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In this paper we study the geodesic flow on nilmanifolds equipped with a left-
invariant metric. We write the underlying definitions and find general formulas for 
the Poisson involution. As an application we develop the Heisenberg Lie group 
equipped with its canonical metric. We prove that a family of first integrals giving 
the complete integrability can be read off at the Lie algebra of the isometry group. 
We also explain the complete integrability for any invariant metric and on compact 
quotients.
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1. Introduction

Given a smooth manifold M , any complete Riemannian structure 〈·, ·〉 induces the geodesic flow 
Γ: M × R → M which can be defined as the Hamiltonian flow associated to the energy function 
E(v) := 1/2〈v, v〉 on TM . Usually, this flow is not integrable in the sense of Liouville and it is gener-
ally expected that the integrability of the geodesic flow imposes important obstructions to the topology 
of the supporting manifold. However contrasting some results of Taimanov [19,27,28] on topological ob-
structions for real-analytic manifolds supporting real-analytic integrable geodesic flows with some smooth 
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examples of smoothly integrable geodesic flows on manifolds that do not satisfy the above obstructions 
constructed by Butler [8], and Bolsinov and Taimanov [7], we observe that the regularity of first integrals 
plays a fundamental role that nowadays is not completely well understood. For that reason, when dealing 
with locally homogeneous manifolds to have the possibility of constructing real-analytic first integrals is 
very desirable.

In the advances reached in the theory of Hamiltonian systems in the 1980’s one can recognize the role of 
Lie theory in the study of several examples. This is the case of the so known Adler–Kostant–Symes [2,18,26]
scheme used for the study of some mechanical systems and of the so known Thimm’s method for the study 
of the geodesic flow [29]. In both cases the main examples arise from semisimple Lie groups. These results 
appeared parallel to the many studies given by the Russian school which can be found for instance in [14]. 
Examples of integrable geodesic flows and other systems on Lie groups and quotients or bi-quotients can be 
found in [6,3–5,8,16,17,21,23,24].

For other Hamiltonian systems on non-semisimple Lie groups only few examples and generalizations are 
known in the case of the geodesic flow. This is the situation for nilpotent and solvable Lie groups or even 
their compact quotients which are locally homogeneous manifolds. For instance, Eberlein started a study of 
the geometry concerning the geodesic flow on Lie groups following his own and longer study in this topic, 
giving a good material and references in [12,13]. This study of Eberlein is much more general and is mixed 
with many other geometrical questions.

In the case of 2-step nilpotent Lie groups and their compact quotients there are some interesting results. 
On the one hand Butler [9] proved the Liouville integrability of the geodesic flow whenever the Lie algebra 
is Heisenberg–Reiter. On the other hand he also proved the non-commutative integrability – in the sense 
of Nekhoroshev [22] – whenever the Lie algebra is almost non-singular. Since Bolsinov and Jovanovic [4]
proved that integrability in the non-commutative sense implies Liouville integrability, the previous results 
of Butler give the Liouville integrability for an important family of 2-step nilpotent Lie groups and their 
compact quotients.

In the present paper we concentrate in the geodesic flow of Lie groups endowed with a metric invariant 
by left-translations. In the first part we write the basic definitions and get general conditions and formulas 
for the involution of first integrals making use of the Lie theory tools, that is assuming some natural 
identifications. We put special emphasis on 2-step nilpotent Lie groups, we take as nilmanifold after [31], 
for which there exists a developed geometrical theory and several examples and applications see [11].

We apply the results we get to the case of the Heisenberg Lie group Hn of dimension 2n + 1 equipped 
with the canonical left-invariant metric. Although this is a naturally reductive space the methods of Thimm 
do not apply directly in this case, since the full isometry group is not semi-simple. Compare also with the 
Mishchenko–Fomenko method [14,25].

Our main goal is to investigate the nature of the first integrals one can construct. We prove that all the 
first integrals we get can be visualized on the isometry group. In fact this is the case of quadratic polynomials 
which are invariant, so as first integrals arising from Killing vector fields. Recall that given a Killing vector 
field X∗ on a Riemannian manifold M one has a first integral on the tangent Lie bundle TM defined by 
fX∗(v) = 〈X∗, v〉. We proved that

(i) There is a bijection between the set of quadratic first integrals of the geodesic flow on Hn – with 
the canonical metric – and the Lie subalgebra of skew-symmetric derivations of the Heisenberg Lie 
algebra hn, so that involution of quadratic first integrals would correspond to a torus of skew-symmetric 
derivations – Theorem 3.2. Actually a general formulation of quadratic polynomials on a 2-step nilpotent 
Lie algebras to be first integrals is found so as the pairwise commutativity condition.

(ii) The linear morphism X∗ �→ fX∗ builds a Lie algebra isomorphism onto the image. This is the first 
example we found of this situation.



