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Abstract

Given any smooth circle diffeomorphism with irrational rotation number, we show that
its invariant probability measure is the only invariant distribution (up to multiplication
by a real constant). As a consequence of this, we show that the space of real C∞-
coboundaries of such a diffeomorphism is closed in C∞(T) if and only if its rotation
number is Diophantine.

1. Introduction

Cohomological equations appear very frequently in different contexts in dynamical
systems. In fact, many problems, especially those concerned with certain forms of
rigidity and stability, can be reduced to analyzing the existence of solutions (in certain
regularity classes) of some cohomological equations (see [10], [11] for general refer-
ence; [3], [9] for applications to the study of foliations; and [4], [13] for cohomological
aspects of group actions on the circle).

In the case where the dynamics are given by a diffeomorphism f on a manifold
M , the most basic cohomological equation (and the only kind we shall consider from
now on) is a first-order linear difference equation

uf − u = φ, (1.1)

where φ : M → R is given and u : M → R is the unknown of the problem.
In this work we shall mainly concern ourselves with cohomological equations

in the smooth category. In fact, most of the time we will assume that the data of the
equations (i.e., the diffeomorphism f and the function φ in (1.1)) are C∞, and we will
be interested in the existence of smooth solutions.

By analogy with the cohomology of groups, we can consider the function φ in
(1.1) as being a smooth cocycle over f , and we say that φ is a (smooth) coboundary
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whenever (1.1) admits a C∞-solution. Of course, this leads us to define the first
cohomology space H 1(f, C∞(M)) (see Section 2.2 for details).

In general these cohomology spaces could be rather “wild” (e.g., its natural
topology is non-Hausdorff), and so it is rather hard to study the structure of these
spaces. However, we can distinguish two aspects that appear as the fundamental
characters in the analysis of H 1(f, C∞(M)):
(i) the first one is the space of f -invariant distributions in the sense of Schwartz

(see Section 2.2 for details); and
(ii) the second one is the concept of cohomological stability (see Definition 2.1).

It is important to remark that, in general, the second problem is considerably much
harder than the first one. The work of Heafliger and Banghe [6] is a good testimony
to this.

1.1. Cohomological equations over quasi-periodic systems
Equations like (1.1), where f = Rα : Td → Td is an ergodic rigid rotation on the d-
torus, appear as “linearized equations” in many Kolmogorov-Arnold-Moser problems.
In such a case we have a very clear and simple description of the smooth cohomology:
it can be shown that the Haar measure on Td is the only (modulo multiplication by a
constant) Rα-invariant distribution, and Rα is cohomologically C∞-stable if and only
if α is a Diophantine vector (see Section 2.3 for definitions).

Nevertheless, the general situation is much more complicated: when f is an
arbitrary quasi-periodic diffeomorphism (i.e., f ∈ Diff∞(Td) is topologically con-
jugate to an ergodic rigid rotation), in general it is very hard to determine the space
of f -invariant distributions and the cohomological stability issue seems to be even
subtler.

For instance, the problem of computing the C∞ first cohomology space of an
arbitrary minimal circle diffeomorphism has been included in several compilations of
open problems concerning group actions and foliations (see, e.g., [12], [5]).

In this article we solve this problem by proving the following theorem.

THEOREM A

Let F : T → T be an orientation-preserving C∞-diffeomorphism with irrational
rotation number, and let μ be its only invariant probability measure. Then, up to
multiplication by a real constant, μ is the only F -invariant distribution.

Yoccoz, in his Ph.D. thesis, showed that within the set of smooth circle diffeomor-
phisms with fixed rotation number α ∈ (R\Q)/Z those which are smoothly conjugate
to the rotation Rα : x �→ x + α form a dense subset (see [15, Chapter III]). To some
extent, our Theorem A can be considered as a “cocycle version” of his result.
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It is important to remark that Theorem A is absolutely one-dimensional and cannot
be extended to higher dimensions. In fact, in a forthcoming article [1], we will show
the existence of smooth diffeomorphisms of T2 which are topologically conjugate to
rigid rotations and exhibit higher-order invariant distributions.

