras 8 e 9. \square

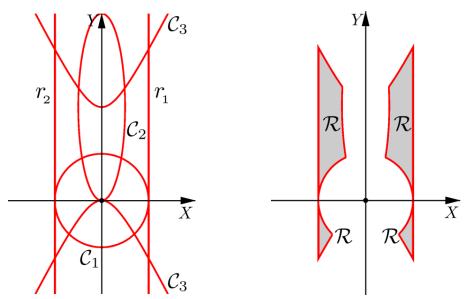


Fig. 8: Curvas que limitam a região \mathcal{R} .

Fig. 9: Região \mathcal{R} .

Exemplo 7

Classifique, em função do parâmetro $\lambda \in \mathbb{R}$, a família de curvas

$$x^{2} + (\lambda - 2)y^{2} + 2\lambda x + 2(\lambda - 2)y + 3\lambda - 3 = 0$$

indicando, nos casos não-degenerados, se a reta focal é paralela ao eixo-OX ou ao eixo-OY.

Solução.

Completando os quadrados na equação da família, temos que:

$$(x^{2} + 2\lambda x) + (\lambda - 2)(y^{2} + 2y) = 3 - 3\lambda$$

$$\iff (x^{2} + 2\lambda x + \lambda^{2}) + (\lambda - 2)(y^{2} + 2y + 1) = 3 - 3\lambda + \lambda^{2} + \lambda - 2$$

$$\iff (x + \lambda)^{2} + (\lambda - 2)(y + 1)^{2} = \lambda^{2} - 2\lambda + 1$$

$$\iff (x + \lambda)^{2} + (\lambda - 2)(y + 1)^{2} = (\lambda - 1)^{2}.$$
(*)

Para fazermos a classificação da família de curvas, precisamos estudar o sinal dos coeficientes $(\lambda - 2)$ e $(\lambda - 1)^2$ da equação (\star) :

	$-\infty < \lambda < 1$	$\lambda = 1$	$1 < \lambda < 2$	$\lambda = 2$	$2 < \lambda < +\infty$
$\lambda - 2$	_	_	_	0	+
$(\lambda - 1)^2$	+	0	+	+	+

Então, para:

- $\lambda \in (-\infty, 1)$, a equação representa uma hipérbole de centro $(-\lambda, -1)$ e reta focal $\ell : y = -1$ paralela ao eixo-OX.
- $\lambda = 1$, a equação $(x+1)^2 (y+1)^2 = 0$ representa o par de retas concorrentes $y+1 = \pm (x+1)$ que se cortam no ponto (-1,-1).
- $\lambda \in (1,2)$, a equação representa uma hipérbole de centro $(-\lambda,-1)$ e reta focal $\ell: y=-1$ paralela ao eixo-OX.
- $\lambda = 2$, a equação $(x + 2)^2 = 1$ representa o par de retas $x + 2 = \pm 1$, ou seja, x = -3 e x = -1 paralelas ao eixo-OY.
- $\lambda \in (2, +\infty)$, a equação, que se escreve na forma

$$\frac{(x+\lambda)^2}{(\lambda-1)^2} + \frac{(y+1)^2}{\frac{(\lambda-1)^2}{\lambda-2}} = 1,$$

representa:

- \circ uma circunferência de centro (-3,-1) e raio 2, se $\lambda=3$, pois, nesse caso, $(\lambda-1)^2=\frac{(\lambda-1)^2}{\lambda-2}=4$.
- \circ uma elipse de centro $(-\lambda,-1)$ e reta focal $\ell: x=-\lambda$, paralela ao eixo-OY, se $\lambda\in(2,3)$, pois, nesse intervalo, $(\lambda-1)^2<\frac{(\lambda-1)^2}{\lambda-2}$.
- \circ uma elipse de centro $(-\lambda,-1)$ e reta focal $\ell:y=-1$ paralela ao eixo-OX, se $\lambda\in(3,+\infty)$, pois, nesse intervalo, $(\lambda-1)^2>\frac{(\lambda-1)^2}{\lambda-2}$. \square

Exemplo 8

Considere os pontos F = (2, 1) e Q = (4, 0).

- (a) Determine as equações das parábolas com reta focal ℓ perpendicular ao vetor $\overrightarrow{v}=(1,-2)$ e foco F, que contêm o ponto Q.
- (b) Determine os vértices das parábolas obtidas acima.
- (c) Faça um esboço das parábolas obtidas no mesmo sistema de eixos ortogonais OXY, indicando todos os seus elementos.

Solução.

(a) Como a diretriz \mathcal{L} é perpendicular à reta focal ℓ e $\ell \perp \overrightarrow{v} = (1, -2)$, temos que $\mathcal{L} \perp (2, 1)$. Então, $\mathcal{L}: 2x + y = m$, para algum $m \in \mathbb{R}$.

Além disso, como Q = (4,0) pertence à parábola, temos que $d(Q,F) = d(Q,\mathcal{L})$. Isto é,

$$\sqrt{(4-2)^2 + (0-1)^2} = \frac{|2 \times 4 + 0 \times 1 - m|}{\sqrt{5}} \iff \sqrt{5} = \frac{|8 - m|}{\sqrt{5}}$$

$$\iff |m - 8| = 5$$

$$\iff m = 8 \pm 5.$$

Logo, $\mathcal{L} : 2x + y = 8 \pm 5$.

Caso 1. Parábola \mathcal{P}_1 de foco F = (2, 1) e diretriz $\mathcal{L}_1 : 2x + y = 13$.

Nesse caso, um ponto $P = (x, y) \in \mathcal{P}_1$ se, e só se, $d(P, F) = d(P, \mathcal{L}_1)$, ou seja,

$$d(P,F)^{2} = d(P,\mathcal{L}_{1})^{2} \iff (x-2)^{2} + (y-1)^{2} = \frac{(2x+y-13)^{2}}{5}$$

$$\iff 5(x^{2}+y^{2}-4x-2y+5) = 4x^{2}+4xy+y^{2}-52x-26y+169$$

$$\iff \mathcal{P}_{1}: x^{2}-4xy+4y^{2}+32x+16y-144=0$$

Caso 2. Parábola \mathcal{P}_2 de foco F = (2, 1) e diretriz $\mathcal{L}_2 : 2x + y = 3$.