498 A. Kocsard et al. / Differential Geometry and its Applications 49 (2016) 496–509
Making use of all these results we exhibit families of first integrals in involution for the geodesic flow 
on Hn, see Theorem 3.4. After that we consider any lattice Λ and passing to the quotient we explain the 
integrability of the geodesic flow on the compact spaces Λ\Hn. Finally we consider any left-invariant metric 
on the Heisenberg Lie group Hn and prove that the corresponding geodesic flow is also completely integrable.

2. Preliminaries and basic facts

In this section we present some basic results to study the geodesic flow on Lie groups with a left-invariant 
metric. See [1] for more details.

Let N be a Lie group endowed with a left-invariant metric 〈·, ·〉 and let n be the Lie algebra of N . We 
identify the tangent bundle TN of N with N × n. So, TN is a Lie group regarded as the direct product of 
N and the abelian group n. We shall consider the left-invariant metric on TN given by the product of the 
left-invariant metric on N and the Euclidean metric on n. We also identify a tangent vector at (p, Y ) ∈ TN

with a pair (U, V ) ∈ n × n in the obvious way. With these identifications, the tautological 1-form on TN is 
given by

Θ(p,Y )(U, V ) = 〈Y,U〉

and the canonical symplectic form Ω = −dΘ on TN is given by

Ω(p,Y )((U, V ), (U ′, V ′)) = 〈U, V ′〉 − 〈V,U ′〉 + 〈Y, [U,U ′]〉. (2.1)

Given a smooth function f : TN → R, the Hamiltonian vector field of f is denoted by Xf and it is given 
implicitly by

df(p,Y )(U, V ) = Ω(p,Y )(Xf (p, Y ), (U, V )).

The associated Poisson bracket on C∞(TN) shall be denoted as

{f, g} = Ω(Xf , Xg).

We will denote the gradient of f at the point (p, Y ), with respect to the product metric on TN = N × n, 
by grad(p,Y ) f = (U, V ) ∈ n × n. The following result is straightforward.

Lemma 2.1. Let (N, 〈·, ·〉) be a Lie group with a left-invariant metric and let f ∈ C∞(TN). By grad(p,Y ) f =
(U, V ) we denote the gradient of f with respect to the left-invariant metric on TN . Then

1. the Hamiltonian vector field of f is given by

Xf (p, Y ) = (V, adt(V )(Y ) − U), (2.2)

where adt(V ) denotes the transpose of ad(V ) with respect to the metric on n.
2. If g ∈ C∞(TN), the Poisson bracket is given by

{f, g}(p, Y ) = −Ω(p,Y )(σ grad(p,Y ) f, σ grad(p,Y ) g), (2.3)

where σ(U, V ) = (V, U).
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The geodesic field on TN is the vector field associated with the geodesic flow

Φt(p, Y ) = γ′(t)

where γ(t) is the geodesic on N with initial conditions γ(0) = p, γ′(0) = (p, Y ). It is well known that the 
geodesic field arises as the Hamiltonian vector field of the energy function E : TN → R, E(p, Y ) = 1

2 〈Y, Y 〉. 
One can also define the geodesic flow on the Lie algebra n by using the so-called Gauss map G : TN → n, 
given by G(p, Y ) = Y . See [12,13] for more details.

We say that a smooth function f : TN → R is a first integral of the geodesic flow if f is constant along the 
integral curves of the geodesic field, or equivalently if {f, E} = 0. We say that N has completely integrable
geodesic flow (in the sense of Liouville) if there exist first integrals of the geodesic flow f1, . . . , fn, where 
n = dimN , such that {fi, fj} = 0 for all i, j and the gradients of f1, . . . , fn are linear independent on an 
open dense subset of TN .

Remark 2.2. (First integrals from Killing fields). If M is a Riemannian manifold and X∗ is a Killing field 
on M , then the function fX∗ : TM → R defined as fX∗(v) = 〈X∗(π(v)), v〉 is a first integral of the geodesic 
flow.

Lemma 2.3. Let (N, 〈·, ·〉) be a Lie group equipped with a left-invariant metric. A smooth function f : TN →
R, with gradient grad(p,Y ) f = (U, V ), is a first integral of the geodesic flow if and only if

〈Y,U〉 = 〈Y, [V, Y ]〉 (2.4)

for all (p, Y ) ∈ TN .

Proof. It follows from Lemma 2.1 and the fact that XE(f) = 0 if and only if f is a first integral of the 
geodesic flow. �

A function f : TN → R is said to be invariant if f(p, Y ) = f(qp, Y ) for all p, q ∈ N , Y ∈ n. That is, f
is invariant under the left-action of N on TN . One can use Lemma 2.3 in order to find some invariant first 
integrals.

Proposition 2.4. Let (N, 〈·, ·〉) be a Lie group with a left-invariant metric.

1. The function fZ0 : TN → R, defined by fZ0(p, Y ) = 〈Y, Z0〉, is a first integral of the geodesic flow for 
all Z0 ∈ z. Moreover, the family {fZ0}Z0∈z is a Poisson-commutative family of first integrals.

2. Let A : n → n be a symmetric endomorphism of n and let gA : TN → R denote the quadratic polynomial 
given by gA(p, Y ) = 1

2 〈Y, AY 〉. Then gA is a first integral of the geodesic flow if and only if 〈Y, [AY, Y ]〉 =
0 for all Y ∈ n.

Proof. It easily follows from Lemma 2.3 using that grad(p,Y ) fZ0 = (0, Z0) and grad(p,Y ) gA = (0, AY ). �
2.1. The case of 2-step nilpotent Lie groups

When N is a 2-step nilpotent Lie group, its Lie algebra n can be decomposed as the orthogonal sum

n = v⊕ z,

where z is the center of n. In such a case, for each Z ∈ z, we have a skew-symmetric linear map j(Z) : v → v

given by
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〈j(Z)U, V 〉 = 〈[U, V ], Z〉 (2.5)

for all U, V ∈ v. We say that the Lie algebra n is non-singular if ad(X) : n → z is surjective for all X /∈ z. 
It is a well known fact that n is non-singular if and only if j(Z) is non-singular for any Z ∈ z − {0} (which 
does not depend on the choice of the left-invariant metric, see for instance [11]). We can restate Lemma 2.1
for a 2-step nilpotent Lie group as follows. If f, g ∈ C∞(TN) are functions with grad(p,Y ) f = (U, V ) and 
grad(p,Y ) g = (U ′, V ′) then

Xf (p, Y ) = (V, j(Yz)Vv − U) (2.6)

and

{f, g}(p, Y ) = 〈V ′, U〉 − 〈V,U ′〉 + 〈j(Yz)V ′
v, Vv〉, (2.7)

where the subindexes v and z denote the respective components according to the decomposition n = v ⊕ z. 
In particular, since grad(p,Y ) E = (0, Y ), we get

XE(p, Y ) = (Y, j(Yz)Yv)

and from Lemma 2.3, we get that f is a first integral of the geodesic flow on TN if and only if

〈Y,U〉 = 〈j(Yz)Vv, Yv〉.

The second item in Proposition 2.4 says that in the 2-step nilpotent case, the commutativity of the 
quadratic first integrals depends on their restriction to the orthogonal complement of the center.

Theorem 2.5. Let (N, 〈·, ·〉) be a 2-step nilpotent Lie group with a left-invariant metric, let A : v → v be 
a symmetric endomorphism and let gA defined as in Proposition 2.4. Assume that {Z1, . . . , Zm} is a basis 
of z. Then

1. gA is a first integral of the geodesic flow if and only if [j(Zi), A] = 0 for all i = 1, . . . , m, where the 
skew-symmetric endomorphism j(Zi) ∈ so(v) is extended to n by j(Zi)|z = 0;

2. two quadratic first integrals gA, gB Poisson commute if and only if j(Zi)AB = j(Zi)BA for all i =
1, . . . , m. In particular, if n is non-singular, then {gA, gB} = 0 if and only if [A, B] = 0.

Proof. Since j(Yz) = 〈Y, Z1〉Z1 + · · ·+ 〈Y, Zm〉Zm, it follows from Proposition 2.4 that gA is a first integral 
if and only if 〈j(Zi)AYv, Yv〉 = 0 for all Yv. Since A is symmetric and j(Zi) is skew-symmetric, this is 
equivalent to j(Zi)A = Aj(Zi). This proves the assertion 1.

For the second part assume that gA, gB are first integrals (and so they satisfy 1). From Lemma 2.1 we 
get that {gA, gB} = 0 if and only if

0 = 〈Y, [AY,BY ]〉 = 〈j(Yz)AYv, BYv〉 = 〈Bj(Yz)AYv, Yv〉,

or equivalently, Bj(Zi)A must be skew-symmetric for all i = 1, . . . , m. By taking the transpose, one has 
that Aj(Zi)B = Bj(Zi)A, and since A, B both commute with j(Zi), we obtain j(Zi)AB = j(Zi)BA for all 
i = 1, . . . , m. �



A. Kocsard et al. / Differential Geometry and its Applications 49 (2016) 496–509 501
2.1.1. Non-integrable Lie algebras
We shortly review a particular family of 2-step nilpotent Lie algebras discussed by Butler in [10]. Given 

a 2-step nilpotent Lie algebra n and λ ∈ n∗, we put nλ = {X ∈ n : ad∗(X)λ = 0}. An element λ ∈ n∗ is 
called regular if nλ has minimal dimension. The Lie algebra n is called non-integrable if there exists a dense 
open subset W of n∗ × n∗ such that for each (λ, μ) ∈ W, both λ and μ are regular and [nλ, nμ] has positive 
dimension.

It is clear that z ⊂ nλ for all λ ∈ n∗. Moreover if the Lie algebra n is equipped with a metric any λ ∈ n∗

has the form λ = 〈V +Z, · 〉 for certain V ∈ v and Z ∈ z. Now, X ∈ nλ if and only if 〈j(Z)Xv, · 〉 = 0. So if n
is non-singular, it must be Xv = 0. In this situation, nλ has minimal dimension for Z 	= 0 and [nλ, nμ] = 0. 
This proves the following result.

Lemma 2.6 (See [9]). Let n be a non-singular 2-step nilpotent Lie algebra, then n is not a non-integrable Lie 
algebra.

The above lemma says that non-singular Lie algebras form a suitable family where one can look for nil-
manifolds with completely integrable geodesic flow. The following theorem by Butler relates non-integrable 
Lie algebras with the integrability of the geodesic flow.

Theorem 2.7 (See [10, Theorem 1.3]). Let n be a non-integrable 2-step nilpotent Lie algebra with associated 
simply connected Lie group N and let Λ be a discrete co-compact subgroup of N . Then for any left-invariant 
metric g on N , the geodesic flow on (Λ\N, g) is not completely integrable.

3. First integrals of the geodesic flow on Heisenberg manifolds

We consider the presentation of the (2n +1)-dimensional Heisenberg Lie group Hn given by the underlying 
manifold R2n × R endowed with the multiplication map

(v, z)(v′, z′) =
(
v + v′, z + z′ − 1

2v
tJv′

)
where J is the linear map given by the multiplication for 

√
−1 on R2n � C

n (where one identifies 
(x1, . . . , x2n) with (x1 + ix2, . . . , x2n−1 + ix2n)). If one denotes by (x1, . . . , x2n, z) the standard coordi-
nate system on R2n × R, then the basis of the Lie algebra hn of Hn consisting of the left-invariant vector 
fields which coincide with the canonical basis of R2n+1 at the origin, is given by

X2i−1 = ∂x2i−1 −
x2i

2 ∂z, X2i = ∂x2i + x2i−1

2 ∂z, Z1 = ∂z.

Recall that for this basis, the only non-vanishing brackets are [X2i−1, X2i] = Z1 and the exponential map 
exp : hn → Hn is identified with the identity map on R2n+1. Let 〈·, ·〉 be the left-invariant metric on Hn that 
makes X1, . . . , X2n, Z1 an orthonormal basis. The map J defined above is nothing but the element in so(v)
given by J = j(Z1), and so, for each Z ∈ z we have that j(Z) = 〈Z, Z1〉J . Therefore [X, Y ] = 〈JX, Y 〉Z1.

First of all, we make use of Theorem 2.5 in order to find first integrals of the geodesic flow on THn

that are invariant under the action of Hn. On the one hand since the center of hn is one dimensional, we 
only have one independent linear first integral fZ1(p, Y ) = 〈Y, Z1〉. On the other hand we can relate the 
quadratic first integrals from Theorem 2.5 to the isotropy subgroup of the full isometry group of Hn.

Remark 3.1. It is well known that the isometry group of a simply connected 2-step nilpotent Lie group, 
endowed with a left-invariant metric, is the semidirect product Iso(N) = K �N , where the isotropy group 
K consists of the isometric automorphisms. See [31] for more details.
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In our case (see [20] for instance), the Lie algebra of the isotropy group of Iso(Hn) is given by

k = {B ∈ so(v) : [J,B] = 0}. (3.1)

Now according to Theorem 2.5 a quadratic first integrals has the form gA(p, Y ) = 1
2 〈AY, Y 〉 where A

is a symmetric endomorphism of v (extended to all hn in the trivial way) such that [J, A] = 0. If we call 
B = JA, then B belongs to so(v) and satisfies [J, B] = 0. Conversely, given B ∈ k, one can define a 
symmetric endomorphism A = JB of v such that gA is a first integral for the geodesic flow on THn.

Theorem 3.2. The map ψ(gA) = JA gives a bijection between the set of quadratic first integrals of the 
geodesic flow and the Lie subalgebra of skew-symmetric derivations of hn. Moreover, {gA1 , gA2} = 0 if and 
only if [ψ(gA1), ψ(gA2)] = 0 in so(v).

Notice that ψ is not a Lie algebra morphism.
Let us consider, for i = 1, . . . , n, the symmetric endomorphism Ai of v given by

AiY = 〈Y,X2i−1〉X2i−1 + 〈Y,X2i〉X2i. (3.2)

It is not hard to see that [J, Ai] = 0 and [Ai, Aj ] = 0 for all i, j = 1, . . . , n, which gives {gAi
, gAj

} = 0 by 
Theorem 2.5. Moreover, the family A1, . . . , An is maximal such that the gradients of gA1 , . . . , gAn

are linearly 
independent, since A1, . . . , An is a family of commuting symmetric endomorphisms that also commute with 
the multiplication by 

√
−1 on R2n.

Observe that from Remark 2.2 we have another way of constructing first integrals from isotropic Killing 
fields. In fact, let T ∈ k, that is T satisfies (3.1), and let ρsT be the corresponding 1-parameter subgroup 
of automorphisms of Hn. Thus ρsT (v, z) = (esT v, z), where esT =

∑∞
k=0

sk

k! T
k. Thus, the associated Killing 

field is given by

X∗
T (v, z) = d

ds

∣∣∣∣
0
ρsT (v, z) = TWv −

1
2 〈TWv, JWv〉Z1 (3.3)

where expW = (v, z). Now the first integral associated with X∗
T given by Remark 2.2 is

FT (p, Y ) = 〈TWv, Yv〉 −
1
2 〈AWv,Wv〉〈Y,Z1〉 (3.4)

where T = JA as in Theorem 3.2.
Recall that any right-invariant vector field on Hn may be regarded as a Killing vector field (associated 

with a 1-parameter subgroup of left-translations). In particular, we have the following basis of right-invariant 
vector fields:

X∗
2i−1 = ∂x2i−1 + x2i

2 ∂z, X∗
2i = ∂x2i −

x2i−1

2 ∂z, Z∗
1 = ∂z.

Since X∗
2i−1 = X2i−1 + x2iZ1 and X∗

2i = X2i − x2i−1Z1, the first integrals given by Remark 2.2 and 
associated to the Killing fields X∗

1 , . . . , X
∗
2n are given by

F2i−1(p, Y ) = 〈X2i−1 + 〈Wv, X2i〉Z1, Y 〉

F2i(p, Y ) = 〈X2i − 〈Wv, X2i−1〉Z1, Y 〉

which can be written, for k = 1, . . . , 2n, as



A. Kocsard et al. / Differential Geometry and its Applications 49 (2016) 496–509 503
Fk(p, Y ) = 〈Y − j(Yz)Wv, Xk〉 = 〈Y,Xk〉 − 〈j(Yz)Wv, Xk〉. (3.5)

Note that the first integral associated to Z∗
1 = Z1 is just fZ1 .

For the first integrals fZ1 and the ones given in (3.4) and (3.5) we have that

grad(p,Y ) FT =
(
−〈Z1, Y 〉AWv − TYv, TWv − 1

2 〈AWv,Wv〉Z1
)

grad(p,Y ) Fk = (〈Y,Z1〉JXk, Xk + 〈W,JXk〉Z1)

grad(p,Y ) fZ1 = (0, Z1)

(3.6)

which shows that the gradients of F1, . . . , F2n, fZ1 are linear independent on an open dense subset. The 
formula (2.7) gives {Fj , Fk}(p, Y ) = 〈Y, Z1〉〈Xk, JXj〉, so the only non-trivial Poisson brackets between the 
F1, . . . , F2n are

{F2i−1, F2i} = fZ1 (3.7)

(see also [5,29]).
Let us study now the commutativity of first integrals associated with isotropic Killing fields. In fact let 

TA = JA, TB = JB be elements of k as in (3.1). Assume that {FTA
, FTB

} = 0, then by Lemma 2.1 we get

0 = {FTA
, FTB

}(p, Z) = −〈TBWv, AWv〉 + 〈TAWv, BWv〉 + 〈JTBWv, TAWv〉

= −〈JABWv,Wv〉 + 〈JBAWv,Wv〉 + 〈J2BWv, JAWv〉

= −〈JABWv,Wv〉 + 〈JBAWv,Wv〉 + 〈JABWv,Wv〉,

and this implies, as in the proof of Theorem 2.5 that [A, B] = 0. Conversely, it is not hard to see that 
{FTA

, FTB
} = 0 if [A, B] = 0.

Remark 3.3. Making use of (3.6) we can compute all the Poisson brackets between our first integrals. In 
fact if A, B are symmetric maps on hn commuting with J then

• {FTA
, gB}(p, Y ) = 〈JABYv, Yv〉. In particular {FTA

, gB}(p, Y ) = 0 if and only if [A, B] = 0.
• {FTA

, FTB
} = F[TA,TB ] since

{FTA
, FTB

}(p, Y ) = 〈[TA, TB ]Wv, Yv〉 + 〈Y,Z1〉〈JBAWv,Wv〉

= 〈[TA, TB ]Wv, Yv〉 + 1
2 〈Y,Z1〉〈(JBA− JAB)Wv,Wv〉

and 1
2 (JAB − JBA) is the symmetric part of JAB. Thus {FTA

, FTB
} = 0 if and only if [A, B] = 0.

• {FT , Fk}(p, Y ) = Fk(p, TYv + Yz), for all k = 1, . . . , 2n.
• {fZ1 , Fk} = {fZ1 , FT } = 0 for all k = 1, . . . , 2n.

Let Ai be the symmetric map defined in (3.2) and let Ti = JAi denote the corresponding skew-symmetric 
derivation of hn. From above calculations one can also see that the gradients of FT1, . . . , FTn

, gA1 , . . . , gAn

are independent on an open dense subset of THn. Note that {JAi}ni=1 corresponds to a Cartan subalgebra 
of so(v), which in particular gives an abelian subalgebra of skew-symmetric derivations. The proof of the 
next theorem follows from canonical computations and the above remark.
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Theorem 3.4. The geodesic flow on THn is completely integrable in the sense of Liouville. In fact, the sets

1. G = {E} ∪ {gAi
}ni=1 ∪ {FTk

}nk=1,
2. F = {fZ1} ∪ {gAi

}ni=1 ∪ {F2k−1}nk=1 and
3. F ′ = {fZ1} ∪ {gAi

}ni=1 ∪ {F2k}nk=1

give three independent commuting families of first integrals for the geodesic flow.