On the other hand, as an almost straightforward consequence of Theorem A, we
can obtain the following corollary.

COROLLARY B

A minimal C∞ circle diffeomorphism is cohomologically C∞-stable if and only if its
rotation number is Diophantine.

1.2. Denjoy-Koksma inequality improved
Given a circle homeomorphism F with irrational rotation number ρ(F ) and a real
function φ : T → R, the classical Denjoy-Koksma inequality affirms that the Birkhoff
sums satisfy

∣∣∣qn−1∑
i=1

φ
(
f i(x)

) − qn

∫
T

φ dμ

∣∣∣ ≤ Var(φ), ∀x ∈ T, (1.2)

whenever φ has bounded variation, μ is the only F -invariant probability measure,
and qn is a denominator of a rational approximation of ρ(F ) given by the continued
fraction algorithm (see Section 2.3.2 and Proposition 4.2 for details).

Nevertheless, when F is a C3-diffeomorphism and φ is the log-derivative co-
cycle, that is, φ = log DF , Herman showed (see [8, chapitre VII, corollaire 2.5.2])
that the previous estimate can be improved. In fact, he proved that log DF qn =∑qn−1

i=0 log DF ◦ F i converges uniformly to zero, as n → ∞. The interested reader
can also find a hard version of this result in [15].

Here, as a consequence of Theorem 7.1, which is nothing but a finite regularity
version of Theorem A, we get the following result which can be considered as a
generalization of the Herman result for arbitrary cocycles.

COROLLARY C

If F is C11 and φ is C1, it holds that

∥∥∥ qn−1∑
i=0

φ ◦ F i − qn

∫
T

φ dμ

∥∥∥
C0

→ 0 as n → ∞.

1.3. Some open questions
At this point it seems natural to analyze the first cohomological space of higher-
dimension quasi-periodic diffeomorphisms.
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As we have already mentioned above, in a forthcoming article [1], we will show
that there exist quasi-periodic diffeomorphisms on higher-dimensional tori exhibiting
higher-order invariant distributions.

However, all the examples we know so far have Liouville rotation vectors and are
cohomologically C∞-unstable, so it is reasonable to propose the following question.

QUESTION 1.1
Let α ∈ Rd be an irrational vector, and let f ∈ Diff∞

+ (Td) be topologically conjugate
to the rigid rotation Rα : x �→ x + α.

Is it true that f is cohomologically C∞-stable if and only if α is Diophantine?

QUESTION 1.2
Let α and f be as above. If α is Diophantine, then does it hold that

dim D ′(f ) = 1?

It is interesting to remark that Question 1.2 could be a first step toward an eventually
higher-dimensional version of the Herman-Yoccoz linearization theorem.

2. Preliminaries

2.1. General notation
Throughout this article M will denote an arbitrary smooth boundaryless manifold.
Given r ∈ N0 ∪ {∞}, we write Cr (M) for the space of real Cr -functions on M and
Diffr (M) for the group of Cr -diffeomorphisms.∗

Let us recall that when r is finite, the uniform Cr -topology turns Cr (M) into a
Banach space. On the other hand, we shall consider the space C∞(M) endowed with
its usual Fréchet topology, which can be defined as the projective limit of the family
of Banach spaces (Cr (M))r∈N.

Given any f ∈ Diffr (M), Fix(f ) and Per(f ) stand for the set of fixed and
periodic points of f , respectively. Whenever M is orientable, we write Diffr

+(M) for
the subgroup of Cr orientation-preserving diffeomorphisms.

The d-dimensional torus will be denoted by Td and will be identified with Rd/Zd .
The canonical quotient projection will be denoted by π : Rd → Td . For simplicity,
we shall just write T for the 1-torus, that is, the circle.

The symbol Lebd will be used to denote the Lebesgue measure on Rd , as well as
the Haar probability measure on Td . Once again, for the sake of simplicity, we just
write Leb, and also dx, instead of Leb1.