Assim, um ponto $P = (x, y) \in \mathcal{P}_2$ se, e só se, $d(P, F) = d(P, \mathcal{L}_2)$, ou seja,

$$d(P,F)^{2} = d(P,\mathcal{L}_{2})^{2} \iff (x-2)^{2} + (y-1)^{2} = \frac{(2x+y-3)^{2}}{5}$$

$$\iff 5(x^{2}+y^{2}-4x-2y+5) = 4x^{2}+4xy+y^{2}-12x-6y+9$$

$$\iff \boxed{\mathcal{P}_{2}: x^{2}-4xy+4y^{2}-8x-4y+16=0}$$

- (b) Consideremos as duas parábolas obtidas no item anterior.
- O vértice V_1 da parábola \mathcal{P}_1 é o ponto médio do segmento A_1F , onde $A_1=(x,y)$ é o ponto de intersecção da reta focal $\ell: x-2y=0$ com a diretriz $\mathcal{L}_1: 2x+y=13$. Então, as coordenadas x e y do ponto A_1 satisfazem o sistema:

$$\begin{cases} x - 2y = 0 \\ 2x + y = 13. \end{cases}$$

Resolvendo esse sistema, obtemos $x=\frac{26}{5}$ e $y=\frac{13}{5}$, isto é, $A_1=\left(\frac{26}{5},\frac{13}{5}\right)$. Logo,

$$V_1 = \frac{A_1 + F}{2} = \frac{\left(\frac{26}{5}, \frac{13}{5}\right) + (2, 1)}{2} = \left(\frac{36}{10}, \frac{18}{10}\right) = \left(\frac{18}{5}, \frac{9}{5}\right).$$

• O vértice V_2 da parábola \mathcal{P}_2 é o ponto médio do segmento A_2F , onde $A_2 = (x, y)$ é o ponto de intersecção da reta focal $\ell : x - 2y = 0$ com a diretriz $\mathcal{L}_2 : 2x + y = 3$. Logo, as coordenadas x e y do ponto A_2 satisfazem o sistema:

$$\begin{cases} x - 2y = 0 \\ 2x + y = 3. \end{cases}$$

Resolvendo esse sistema, obtemos $x = \frac{6}{5}$ e $y = \frac{3}{5}$, isto é, $A_2 = \left(\frac{6}{5}, \frac{3}{5}\right)$. Logo,

$$V_2 = \frac{A_2 + F}{2} = \frac{\left(\frac{6}{5}, \frac{3}{5}\right) + (2, 1)}{2} = \left(\frac{16}{10}, \frac{8}{10}\right) = \left(\frac{8}{5}, \frac{4}{5}\right).$$

(c) Na figura, abaixo, mostramos o esboço das parábolas \mathcal{P}_1 e \mathcal{P}_2 , no mesmo sistema de eixos ortogonais OXY. \square

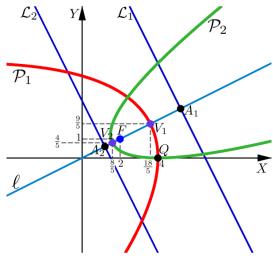


Fig. 10: Parábolas \mathcal{P}_1 e \mathcal{P}_2 .

Exemplo 9

Sejam OXY um sistema de eixos ortogonais e $O\overline{X}\overline{Y}$ o sistema de eixos ortogonais obtido por uma rotação positiva de 45° dos eixos OX e OY em torno da origem.

Uma hipérbole nas coordenadas \overline{x} e \overline{y} tem centro na origem, um de seus vértices no ponto $(\sqrt{2},0)$ e a reta $\overline{y}=2\overline{x}$ como uma de suas assíntotas.

- (a) Determine a equação da hipérbole nas coordenadas \bar{x} e \bar{y} , e nas coordenadas x e y.
- **(b)** Determine o centro, os vértices, os vértices imaginários e as assíntotas da hipérbole nas coordenadas x e y.
- (c) Faça um esboço da curva no sistema de eixos OXY, indicando todos os elementos encontrados no item (b).

Solução.

(a) Nas coordenadas \overline{x} e \overline{y} , a reta focal ℓ é o eixo $-O(\overline{X})$, pois o centro C=(0,0) e o vértice $V=(\sqrt{2},0)$ pertencem a ℓ . Além disso, $\alpha=d(C,V)=\sqrt{2}$ e $\frac{b}{a}=2$, pois $\overline{y}=2\overline{x}$ é uma assíntota da hipérbole.

Então,
$$b=2\alpha=2\sqrt{2}$$
 e

$$\mathcal{H}: \frac{\overline{x}^2}{2} - \frac{\overline{y}^2}{8} = 1,$$

é a equação da hipérbole nas coordenadas \bar{x} e \bar{y} .

Usando as relações de mudança de coordenadas

$$\begin{cases} \overline{x} = \cos 45^{\circ} x + \sin 45^{\circ} y = \frac{\sqrt{2}}{2} (x + y) \\ \overline{y} = -\sin 45^{\circ} x + \cos 45^{\circ} y = \frac{\sqrt{2}}{2} (-x + y), \end{cases}$$
 (1)

obtemos a equação da hipérbole nas coordenadas x e y:

$$\frac{1}{2} \times \frac{2}{4} (x+y)^2 - \frac{1}{8} \times \frac{2}{4} (-x+y)^2 = 1$$

$$\iff 4(x+y)^2 - (-x+y)^2 = 16$$

$$\iff 4(x^2 + 2xy + y^2) - (x^2 - 2xy + y^2) = 16$$

$$\iff 3x^2 + 10xy + 3y^2 = 16$$

$$\iff \mathcal{H}: 3x^2 + 10xy + 3y^2 - 16 = 0$$

- (b) Nas coordenadas \overline{x} e \overline{y} , a hipérbole tem:
- centro: C = (0, 0);
- vértices: $A_1 = (-\sqrt{2}, 0)$ e $A_2 = (\sqrt{2}, 0)$;
- vértices imaginários: $B_1 = (0, -2\sqrt{2})$ e $B_2 = (0, 2\sqrt{2})$;
- reta focal: $\ell : \overline{y} = 0$;
- reta não-focal: $\ell': \overline{x}=0$;
- assíntotas: $\overline{y} = \pm 2\overline{x}$;

Por (1), obtemos que ℓ : -x+y=0 é a reta focal; ℓ' : x+y=0 é a reta não-focal e $\frac{\sqrt{2}}{2}(-x+y)=\pm 2\times\frac{\sqrt{2}}{2}(x+y)$, isto é, r_- : y=-3x e r_+ : $y=-\frac{1}{3}x$ são as assíntotas da hipérbole nas coordenadas x e y.

E, pelas relações de mudança de coordenadas:

$$\begin{split} x &= \cos 45^{\rm o}\,\overline{x} - \text{sen}\,45^{\rm o}\,\overline{y} = \frac{\sqrt{2}}{2}(\overline{x} - \overline{y}) \\ y &= \text{sen}\,45^{\rm o}\,\overline{x} + \cos 45^{\rm o}\,\overline{y} = \frac{\sqrt{2}}{2}(\overline{x} + \overline{y})\,, \end{split}$$

obtemos que C=(0,0) é o centro, $A_1=(-1,-1)$ e $A_2=(1,1)$ são os vértices; $B_1=(2,-2)$ e $B_2=(-2,2)$ são os vértices imaginários da hipérbole nas coordenadas x e y.

(c) Na figura ao lado mostramos o esboço da hipérbole \mathcal{H} .

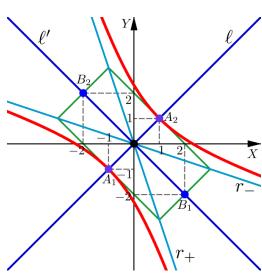


Fig. 11: Hipérbole $\mathcal{H}: 3x^2 + 10xy + 3y^2 - 16 = 0$.

Exemplo 10

Sejam $V_1 = (7,1)$ e $V_2 = (2,5)$ os vértices de uma elipse com reta focal paralela a um dos eixos coordenados.

- (a) Determine o centro, a reta focal, a reta não-focal, os vértices e os focos da elipse \mathcal{E} cujo vértice V_1 pertence à reta focal.
- (b) Determine, agora, o centro, a reta focal, a reta não-focal, os vértices e os focos da elipse $\overline{\mathcal{E}}$ cujo vértice V_2 pertence à reta focal.
- (c) Faça um esboço das duas elipses encontradas acima num mesmo sistema de eixos ortogonais, indicando todos os seus elementos.

Solução.

Consideremos o retângulo de lados paralelos aos eixos coordenados e vértices nos pontos $V_1 = (7,1)$ e $V_2 = (2,5)$.

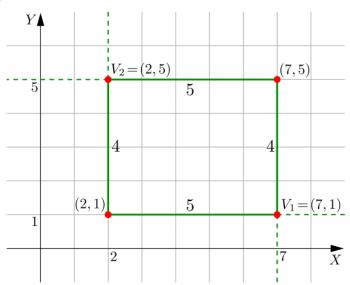


Fig. 12: Retângulo de vértices V_1 e V_2 .

Como a > b numa elipse, temos que a = 5 e b = 4 nas elipses de vértices V_1 e V_2 e reta focal paralela a um dos eixos coordenados.

(a) Se o vértice $V_1=(7,1)$ pertence à reta focal da elipse, temos que $\ell:y=1$ é a reta focal, $\ell':x=2$ é a reta não-focal, C=(2,1) é o centro, $A_1=(-3,1)$ e $A_2=V_1=(7,1)$ são os vértices sobre a reta focal, $B_1=(2,-3)$ e $B_2=V_2=(2,5)$ são os vértices sobre a reta não-focal, $F_1=(-1,1)$ e $F_2=(5,1)$ são os focos, pois $c=\sqrt{a^2-b^2}=3$, e

$$\mathcal{E}: \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16} = 1$$

é a equação da elipse \mathcal{E} .

(b) Se o vértice $V_2=(2,5)$ pertence à reta focal da elipse $\overline{\mathcal{E}}$, temos que $\overline{\ell}:y=5$ é a reta focal, $\overline{\ell}':x=7$ é a reta não-focal, $\overline{C}=(7,5)$ é o centro, $\overline{A}_1=V_2=(2,5)$ e $\overline{A}_2=(12,5)$ são os vértices sobre a reta focal, $\overline{B}_1=(7,9)$ e $B_2=V_1=(7,1)$ são os vértices sobre a reta não-focal, $\overline{F}_1=(4,5)$

e $\overline{F}_2 = (10, 5)$ são os focos, e

$$\overline{\mathcal{E}}: \frac{(x-7)^2}{25} + \frac{(y-5)^2}{16} = 1$$

é a equação da elipse $\overline{\mathcal{E}}$.

(c) Na figura abaixo mostramos as elipses \mathcal{E} e $\overline{\mathcal{E}}$ no mesmo sistema de eixos ortogonais. \square

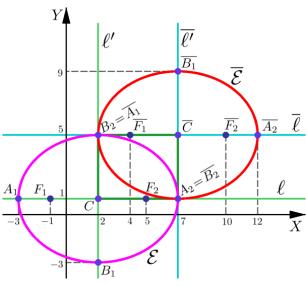


Fig. 13: Elipses \mathcal{E} e $\overline{\mathcal{E}}$.

Exemplo 11

Considere os pontos A = (4, 1) e B = (3, 2).

- (a) Determine as equações e os principais elementos das duas hipérboles que possuem B como vértice imaginário, A como vértice e reta focal paralela a um dos eixos coordenados.
- (b) Faça um esboço das duas hipérboles num mesmo sistema de eixos ortogonais, indicando todos os seus elementos (menos os focos e as diretrizes).

Solução.

Caso 1. Reta focal ℓ paralela ao eixo-OX.

Como $A = (4,1) \in \ell$ e $B = (3,2) \in \ell'$, onde ℓ' é a reta não-focal, temos que $\ell : y = 1$ e $\ell' : x = 3$. Então, o centro C da hipérbole, ponto de intersecção da reta focal com a reta não-focal, tem coordenadas x = 3 e y = 1, isto é, C = (3,1).

Além disso, temos a=d(C,A)=1, b=d(C,B)=1 e $c=\sqrt{a^2+b^2}=\sqrt{2}.$ Logo,

$$\mathcal{H}: (x-3)^2 - (y-1)^2 = 1$$

é a equação da hipérbole.

Nessa hipérbole, $F_1=(3-\sqrt{2},1)$ e $F_2=(3+\sqrt{2},1)$ são os focos; $A_1=(2,1)$ e $A_2=A=(4,1)$ são os vértices; $B_1=(3,0)$ e $B_2=B=(3,2)$ são os vértices imaginários; $y-1=\pm(x-3)$ são as

assíntotas; $\mathcal{L}_1: x=3-\frac{\alpha}{e}=3-\frac{1}{\sqrt{2}}$ é a diretriz correspondente ao foco F_1 e $\mathcal{L}_2: x=3+\frac{\alpha}{e}=3+\frac{1}{\sqrt{2}}$ é a diretriz correspondente ao foco F_2 da hipérbole \mathcal{H} .

Caso 2. Reta focal $\bar{\ell}$ paralela ao eixo-OY.

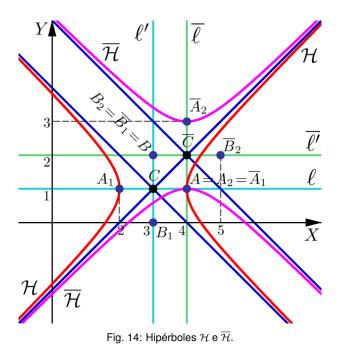
Nesse caso, $\overline{\ell}: x=4$ é a reta focal e $\overline{\ell'}: y=2$ é a reta não-focal da hipérbole $\overline{\mathcal{H}}$ que tem reta focal paralela ao eixo-OY, vértice A=(4,1) e vértice imaginário B=(3,2). Então, $\overline{C}=(4,2)$ é

o centro,
$$\overline{a}=d(\overline{C},A)=1$$
, $\overline{b}=d(\overline{C},B)=1$ e $\overline{c}=\sqrt{\overline{a}^2+\overline{b}^2}=\sqrt{2}$, e
$$\overline{\mathcal{H}}: (y-2)^2-(x-4)^2=1$$

é a equação da hipérbole $\overline{\mathcal{H}}$.

Além disso, $\overline{F}_1=(4,2-\sqrt{2})$ e $\overline{F}_2=(4,2+\sqrt{2})$ são os focos; $\overline{A}_1=A=(4,1)$ e $\overline{A}_2=(4,3)$ são os vértices; $\overline{B}_1=B=(3,2)$ e $\overline{B}_2=(5,2)$ são os vértices imaginários; $x-4=\pm(y-2)$ são as assíntotas; $\overline{\mathcal{L}}_1:y=2-\frac{\overline{a}}{\overline{e}}=2-\frac{1}{\sqrt{2}}$ é a diretriz correspondente ao foco \overline{F}_1 e $\overline{\mathcal{L}}_2:y=2+\frac{\overline{a}}{\overline{e}}=2+\frac{1}{\sqrt{2}}$ é a diretriz correspondente ao foco \overline{F}_2 da hipérbole $\overline{\mathcal{H}}$.

(b) Na figura abaixo mostramos as hipérboles $\mathcal H$ e $\overline{\mathcal H}$ num mesmo sistema de eixos ortogonais.



Exemplo 12

Considere as curvas

$$C_1: x^2 - 20x + y + 100 = 0;$$
 $C_2: x^2 - y^2 - 6x = 0$ **e** $C_3: x^2 + 16y^2 - 6x - 7 = 0.$

- (a) Classifique as curvas e determine todos os seus elementos.
- (b) Faça um esboço detalhado da região do plano dada pelo sistema de inequações

$$\mathcal{R}: \left\{ \begin{array}{l} x^2 - 20x + y + 100 \ge 0 \\ x^2 - y^2 - 6x \ge 0 \\ x^2 + 16y^2 - 6x - 7 \ge 0 \\ x \le 10 \\ y \ge -4 \, . \end{array} \right.$$

Observação: Ache as intersecções de C_1 e C_2 com a reta y = -4.

Solução.

(a) • Curva
$$C_1 : x^2 - 20x + y + 100 = 0$$
.

Completando o quadrado, a equação de C_1 na forma canônica é dada por:

$$C_1: x^2 - 20x = -y - 100$$

 $C_1: x^2 - 20x + 100 = -y - 100 + 100$
 $C_1: (x - 10)^2 = -y$

Logo, C_1 é a parábola com reta focal x=10, paralela ao eixo-OY, vértice V=(10,0), 4p=1, ou seja, $p=\frac{1}{4}$, e foco $F=\left(10,-\frac{1}{4}\right)$.

• Curva $C_2 : x^2 - 6x - y^2 = 0$.

A equação da curva C_2 se escreve, completando os quadrados, como:

$$C_2: x^2 - 6x - y^2 = 0$$

$$C_2: (x^2 - 6x + 9) - y^2 = 9$$

$$C_2: (x - 3)^2 - y^2 = 9$$

$$C_2: \frac{(x - 3)^2}{9} - \frac{y^2}{9} = 1$$

Logo, \mathcal{C}_2 é a hipérbole com reta focal ℓ : y=0; reta não-focal ℓ' : x=3; centro C=(3,0); $\alpha=b=3$; $c=\sqrt{\alpha^2+b^2}=3\sqrt{2}$; vértices $A_1=(0,0)$ e $A_2=(6,0)$; vértices imaginários $B_1=(3,-3)$ e $B_2=(3,3)$; assíntotas $r_\pm:y=\pm(x-3)$ e focos $F_1=(3-3\sqrt{2},0)$ e $F_2=(3+3\sqrt{2},0)$.

• Curva $C_3: x^2 - 6x + 16y^2 - 7 = 0$.

Completando o quadrado na equação, obtemos:

$$C_3: x^2 - 6x + 16y^2 - 7 = 0$$

$$C_3: (x^2 - 6x + 9) + 16y^2 = 7 + 9$$

$$C_3: (x - 3)^2 + 16y^2 = 16$$

$$C_3: \frac{(x - 3)^2}{16} + y^2 = 1$$

Logo, \mathcal{C}_3 é a equação da elipse com reta focal ℓ : y=0; reta não-focal ℓ' : x=3; centro C=(3,0); $\alpha=4$ e b=1; $c=\sqrt{\alpha^2-b^2}=\sqrt{15}$; vértices sobre a reta focal $A_1=(-1,0)$ e $A_2=(7,0)$; vértices sobre a reta não-focal $B_1=(3,-1)$ e $B_2=(3,1)$; focos $F_1=(3-\sqrt{15},0)$ e $F_2=(3+\sqrt{15},0)$.

(b) A região \mathcal{R} é a intersecção das regiões:

$$\mathcal{R}_1: x^2 - 20x + y + 100 \ge 0$$

 $\mathcal{R}_2: x^2 - y^2 - 6x \ge 0$
 $\mathcal{R}_3: x^2 + 16y^2 - 6x - 7 \ge 0$
 $\mathcal{R}_4: x \le 10$
 $\mathcal{R}_5: y \ge -4$.

• Região $\mathcal{R}_1 : x^2 - 20x + y + 100 \ge 0$.

A parábola $C_1: x^2-20x+y+100=0$ divide o plano em duas regiões disjuntas, uma das quais contém o foco $F=\left(10,-\frac{1}{4}\right)$.

Substituindo as coordenadas do foco na expressão $x^2 - 20x + y + 100$, obtemos:

$$10^2 - 20 \times 10 - \frac{1}{4} + 100 = 100 - 200 - \frac{1}{4} + 100 = -\frac{1}{4} < 0$$
.

Portanto, \mathcal{R}_1 é a união da região determinada pela parábola, que não contém o foco F, com os pontos da parábola, onde a igualdade na inequação que define \mathcal{R}_1 é satisfeita.

Na figura abaixo, mostramos a região \mathcal{R}_1 .

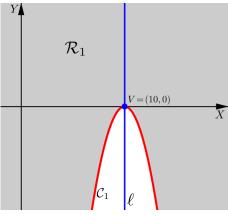


Fig. 15: Região \mathcal{R}_1 .

• Região $\mathcal{R}_2 : x^2 - y^2 - 6x \ge 0$.

A hipérbole $C_2: x^2-y^2-6x=0$ divide o plano em três regiões disjuntas: uma das quais contém o centro C=(3,0) e as outras contêm os focos. A expressão x^2-y^2-6x tem sinal constante em cada uma dessas regiões, sendo iguais os sinais nas regiões que contêm os focos.

Substituindo as coordenadas do centro na expressão $x^2 - y^2 - 6x$, obtemos:

$$3^2 - 0^2 - 6 \times 3 = 9 - 0 - 18 = -9 < 0$$
.

Portanto, \mathcal{R}_2 consiste da união das regiões determinadas pela hipérbole \mathcal{C}_2 que contêm os focos e inclui os ramos da curva \mathcal{C}_2 , onde a igualdade $x^2 - y^2 - 6x = 0$ é verificada.

Na figura abaixo, mostramos a região \mathcal{R}_2 .

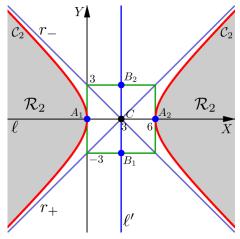


Fig. 16: Região \mathcal{R}_2 .

• Região $\mathcal{R}_3: x^2 + 16y^2 - 6x - 7 \ge 0$.

A elipse $C_3: x^2+16y^2-6x-7=0$ divide o plano em duas regiões, uma das quais (denominada interior) contém o centro C=(3,0). O sinal da expressão x^2+16y^2-6x-7 no centro C é:

$$3^2 + 16 \times 0^2 - 6 \times 3 - 7 = 9 + 0 - 18 - 7 = -16 < 0$$
.

Portanto, a região \mathcal{R}_3 é a região exterior à elipse \mathcal{C}_3 mais a própria curva, onde a igualdade $x^2 + 16y^2 - 6x - 7 = 0$ é satisfeita.

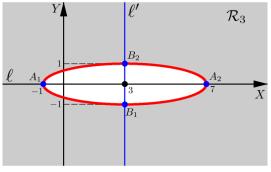


Fig. 17: Região \mathcal{R}_3 .

• Regiões $\mathcal{R}_4 : x \le 10$ e $\mathcal{R}_5 : y \ge -4$.

A região \mathcal{R}_4 consiste dos pontos do plano à esquerda da reta x=10, incluindo os pontos da reta, e a região \mathcal{R}_5 consiste dos pontos do plano acima da reta horizontal y=-4, incluindo os pontos da reta.

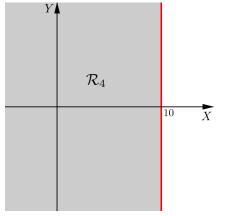


Fig. 18: Região \mathcal{R}_4 .

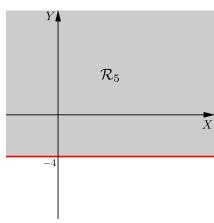


Fig. 19: Região \mathcal{R}_5 .

• Região $\mathcal{R} = \mathcal{R}_1 \cap \mathcal{R}_2 \cap \mathcal{R}_3 \cap \mathcal{R}_4 \cap \mathcal{R}_5$.

Para esboçarmos corretamente a região \mathcal{R} , devemos determinar as:

o Intersecções da parábola C_1 com x = 10 e y = -4.

A parábola C_1 intersecta a reta vertical x = 10 exatamente no vértice (10,0). Para achar a intersecção de C_1 com a reta horizontal y = -4, substituímos y por -4 na equação $C_1 : y = -(x - 10)^2$:

$$-4 = -(x-10)^2 \Longrightarrow (x-10)^2 = 4 \Longrightarrow x-10 = \pm 2 \Longrightarrow x = 10 \pm 2$$
.

Temos então, que

$$C_1 \cap \{y = -4\} = \{(8, -4), (12, -4)\}.$$

o Intersecções da hipérbole C_2 com x = 10 e y = -4.

Para achar a intersecção de C_2 com a reta horizontal y = -4, substituímos y por -4 na equação C_2 : $(x-3)^2 - u^2 = 9$:

$$(x-3)^2 - (-4)^2 = 9 \Longrightarrow (x-3)^2 - 16 = 9 \Longrightarrow (x-3)^2 = 16 + 9 = 25 \Longrightarrow x-3 = \pm 5 \Longrightarrow x = 3 \pm 5$$
.

Logo

$$C_2 \cap \{y = -4\} = \{(-2, -4), (8, -4)\}.$$

Em particular, observe que:

$$C_1 \cap C_2 \cap \{y = -4\} = \{(8, -4)\}.$$

Para achar a intersecção de C_2 com a reta vertical x = 10, substituímos x por 10 na equação C_2 : $(x-3)^2 - y^2 = 9$:

$$(10-3)^2 - y^2 = 9 \Longrightarrow 7^2 - y^2 = 9 \Longrightarrow y^2 = 49 - 9 = 40 \Longrightarrow y = \pm 2\sqrt{10}$$

Logo,

$$C_2 \cap \{x = 10\} = \{(10, -2\sqrt{10}), (10, 2\sqrt{10})\}.$$

Nas figuras abaixo mostramos todas as curvas envolvidas e a região \mathcal{R} . \square

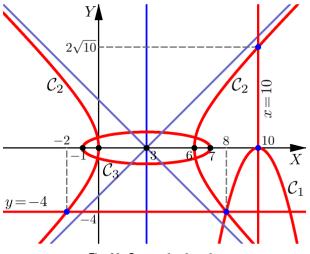


Fig. 20: Curvas C_1 , C_2 e C_3 .

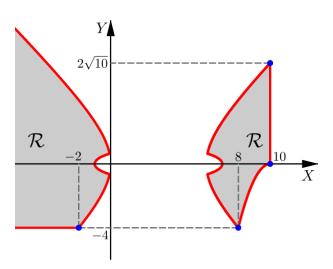


Fig. 21: Região $\mathcal{R}=\mathcal{R}_1\cap\mathcal{R}_2\cap\mathcal{R}_3\cap\mathcal{R}_4\cap\mathcal{R}_5.$

Exemplo 13

Classifique, em função do parâmetro $\lambda \in \mathbb{R}$, a família de curvas

$$(\lambda - 1)x^2 + (\lambda - 2)y^2 - 2\lambda(\lambda - 1)x + \lambda^3 - 2\lambda^2 - 2\lambda + 3 = 0$$
,

indicando, nos casos não-degenerados, se a reta focal é paralela ao eixo-OX ou ao eixo-OY.

Solução.

Completando o quadrado, temos que:

$$\begin{split} (\lambda-1)x^2+(\lambda-2)y^2-2\lambda(\lambda-1)x+\lambda^3-2\lambda^2-2\lambda+3&=0\\ \iff (\lambda-1)(x^2-2\lambda x)+(\lambda-2)y^2&=-\lambda^3+2\lambda^2+2\lambda-3\\ \iff (\lambda-1)(x^2-2\lambda x+\lambda^2)+(\lambda-2)y^2&=-\lambda^3+2\lambda^2+2\lambda-3+\lambda^2(\lambda-1)\\ \iff (\lambda-1)(x-\lambda)^2+(\lambda-2)y^2&=-\lambda^3+2\lambda^2+2\lambda-3+\lambda^3-\lambda^2\\ \iff (\lambda-1)(x-\lambda)^2+(\lambda-2)y^2&=\lambda^2+2\lambda-3\\ \iff (\lambda-1)(x-\lambda)^2+(\lambda-2)y^2&=(\lambda-1)(\lambda+3),. \end{split}$$

Para fazermos a classificação, precisamos estudar o sinal dos coeficientes $\lambda-1,\ \lambda-2$ e $(\lambda-1)(\lambda+3)$ da equação:

	$-\infty < \lambda < -3$	$\lambda = -3$	$-3 < \lambda < 1$	$\lambda = 1$	$1 < \lambda < 2$	$\lambda = 2$	$2 < \lambda < +\infty$
$\lambda - 1$	_	_	_	0	+	+	+
$\lambda - 2$	_	_	_	_	_	0	+
$(\lambda - 1)(\lambda + 3)$	+	0	_	0	+	+	+

Então, para:

• $\lambda \in (-\infty, -3)$:

A equação representa o conjunto vazio, pois $(\lambda-1)(x-\lambda)^2 \le 0$, $(\lambda-2)y^2 \le 0$ e $(\lambda+3)(\lambda-1) > 0$.

• $\lambda = -3$:

A equação $-4(x+3)^2 - 5y^2 = 0$ representa o conjunto unitário que consiste do ponto (-3,0).

• $\lambda \in (-3, 1)$:

A equação, que se escreve na forma

$$\frac{\frac{(x-\lambda)^2}{(\lambda-1)(\lambda+3)}}{\frac{\lambda-1}{\lambda-2}} + \frac{y^2}{\frac{(\lambda-1)(\lambda+3)}{\lambda-2}} = 1,$$

representa uma elipse com centro $(\lambda, 0)$ e reta focal igual ao eixo-OX, pois

$$\frac{(\lambda-1)(\lambda+3)}{\lambda-1} = \frac{(1-\lambda)(\lambda+3)}{1-\lambda} > \frac{(1-\lambda)(\lambda+3)}{2-\lambda} = \frac{(\lambda+3)(\lambda-1)}{\lambda-2} > 0,$$

já que $0 < 1 - \lambda < 2 - \lambda$ e $\lambda + 3 > 0$ para λ nesse intervalo.

• $\lambda = 1$:

A equação $-y^2 = 0$, ou seja, y = 0, representa o eixo-OX.

• $\lambda \in (1,2)$:

A equação representa uma hipérbole de centro $(\lambda, 0)$ e reta focal igual ao eixo-OX, pois

$$\frac{(\lambda-1)(\lambda+3)}{\lambda-1}>0 \qquad e \qquad \frac{(\lambda-1)(\lambda+3)}{\lambda-2}<0\,,$$

para λ nesse intervalo.

• $\lambda = 2$:

A equação $(x-2)^2=5$, ou seja, $x=2\pm\sqrt{5}$, representa um par de retas paralelas ao eixo-OY.

• $\lambda \in (2, +\infty)$:

A equação, que se escreve na forma

$$\frac{(x-\lambda)^2}{\frac{(\lambda-1)(\lambda+3)}{\lambda-1}} + \frac{y^2}{\frac{(\lambda-1)(\lambda+3)}{\lambda-2}} = 1,$$

representa uma elipse de centro $(\lambda,0)$ e reta focal paralela ao eixo-OY, pois $\lambda-1>\lambda-2>0$ e $(\lambda-1)(\lambda+3)>0$ para λ nesse intervalo. \square

Exemplo 14

Seja \mathcal{P} uma parábola com reta focal paralela ao eixo-OX e foco F = (0,3), que intersecta o eixo-OX no ponto (4,0) e o eixo-OY no ponto (0,2).

- (a) Determine o vértice, a diretriz e a equação da parábola \mathcal{P} .
- (b) Faça um esboço de \mathcal{P} , indicando seus elementos.

Solução.

(a) Como a reta focal ℓ da parábola é paralela ao eixo-OX e o foco $F=(0,3)\in \ell$, temos que $\ell:y=3,\,V=(x_0,3)$ é o vértice, para algum $x_0\in\mathbb{R}$, já que $V\in \ell$, e

$$(y-3)^2 = \pm 4p(x-x_0)$$

é a forma da equação de \mathcal{P} .

Além disso, como $\mathcal{P} \cap \text{eixo} - \text{OX} = \{(4,0)\} \text{ e } \mathcal{P} \cap \text{eixo} - \text{OY} = \{(0,2)\}, \text{ temos:}$

$$(0-3)^2 = \pm 4\mathfrak{p}(4-x_0) \qquad \text{e} \qquad (2-3)^2 = \pm 4\mathfrak{p}(0-x_0) \, ,$$

isto é,

$$9 = \pm 4 \mathfrak{p} (4 - x_0)$$
 e $1 = \pm 4 \mathfrak{p} (-x_0)$.

Logo, $9 = \pm 16p \pm 4p(-x_0) = \pm 16p + 1$, ou seja, $8 = \pm 16p$.

Sendo p > 0, concluímos que 8 = 16p, isto é, $p = \frac{1}{2}$, e $1 = 4p(-x_0) = -2x_0$, ou seja, $x_0 = -\frac{1}{2}$.

Obtemos, assim, o vértice $V = \left(-\frac{1}{2}, 3\right)$ da parábola e sua equação:

$$P: (y-3)^2 = 2(x+\frac{1}{2}).$$

A diretriz de \mathcal{P} é \mathcal{L} : $x=-\frac{1}{2}-\mathfrak{p}=-1$, pois \mathcal{L} é perpendicular a ℓ , o foco F está à direita de V e $d(V,\mathcal{L})=\mathfrak{p}=\frac{1}{2}$.

(b) Na figura abaixo, mostramos o gráfico de $\mathcal P$ junto com seus elementos. \Box

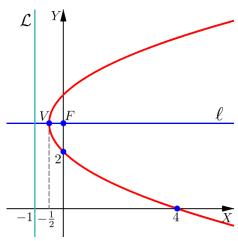


Fig. 22: Parábola $P: (y-3)^2 = 2(x+\frac{1}{2})$.

Exemplo 15

Esboçe, detalhadamente, a região do plano dada pela inequação:

$$\mathcal{R}: (|x|-4)(4x^2+9y^2-40x-54y+145) < 0.$$

Solução.

Completando o quadrado na equação

$$4x^2 + 9y^2 - 40x - 54y + 145 = 0,$$

obtemos:

$$4(x^{2} - 10x) + 9(y^{2} - 6y) = -145$$

$$\iff 4(x^{2} - 10x + 25) + 9(y^{2} - 6y + 9) = -145 + 100 + 81$$

$$\iff 4(x - 5)^{2} + 9(y - 3)^{2} = 36$$

$$\iff \frac{(x - 5)^{2}}{9} + \frac{(y - 3)^{2}}{4} = 1,$$

que é a equação de uma elipse de centro C=(5,3), reta focal $\ell:y=3$ (paralela ao eixo-OX), $\alpha=3,\ b=2$, vértices sobre a reta focal $A_1=(2,3)$ e $A_2=(8,3)$, e vértices sobre a reta não-focal $B_1=(5,1)$ e $B_2=(5,5)$.

Então, a inequação, que define a região \mathcal{R} , pode ser escrita na forma:

$$\mathcal{R}: (|x|-4)\left(\frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} - 1\right) < 0.$$

Assim, $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, onde:

$$\mathcal{R}_1: \left\{ \begin{array}{l} |x|-4 < 0 \\ \frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} - 1 > 0 \end{array} \right. \quad e \quad \quad \mathcal{R}_2: \left\{ \begin{array}{l} |x|-4 > 0 \\ \frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} - 1 < 0. \end{array} \right.$$

A região \mathcal{R}_1 ,

$$\mathcal{R}_1 = \{ (x,y) \, | \, x \in (-4,4) \, \} \cap \left\{ (x,y) \, | \, \frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} > 1 \, \right\} ,$$

consiste dos pontos exteriores à elipse contidos na faixa limitada pelas retas verticais x=-4 e x=4, excluindo os pontos da elipse e das retas.

A região \mathcal{R}_2 ,

$$\mathcal{R}_2 = \{ (x,y) \, | \, x \in (-\infty,-4) \cup (4,+\infty) \, \} \cap \left\{ (x,y) \, | \, \frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} < 1 \, \right\} \,,$$

consiste dos pontos exteriores à faixa limitada pelas retas x=-4 e x=4 que estão na região interior à elipse, excluindo os pontos das retas e da elipse.

Nas figuras abaixo mostramos as regiões \mathcal{R}_1 e \mathcal{R}_2 :

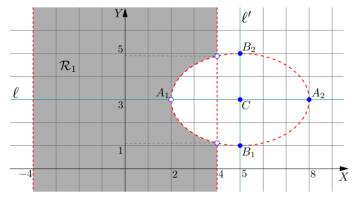


Fig. 23: Região \mathcal{R}_1 .

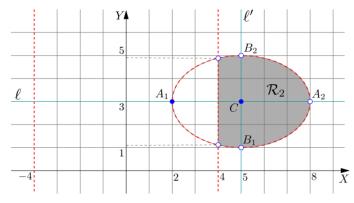


Fig. 24: Região \mathcal{R}_2 .

Na figura abaixo mostramos a região $\mathcal{R}=\mathcal{R}_1\cup\mathcal{R}_2.$

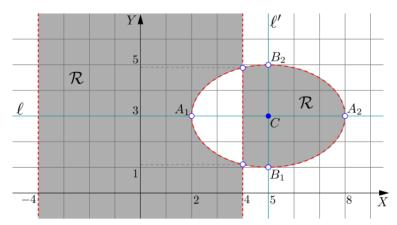


Fig. 25: Região $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$.

Exemplo 16

Determine a equação da elipse \mathcal{E} , da qual se conhecem um foco F = (1,3) e uma diretriz $\mathcal{L}: x + 2y = 10$, sabendo que seu centro encontra-se no eixo-OY.

Solução.

Como a reta focal ℓ da elipse é perpendicular à diretriz $\mathcal{L}: x+2y=10$ e F $=(1,3)\in \ell$, temos que $\ell: 2x-y=-1$.

Além disso, como o centro $C = (0, y_0) \in \ell$, temos que $-y_0 = -1$, ou seja, C = (0, 1).

Temos, também, que a reta $\mathcal{L}: x + 2y = 10$ é a diretriz correspondente ao foco F = (1,3), pois

$$d(F, \mathcal{L}) = \frac{|1+6-10|}{\sqrt{5}} = \frac{3}{\sqrt{5}} < d(C, \mathcal{L}) = \frac{|0+2-10|}{\sqrt{5}} = \frac{8}{\sqrt{5}}.$$

Como
$$c=d(F,C)=\sqrt{1+4}=\sqrt{5}$$
 e $\frac{\alpha}{e}=\frac{\alpha^2}{c}=d(C,\mathcal{L})=\frac{8}{\sqrt{5}}$, obtemos que $\alpha^2=8$, isto é, $\alpha=2\sqrt{2}$ e $e=\frac{c}{a}=\frac{\sqrt{5}}{2\sqrt{2}}$.

Logo, um ponto P = (x, y) pertence à elipse \mathcal{E} se, e somente se, $d(P, F) = e d(P, \mathcal{L})$, ou seja,

$$d(P,F)^{2} = e^{2} d(P,\mathcal{L})^{2} \iff (x-1)^{2} + (y-3)^{2} = \frac{5}{8} \frac{|x+2y-10|^{2}}{5}$$

$$\iff x^{2} - 2x + 1 + y^{2} - 6x + 9 = \frac{1}{8} (x + 2y - 10)^{2}$$

$$\iff 8x^{2} - 16x + 8y^{2} - 48x + 80 = x^{2} + 4xy + 4y^{2} - 20x - 40y + 100$$

$$\iff \mathcal{E} : 7x^{2} - 4xy + 4y^{2} + 4x - 8x - 20 = 0$$

é a equação da elipse \mathcal{E} . \square

Exemplo 17

Verifique que a equação do segundo grau

$$-7x^2 + 8xy - y^2 + \sqrt{5}(-x + y) = 0 \tag{*}$$

representa um par de retas concorrentes e ache suas equações.

Solução.

A equação tem coeficientes:

$$A = -7$$
, $B = 8$, $C = -1$, $D = -\sqrt{5}$, $E = \sqrt{5}$, $e = F = 0$.

Como $A \neq C$, devemos girar o eixo-OX e o eixo-OY de um ângulo θ , $0 < \theta < \frac{\pi}{2}$, no sentido positivo, onde tg $2\theta = \frac{B}{A-C} = \frac{8}{-7-(-1)} = -\frac{8}{6} = -\frac{4}{3}$, e escrever a equação nas coordenadas \overline{x} e \overline{y} do novo sistema de eixos ortogonais $O\overline{X}\overline{Y}$, obtido após a rotação positiva de θ do sistema de eixos ortogonais OXY.

Sendo tg
$$2\theta=-\frac{4}{3}<0$$
, temos que $\cos 2\theta=-\frac{1}{\sqrt{1+\frac{16}{9}}}=-\frac{3}{5}.$ Logo,

$$\cos \theta = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \frac{1}{\sqrt{5}} \qquad e \qquad \sin \theta = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \frac{2}{\sqrt{5}} \, .$$

Efetuando a mudança de coordenadas dada pelas relações:

$$\left\{ \begin{array}{l} x = \cos\theta\,\overline{x} - \sin\theta\,\overline{y} \\ y = \sin\theta\,\overline{x} + \cos\theta\,\overline{y} \end{array} \right., \qquad \text{ou seja,} \qquad \left\{ \begin{array}{l} x = \frac{1}{\sqrt{5}}(\overline{x} - 2\,\overline{y}) \\ y = \frac{1}{\sqrt{5}}(2\overline{x} + \overline{y}) \,, \end{array} \right.$$

na equação (\star) , obtemos a equação nas coordenadas \overline{x} e \overline{y} :

$$\overline{A}\,\overline{x}^2 + \overline{C}\,\overline{y}^2 + \overline{D}\,\overline{x} + \overline{E}\,\overline{y} + \overline{F} = 0$$

onde $\overline{F} = F = 0$,

$$\begin{pmatrix} \overline{A} & 0 \\ 0 & \overline{C} \end{pmatrix} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -7 & 4 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 18 & -9 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 5 & 0 \\ 0 & -45 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -9 \end{pmatrix}$$

е

$$\begin{pmatrix} \overline{D} \\ \overline{E} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -\sqrt{5} \\ \sqrt{5} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

Assim, a equação nas coordenadas \overline{x} e \overline{y} é

$$\overline{x}^2 - 9\overline{y}^2 + \overline{x} + 3\overline{y} = 0.$$

Completando os quadrados, obtemos:

$$(\overline{x}^2 + \overline{x}) - 9(\overline{y}^2 - \frac{1}{3}\overline{y}) = 0 \iff (\overline{x}^2 + \overline{x} + \frac{1}{4}) - 9(\overline{y}^2 - \frac{1}{3}\overline{y} + \frac{1}{36}) = \frac{1}{4} - 9 \times \frac{1}{36}$$

$$\iff (\overline{x} + \frac{1}{2})^2 - 9(\overline{y} - \frac{1}{6})^2 = \frac{1}{4} - \frac{1}{4} = 0$$

$$\iff (\overline{x} + \frac{1}{2})^2 = 9(\overline{y} - \frac{1}{6})^2$$

$$\iff \overline{x} + \frac{1}{2} = \pm 3(\overline{y} - \frac{1}{6}).$$

Logo, a equação (⋆) representa o par de retas concorrentes:

$$\overline{x} + \frac{1}{2} = 3(\overline{y} - \frac{1}{6})$$
 e $\overline{x} + \frac{1}{2} = -3(\overline{y} - \frac{1}{6})$,

ou seja, nas coordenadas \overline{x} e \overline{y} :

$$\overline{x} - 3\overline{y} = -1$$
 e $\overline{x} + 3\overline{y} = 0$.

Para achar as equações das retas nas coordenadas x e y, usamos as relações de mudança de coordenadas:

$$\left\{ \begin{array}{l} \overline{x} = \cos\theta \, x + \sin\theta \, y \\ \overline{y} = - \sin\theta \, x + \cos\theta \, y \end{array} \right., \qquad \text{ou seja,} \qquad \left\{ \begin{array}{l} \overline{x} = \frac{1}{\sqrt{5}}(x + 2 \, y) \\ \overline{y} = \frac{1}{\sqrt{5}}(-2x + y) \, . \end{array} \right.$$

Substituindo \overline{x} e \overline{y} nas equações das retas, obtemos:

$$\frac{1}{\sqrt{5}}(x+2y) - 3 \times \frac{1}{\sqrt{5}}(-2x+y) = -1 \qquad e \qquad \frac{1}{\sqrt{5}}(x+2y) + 3 \times \frac{1}{\sqrt{5}}(-2x+y) = 0 \,,$$

ou seja,

$$7x - y = -\sqrt{5}$$
 e $-x + y = 0$.