Remark 3.5. It turns out that the families given in [9] are of the same type as the families in F and F ′, while 
the first integrals FTk

, obtained from the Lie algebra of the isotropy subgroup K ⊂ Iso(Hn) are particular 
cases of the Noether integrals given by the momentum mapping. Recall that in the simply connected case 
all the first integrals introduced in Theorem 3.4 are analytic. As we shall see later this cannot be achieved 
for compact quotients of Hn.

The explicit calculation of the Poisson brackets between FT , Fk, fZ1 , where T ∈ k, k = 1, . . . , 2n, gives 
evidence of the following result.

Theorem 3.6. The linear morphism between the Lie algebra of Killing vector fields on Hn and its image in 
C∞(THn) given by X∗ �→ fX∗ as in Remark 2.2 builds a Lie algebra isomorphism between the isometry Lie 
algebra of Hn and its image equipped with the Poisson bracket.

Proof. A Killing vector field X∗ can be written as X∗ = X∗
T + X∗

U where T + U ∈ k � hn. Moreover, 
U(p) = V (p) + zZ∗

1 and V (p) =
∑2n

k=1 skX
∗
k(p). Thus,

fX∗(p, Y ) = FT (p, Y ) +
2n∑
k=1

skFk(p, Y ) + zfZ1(p, Y )

and so X∗ �→ fX∗ is a Lie algebra homomorphism which is also injective. In fact, assume that

0 = FT (p, Y ) +
2n∑
k=1

skFk(p, Y ) + zfZ1(p, Y ) (3.8)

for all (p, Y ). By taking p = expZ1 and Y = Z1 one gets z = 0. Now, if we let p be arbitrary and take 
Y = Z1, FT (p, Y ) = −1

2 〈AWv, Wv〉 and Fk(p, Z1) = −〈JWv, Xk〉. Thus the equality (3.8) becomes

0 = −1
2 〈AWv,Wv〉 −

2n∑
k=1

sk〈JWv, Xk〉.

If 〈AXj , Xj〉 = 0 for all j = 1, . . . , 2n, then A = 0 and so FT = 0. Choosing W = Xl one gets 
0 =

∑2n
k=1 sk〈JXl, Xk〉 = ±sl, which says sl = 0 for every l. If 〈AXj , Xj〉 	= 0, then there is a j such 

that ajj = 〈AXj , Xj〉 	= 0. Take W = tXj for t ∈ R. Then Equation (3.8) becomes 0 = −1
2ajjt

2 ∓ sjt =
t(−1

2 tajj∓sj) which should holds for every t. Note that the sign ± depends on the parity of j. Thus ajj = 0, 
sj = 0 for all j and X∗ �→ fX∗ is injective onto its image. �

The first integrals of the previous theorem follow a known property of integrals for a G-action on 
Q = G/K: they correspond to the homomorphism of the Poisson brackets induced by the momentum 
map T ∗Q → g∗. Up to our knowledge, this is the first example among nilpotent Lie groups where this ho-
momorphism is bijective, that is, an isomorphism. It could be interesting to know if there are more examples 
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of this situation among nilpotent Lie groups, and if there is a relationship with the complete integrability 
of the geodesic flow.

Remark 3.7. The metric considered in this section makes of Hn a naturally reductive Riemannian space. 
That means that there exists a Lie group of isometries G acting transitively on Hn such that its Lie algebra 
g splits as g = h ⊕ m where h is the Lie algebra of the isotropy subgroup and m is an Ad(H)-invariant 
subspace such that

〈X, [Y,Z]m〉 + 〈Y, [X,Z]m〉 = 0

for all X, Y, Z ∈ m. However, the Heisenberg Lie group does not correspond to the examples in [29].

3.1. Riemannian Heisenberg manifolds

Recall that a Riemannian Heisenberg manifold is given as a quotient Λ\Hn where Λ is a discrete co-
compact subgroup of Hn. Note that Λ\Hn becomes a Riemannian manifold with the metric that makes the 
projection π : Hn → Λ\Hn a Riemannian submersion. Now, for each n-tuple r = (r1, . . . , rn) ∈ (Z+)n such 
that r1 | r2 | · · · | rn, we define

Λr = {(v, z) : v = (x, y) with x ∈ rZn, y ∈ 2Zn, z ∈ Z}, (3.9)

where x = (x1, . . . , xn) ∈ rZn means that xi ∈ riZ for all i = 1, . . . , n. It follows from [15] that this family 
classifies the co-compact discrete subgroups of Hn up to isomorphism. This is explained in the following 
remark.

Remark 3.8. In several works the Heisenberg Lie group is defined as (2n +2) × (2n + 2) real matrices of the 
form

γ(x, y, z) =
(1 x z

0 1n yt

0 0 1

)
,

where x, y ∈ R
n and 1n is the n × n identity matrix. The map Φ defined as Φ(γ(x, y, z)) = (x, y, z − 1

2xy
t)

gives an isomorphism with the Heisenberg Lie group defined as in the first paragraphs of this section. In 
[15] it is proved that any lattice on the Heisenberg group, with this matrix presentation, is isomorphic to 
one of the form

Γr = {γ(x, y, z) : x ∈ rZn, y ∈ Z
n, z ∈ Z},

where r = (r1, . . . , rn) ∈ (Z+)n is such that r1 | r2 | · · · | rn. Moreover, Γr is isomorphic to Γs if and only 
if r = s. Recall that, Φ−1(Λr) ⊂ Γr. This inclusion is strict, but one can still prove that Λr is isomorphic 
to Γr. For the sake of completeness we include the proof of this fact in the following remark.

Remark 3.9. Recall that the center Z(Γr) of Γr is {γ(0, 0, z) : z ∈ Z} for all r. So Z(Γr) is cyclic with two 
generators γ(0, 0, 1) and γ(0, 0, −1). As it follows from [15], for each i = 1, . . . , n we have that

γ(riei, 0, 0)γ(0, ei, 0)γ(riei, 0, 0)−1γ(0, ei, 0)−1 = γ(0, 0, 1)ri ,

and for all s ∈ (Z+)n such that s1 | s2 | · · · | sn, s 	= r, there are no elements γ1, γ2, . . . , γ2n ∈ Γs such that
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γ2i−1γ2iγ
−1
2i−1γ

−1
2i = γ(0, 0,±1)ri .

This shows, in particular, that Γr is not isomorphic to Γs if r 	= s. Now, from the classification theorem in 
[15], we have that Λr is isomorphic to Γs for some s. But

(riei, 0, 0)(0, 2ei, 0)(−riei, 0, 0)(0,−2ei, 0) = (0, 0, ri) = (0, 0, 1)ri ,

where (0, 0, 1) is one of the two generators of Z(Λr). Therefore, Λr is isomorphic to Γr.

Since the quotient projection π : Hn → Λr\Hn is a Riemannian submersion and furthermore a local 
isometry, we can identify the tangent bundle of Λ\Hn with (Λr\Hn) × hn. Since π maps geodesics into 
geodesics, the energy function Ẽ on T (Λr\Hn) is related to the energy function E on THn by

Ẽ(Λrp, Y ) = E(p, Y ) = 1
2 〈Y, Y 〉

and this does not depend on the given representative.
Since the integrals fZ1 , gAi

of the geodesic flow of THn, as given in Theorem 3.4 do not depend on the 
first coordinate, they descend to first integrals

f̃Z1(Λrp, Y ) = fZ1(p, Y ), g̃Ai
(Λrp, Y ) = gAi

(p, Y )

of the geodesic flow of T (Λr\Hn). Moreover, such first integrals are in involution, since for all f, g ∈
C∞(T (Λr\Hn)) we have

{f ◦ π, g ◦ π} = {f, g} ◦ π.

Note that the integrals Fk, k = 1, . . . , 2n from Theorem 3.4 do not descend to the quotient. However one 
can construct first integrals on the quotient with the following argument. Let (p, Y ) ∈ THn and q ∈ Λr, say 
p = (x, y, z) and q = (x′, y′, z′), with x, y ∈ R

n, z ∈ R, x′ ∈ rZn, y′ ∈ 2Zn and z′ ∈ Z. Take W, W ′, W ′′ ∈ hn

such that expW = p, expW ′ = q and expW ′′ = qp. Observe that W ′′
v = Wv + W ′

v. So we get

Fk(qp, Y ) = 〈Y,Xk〉 − 〈Y,Z1〉〈J(W ′
v + Wv), Xk〉

= Fk(p, Y ) − fZ1(p, Y )〈JW ′
v, Xk〉.

Since 〈JW ′
v, Xk〉 ∈ Z we have that

Fk(qp, Y ) = Fk(p, Y ) mod fZ1(p, Y )Z

and since fZ1 is a first integral of the geodesic flow, we have that the function

F̂k(p, Y ) = sin
(

2π Fk(p, Y )
fZ1(p, Y )

)

descends to Λr\Hn and is constant along the integral curves of the geodesic vector field in T (Λr\Hn). In 
order to get a smooth first integral let

F̄k(p, Y ) = e−1/fZ1 (p,Y )2 F̂k(p, Y )

and let us define
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F̃k(Λrp, Y ) = F̄k(p, Y ).

So the functions F̃k are smooth (non-analytic) first integrals for the geodesic flow on T (Λr\Hn). It follows 
from a direct calculation that the families fZ1 , gAi

, F̄2k−1 and fZ1 , gAi
, F̄2k, i, k = 1, . . . , n are in involution. 

So the geodesic flow in T (Λr\Hn) is completely integrable in the sense of Liouville.

Theorem 3.10. Let Hn be the Heisenberg Lie group endowed with the standard metric and let Λr defined 
as in (3.9). If Λr\Hn is the corresponding Heisenberg manifold, then the geodesic flow in T (Λr\Hn) is 
completely integrable with smooth first integrals.

4. The case of a general left-invariant metric on Hn

In this section we show how to construct first integrals of the geodesic flow on THn for arbitrary left-
invariant metrics on Hn. Recall that any left-invariant metric g on Hn is isometric to one of the form 〈·, ·〉P
defined as follows. Let 〈·, ·〉 denote the standard inner product on hn and let P be a symmetric positive 
definite operator on hn, with respect to the standard inner product, which has the matrix form

P =
(
P̃

λ

)
,

where P̃ : v → v is symmetric and positive definite and λ > 0. We can think of P̃ as a symmetric matrix with 
positive eigenvalues. The metric 〈·, ·〉P is defined in hn by 〈X, Y 〉P = 〈PX, Y 〉. Moreover, we can assume 
that P is diagonal, see [30, Theorem 3.1].

Let jP (Z) be the 〈·, ·〉P -skew-symmetric operator such that

〈jP (Z)X,Y 〉P = 〈[X,Y ], Z〉P .

Note that

〈[X,Y ], Z〉P = 〈[X,Y ], PZ〉 = 〈[X,Y ], λZ〉

= λ〈j(Z)X,Y 〉 = λ〈PP−1j(Z)X,Y 〉

= λ〈P−1j(Z)X,Y 〉P .

This proves the following lemma.

Lemma 4.1. With the assumptions and notation of this section we have that λj(Z) = P̃ jP (Z) or, equivalently 
jP (Z) = λP̃−1j(Z), for all Z ∈ z.

We also need the next result.

Lemma 4.2. If f : THn → R is a smooth function and grad(p,Y ) f , gradP
(p,Y ) f denote the gradients of f

with respect to the metrics on THn induced by the standard metric and by 〈·, ·〉P respectively, then

grad(p,Y ) f = P gradP
(p,Y ) f,

where P acts diagonally on T(p,Y )(THn).
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Proof. By a direct calculation,

〈gradP
(p,Y ) f, S〉P = 〈P gradP

(p,Y ) f, S〉 = df(p,Y )(S) = 〈grad(p,Y ) f, S〉

which proves the lemma. �
So if grad(p,Y ) f = (U, V ) then gradP

(p,Y ) f = (P−1U, P−1V ). It follows from Proposition 2.4 that fZ1 is 
also a first integral for the geodesic flow on (THn, 〈·, ·〉P ). In order to find quadratic first integrals, we use 
the following lemma.

Lemma 4.3. An endomorphism A of v is symmetric with respect to 〈·, ·〉P if and only if PA = AtP , where 
At is the transpose of A with respect to the standard metric.

Proof. Let X, Y ∈ hn be arbitrary elements. Then 〈AX, Y 〉P = 〈X, AY 〉P if and only if 〈PAX, Y 〉 =
〈PX, AY 〉, and this holds if and only if 〈PAX, Y 〉 = 〈AtPX, Y 〉. �

Since P̃ is symmetric with respect to the standard metric, there exist a basis U1, . . . , U2n of v such that 
P̃Ui = λiUi (with λi > 0, since P̃ is positive definite). This basis can be chosen orthonormal with respect 
to the standard metric, and moreover, since j(Z) acts on v as a multiple of the multiplication by 

√
−1 on 

C
n, we can assume that U2i = j(Z1)U2i−1. So we can define the operators Ãi on v such that

ÃiU2i−1 = U2i−1 ÃiU2i = U2i and ÃiUk = 0 if k 	= 2i− 1, 2i.

It follows that Ãi is symmetric with respect to 〈·, ·〉P , Ãi commutes with jP (Z) and [Ãi, Ãj ] = 0 for all i, j. 
So, Theorem 2.5 shows that we get a commuting independent family of first integrals for the geodesic flow 
on (THn, 〈·, ·〉P ). Namely

gÃi
(p, Y ) = 1

2 〈ÃiY, Y 〉P ,

where Ãi is extended so that ÃiZ1 = 0. Finally, in order to obtain the remaining integrals we use the Killing 
fields U∗

k , k = 1, . . . , 2n. In fact, we have, in the same manner as in the previous section, that

F̃k(p, Y ) = 〈Y,Uk〉P − 〈jP (Yz)Wv, Uk〉P

forms a family of first integrals for the geodesic flow such that

{F̃2i−1, F̃2j}P = δijfZ1 .

Theorem 4.4. The geodesic flow on (THn, 〈·, ·〉P ) is completely integrable in the sense of Liouville. Moreover 
the sets

1. F = {fZ1} ∪ {gÃi
}ni=1 ∪ {F̃2k−1}nk=1 and

2. F ′ = {fZ1} ∪ {gÃi
}ni=1 ∪ {F̃2k}nk=1

give two independent commuting families of first integrals of the geodesic flow.

Remark 4.5. Note that the case of a general Riemannian left-invariant metric on Hn does not give a naturally 
reductive space. Also the compact quotients considered here are not globally homogeneous but locally.
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