∗As usual, we use the term C0-diffeomorphism as a synonym of homeomorphism.
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As usual, we shall identify Cr (M, Rk) with (Cr (M))k and Cr (Td) with the space
of Zd -periodic real Cr -functions on Rd .

In the particular case of real Cr -functions on T, we explicitly define the Cr -norm
on Cr (T) (with 0 ≤ r < ∞) by

‖φ‖Cr := max
x∈T

max
0≤j≤r

|Djφ(x)|, ∀φ ∈ Cr (T).

Moreover, whenever I ⊂ R is a compact interval and ψ ∈ Cr (R), we define

‖ψ |I‖Cr := max
x∈I

max
0≤j≤r

|Djψ(x)|.

Next, we define the space of lifts of circle diffeomorphisms by

D̃iffr
+(T) := {

f ∈ Diffr
+(R) : f − idR ∈ Cr (T)

}
.

It can be easily shown that this space is connected and simply connected. In particular,
this space can be identified with the universal covering of Diffr

+(T). Making some

abuse of notation, we will also denote by π the canonical projection D̃iffr
+(T) →

Diffr
+(T) that associates to each f ∈ D̃iffr

+(T) the only circle diffeomorphism lifted
by f .

As usual, we write ρ : D̃iff0
+(T) → R for the rotation number function, and we

will use the same letter to call the induced map ρ : Diff0
+(T) → R/Z (see [2, Section

1.1] for the definitions).
Finally, we have two important remarks about notation. First, for the sake of

simplicity, when dealing with estimates we will use the letter C to denote any positive
real constant which may assume different values throughout the article, even in a
single chain of inequalities.

Second, we will denote the intervals of the real line regardless of the order of the
extremal points; that is, if a, b are two different points of R, we shall write (a, b) for
the only bounded connected component of R \ {a, b}, independent of the order of the
points. Of course, we will follow the same convention for the intervals [a, b], [a, b),
and (a, b].

2.2. Cocycles, coboundaries, and invariant distributions
From now on let us assume our manifold M is closed, that is, compact and boundary-
less, and let f ∈ Diffr (M), with r ∈ N0 ∪{∞}. Every ψ ∈ Ck(M), where 0 ≤ k ≤ r ,
can be considered as a (real) Ck-cocycle over f by writing

M × Z � (x, n) �→ Snψ(x) ∈ R,
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where Snψ = Sn
f ψ denotes the Birkhoff sum over f given by

Snψ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
i=0

ψ ◦ f i if n ≥ 1,

0 if n = 0,

−
−n∑
i=1

ψ ◦ f −i if n < 0.

We say that the cocycle ψ ∈ Ck(M) is a C�-coboundary, with 0 ≤ � ≤ k ≤ r ,
whenever there exists u ∈ C�(M) solving the following cohomological equation:

u ◦ f − u = ψ.

We say that φ, ψ ∈ Ck(T) are C�-cohomologous whenever the function φ − ψ is a
C�-coboundary.

The space of C�-coboundaries will be denoted by B(f, C�(M)), and since it is
clearly a linear subspace of C�(M), we can define

H 1
(
f, C�(M)

)
:= C�(M)/B

(
f, C�(M)

)
,

called the first C�-cohomology space of f .
This space H 1(f, C�(M)) naturally inherits the quotient topology from C�(M).

Unfortunately, in general, B(f, C�(M)) is not closed in C�(M), and therefore, this
quotient topology is non-Hausdorff. So, it is reasonable to propose the following
definition.

Definition 2.1
We say that f is cohomologically C�-stable whenever B(f, C�(M)) is closed in
C�(M). On the other hand, we define the first reduced C�-cohomology space as being

H̃ 1
(
f, C�(M)

)
:= C�(M)/ cl�

(
B(f, C�(M))

)
,

where cl�(·) denotes the closure in the uniform C�-topology.

As we have already mentioned in Section 1, the study of the structure of the spaces
H 1(f, C∞(M)) and H̃ 1(f, C∞(M)) naturally leads us to consider the space of f -
invariant (Schwartz) distributions on M .

So, for each k ∈ N0, let D ′
k(M) be the topological dual space of Ck(M), that is,

the space of distributions of order up to k of M . As usual, the dual space of C∞(M)
will be simply denoted by D ′(M).
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Since all the inclusions Ck+1(M) ↪→ Ck(M) and C∞(M) ↪→ Ck(M) are contin-
uous and have dense range, we can suppose we have the following chain of inclusions,
which are defined modulo unique extensions:

D ′
0(M) ⊂ D ′

1(M) ⊂ D ′
2(M) ⊂ · · · ⊂ D ′(M).

Moreover, since we are assuming that M is compact, it is well known that

D ′(M) =
⋃
k≥0

D ′
k(M).

On the other hand, any Ck-diffeomorphism f acts linearly on Ck(M) by pullback,
and the adjoint of this action is the linear operator f∗ : D ′

k(M) → D ′
k(M) given by

〈f∗T , ψ〉 := 〈T , ψ ◦ f 〉, ∀ T ∈ D ′
k(M), ∀ ψ ∈ Ck(M).

In this case, Fix(f∗) is the space of f -invariant distributions of order up to k and
it will be denoted by D ′

k(f ). Of course, it holds that D ′(f ) = ⋃
k≥0 D ′

k(f ).
As we mentioned above, there is a tight relation between the space of invariant

distributions D ′(f ) and the reduced cohomology group H̃ 1(f, C∞(M)). In fact, as a
straightforward consequence of the Hahn-Banach theorem we get the following result.

PROPOSITION 2.2
Given any f ∈ Diffk(M), with k ∈ N0 ∪ {∞}, it holds that

clk
(
B(f, Ck(M))

) =
⋂

T ∈D ′
k (f )

ker T .

In particular, this implies that

dim H̃ 1
(
f, Ck(M)

) = dim D ′
k(f ).

2.3. Arithmetic

2.3.1. Diophantine and Liouville vectors
For any α ∈ Rd we write

‖α‖ := dist(α, Zd).

Notice that, since ‖α + n‖ = ‖α‖ for every n ∈ Zd , we can naturally consider ‖ · ‖
as defined on Td .
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We say α = (α1, . . . , αd) ∈ Rd is irrational if and only if, for any (n1, . . . , nd) ∈
Zd , it holds that

∥∥∥ d∑
i=1

niαi

∥∥∥ = 0 =⇒ ni = 0 for i = 1, . . . , d. (2.1)

Moreover, the vector α is said to be Diophantine whenever there exist constants
C, τ > 0 satisfying

∥∥∥ d∑
i=1

αiqi

∥∥∥ ≥ C

maxi |qi |τ ,

for every (q1, . . . , qd) ∈ Zd \ {0}. On the other hand, an irrational element of Rd

which is not Diophantine is called Liouville.

2.3.2. Continued fractions
In this section we introduce some common notation and recall some elementary and
well-known results about continued fractions (see [7] for details).

First of all, the Gauss map A : (0, 1) → [0, 1) is defined by

A(x) := 1

x
−

⌊1

x

⌋
.

For each α ∈ R \ Q we can associate the sequences (αn)n≥0 and (an)n≥0 which
are recursively defined by

α0 := α − �α�, αn := An(α0), ∀ n ≥ 1; (2.2)

a0 := �α�, an+1 :=
⌊ 1

αn

⌋
, ∀ n ≥ 0. (2.3)

The nth convergent of α is defined by

pn/qn := a0 + 1

a1 + 1

a2 + 1

· · · + 1

an

and the sequences (pn)n≥−2 and (qn)n≥−2 satisfy the following recurrences:

p−2 := 0, p−1 := 1, pn := anpn−1 + pn−2, ∀ n ≥ 0, (2.4)

q−2 := 1, q−1 := 0, qn := anqn−1 + qn−2, ∀ n ