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On cohomological C0-(in)stability

Alejandro Kocsard

Abstract. After Katok [3], a homeomorphism f : M → M is said to be cohomologi-
cally C0-stable when its space of real C0-coboundaries is closed in C0(M). In this short
note we completely classify cohomologically C0-stable homeomorphisms, showing that
periodic homeomorphisms are the only ones.
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1 Introduction

Cocycles and cohomological equations play a fundamental role in dynamical
systems and ergodic theory. In this short note we shall mainly concentrate on
topological dynamics. So, from now on (M, d) will denote a compact metric
space and the dynamics will be given by a homeomorphism f : M → M .

In such a case, a (real) cocycle over f is just a map φ : M → R. If A ⊂ MR

denotes an f -invariant functional space (i.e. A is linear subspace of MR such
that ψ ◦ f ∈ A whenever ψ ∈ A), any φ ∈ A will be called an A-cocycle and
we will say φ is an A-coboundary whenever the cohomological equation

φ = u ◦ f − u

admits a solution u ∈ A. Many questions in dynamics can be reduced to deter-
mine if certain cocycles are or not coboundaries, so it is an important problem
(and in many cases rather difficult) to study the structure of the linear space of
A-coboundaries, which shall be denoted by

B( f,A) := {v ◦ f − v : v ∈ A}.
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By analogy with cohomological theories, we can define the first cohomology
space of f with coefficient in A as the linear space

H 1( f,A) := A/B( f,A).

To analyze the structure of H 1( f,A) (and B( f,A)) in general we endow
the space A with a vector space topology, and hence, H 1( f,A) inherits the
quotient one. Then, typically the analysis is divided in two steps (see [3] for a
very detailed exposition):

(a) Cohomological A-obstructions: very roughly, these are necessary condi-
tions an A-cocycle must satisfy to be an A-coboundary. In general, these

are closed conditions inA, so typically they characterize B( f,A)
A

instead
of B( f,A). Some examples of cohomological obstructions:

(i) Invariant measures are the cohomological obstructions for solving co-
homological equations in the topological category. In fact, if M( f )
denotes the space of f -invariant probability measures, then it holds

B( f,C0(M))
C0

=
{
φ ∈ C0(M) :

∫

M
φ dμ = 0, ∀μ ∈ M( f )

}
.

(ii) Invariant distributions (in the sense of Schwartz) are the cohomological
obstructions in the smooth category. In fact, if M is closed smooth
manifold and D′(M) denotes the topological dual space of C∞(M),
then defining D′( f ) := {μ ∈ D′(M) : 〈μ, φ〉 = 〈μ, φ ◦ f 〉, ∀φ ∈
C∞(M)}, it holds

B( f,C∞(M))
C∞

=
{
φ ∈ C∞(M) : 〈μ, φ〉 = 0, ∀μ ∈ D′( f )

}
.

(b) Cohomological A-stability: A system f is said to be cohomologically
A-stable when B( f,A) is closed in A. Cohomological stability is a very
desirable property because in that case, and only in that case, we can verify
whether a cocycle φ is an A-coboundary just analyzing the cohomological
obstructions of item (a). Let us mention some examples:

(i) Hyperbolic systems: After Livšic [4] we know that hyperbolic systems
are cohomologically Hölder-stable. On the other hand, de la Llave,
Marco and Moriyon have shown in [2] that Cr Anosov diffeomor-
phisms are cohomologically Cr -stable, for any r ∈ [2,∞].

(ii) Ergodic translations on tori: It is well-known that ergodic translations
on tori are cohomologically C∞-rigid iff they are Diophantine (see [3]
for details).
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(iii) Smooth circle diffeomorphisms with irrational rotation number: In a
joint work with Avila [1], we showed that a C∞-circle diffeomorphism
with no periodic points is cohomologically C∞-stable iff its rotation
number is Diophantine.

(iv) Circle diffeomorphisms with irrational rotation number in low regu-
larity: After the very recent work of Navas and Triestino [6], we know
that a C2+ε minimal circle diffeomorphism is cohomologically C1-
stable iff its rotation number is Diophantine.

In this short note we completely characterize the homeomorphisms that are
cohomologically C0-stable. In fact, we prove the following

Theorem A. A homeomorphism f : M → M is cohomologically C0-stable if
and only if f is periodic, i.e. it has finite order in the group of homeomorphisms
of M.

2 Notations

As we have already mentioned in the § 1, (M, d)will denote an arbitrary compact
metric space. Given x ∈ M and r > 0, we write B(x, r) := {y ∈ M : d(x, y) <
r}. If A ⊂ M , χA : M → {0, 1} will denote the characteristic function of A.

We will write C0(M) for the space of real continuous functions on M endowed
with the uniform norm

‖φ‖C0 := sup
x∈M

|φ(x)| , ∀φ ∈ C0(M).

Given a homeomorphism f : M → M , we define the space of C0-cobound-
aries by

B( f,C0(M)) := {v ◦ f − v : v ∈ C0(M)}.

The homeomorphism f is said to be cohomologically C0-stable iff

B( f,C0(M))

is closed in C0(M).
On the other hand, f is said to be periodic when there exists q ∈ N satisfying

f q = idM , and the number q is called a period of f .

3 Proof of Theorem A

Let us start with the simplest part of Theorem A, i.e. let us prove that any peri-
odic map is cohomologically C0-stable:
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Lemma 3.1. Let us assume f is periodic and let q ∈ N be a period of f . Then,

B( f,C0(M)) =
{
φ ∈ C0(M) :

q−1∑

j=0

φ( f j (x)) = 0, ∀x ∈ M
}
.

In particular, f is cohomologically C0-stable.

Proof. First of all observe that every φ ∈ B( f,C0(M)) satisfies Sq
f φ ≡ 0. In

fact, if u : M → R is such that

φ(x) = u( f (x))− u(x), ∀x ∈ M,

then it clearly holds

S
q
f φ(x) = u( f q(x))− u(x) = 0, ∀x ∈ M.

On the other hand, let us suppose ψ ∈ C0(M) is such that Sq
f ψ ≡ 0. Then,

using a formula we learned from [5]1 we write

v(x) := −
1

q

q∑

j=1

S
j
f ψ(x), ∀x ∈ M.

Clearly, v ∈ C0(M) and

v( f (x))− v(x) = −
1

q

( q∑

j=1

(
S

j
f ψ( f (x))− S

j
f ψ(x)

)
)

= −
1

q

(
S

q
f ψ( f (x))− qψ(x)

)
= ψ(x),

for every x ∈ M . Thus, ψ ∈ B( f,C0(M)), as desired. �

3.1 The cohomological operator

We can define the cohomological operator (associated to f )

Lf : C0(M) → C0(M)

by
Lf (u) := u ◦ f − u, ∀u ∈ C0(M).

1The author thanks A. Navas for bringing this formula to his attention.
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This is clearly a linear operator, and since
∥
∥Lf (u)

∥
∥

C0 ≤ 2 ‖u‖C0 ,

it is is also continuous.
Now, observe that the kernel of Lf , which shall be denoted by ker Lf , co-

incides with the space of continuous f -invariant functions. The quotient space
C0(M)/ kerLf will be denoted by C0

f (M). Defining
∥
∥φ + kerLf

∥
∥

C0
f
:= inf

ψ∈kerLf

‖φ + ψ‖C0 , ∀φ ∈ C0(M), (1)

we get a norm and this turns C0
f (M) into a Banach space.

On the other hand, notice that the image of the operator Lf coincides with the
space of continuous coboundaries B( f,C0(M)), which is, by our hypothesis, a
closed subspace of C0(M). We will consider B( f,C0(M)) equipped with (the
restriction of) the norm ‖∙‖C0 .

In this way, we have the following simple

Lemma 3.2. Let L̄f : C0
f (M) → B( f,C0(M)) be the factor linear operator

turning the following diagram commutative:

C0(M)
Lf

π

B( f,C0(M))

C0
f (M)

L̄f

where π : φ 7→ φ + kerLf denotes the canonical quotient projection.
Then, L̄f is continuous and bijective, and consequently, it is a Banach space

isomorphism.

Proof. The continuity of L̄f easily follows from the following estimate: for
any φ ∈ C0(M) and every ψ ∈ kerLf , it holds

∥
∥L̄f (φ + kerLf )

∥
∥

C0 =
∥
∥Lf (φ + ψ)

∥
∥

C0 ≤ 2 ‖φ + ψ‖C0 .

Taking infimum over ψ ∈ kerLf on the right hand side, we get
∥
∥L̄f (φ + kerLf )

∥
∥

C0 ≤ 2
∥
∥φ + kerLf

∥
∥

C0
f
, ∀φ ∈ C0(M).

Finally, since L̄f is tautologically bijective, by the open mapping theorem, L̄f

is a Banach space isomorphism. �
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Now, in order to finish the proof of Theorem A, let us assume f is cohomo-
logically C0-stable and it is not periodic. That means for every n ∈ N, we can
find xn ∈ M such that xn 6= f j (xn), for every j ∈ {1, . . . , 2n}.

For each n ≥ 1, let us choose rn > 0 such that the ball Bn := B(xn, rn)

satisfies
f j (Bn) ∩ Bn = ∅, ∀ j ∈ {1, . . . , 2n}.

Then, consider the function un : M → R given by

un(x) :=
2n−1∑

j=−2n+1

χ f j (Bn)(x)
(

1 −
| j |

2n

)
rn − d

(
f − j (x), xn

)

rn
, ∀x ∈ M. (2)

One can easily check that un is continuous, its support is equal to the disjoint
union

⊔
| j |<2n f j (Bn),

inf
x∈M

un(x) = un

(
f 2n
(xn)

)
= 0, (3)

and
sup
x∈M

un(x) = un(xn) = 1. (4)

Since any function v ∈ kerLf must satisfy v(xn) = v
(

f 2n
(xn)

)
, from (3) and

(4) we conclude that
∥
∥un + kerLf

∥
∥

C0
f
≥

1

2
. (5)

Now, consider the coboundary φn := Lf (un) = un ◦ f − un ∈ B( f,C0(M)).
Thus, for every x ∈ M it holds

φn(x) = un( f (x))− un(x)

=
2n−1∑

j=−2n+1

χ f j (Bn)( f (x))
(

1 −
| j |

2n

)
rn − d

(
f − j+1(x), xn

)

rn

−
n−1∑

j=−n+1

χ f j (Bn)(x)
(

1 −
| j |

2n

)
rn − d( f − j (x), xn)

rn

=
[
χ f −2n

(Bn)
(x)

rn − d
(

f 2n
(x), xn

)

2nrn

+
2n−2∑

j=−2n+2

χ f j (Bn)(x)
(

| j |

2n
−

| j + 1|

2n

)
rn − d

(
f − j (x), xn

)

rn

− χ f 2n−1(Bn)
(x)

rn − d
(

f −2n+1(x), xn
)

2nrn

]

(6)
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In particular, (6) implies that

‖φn‖C0 =
∣
∣φn( f j (xn))

∣
∣ =

1

2n
, ∀ j ∈ {−2n, . . . , 2n − 1}. (7)

Finally, recalling that Lf (un) = φn , for every n ∈ N, from (5) and (7) it
follows that Lf

−1 : B( f,C0(M)) → C0
f (M) is not continuous, contradicting

Lemma 3.2, and Theorem A is proved.
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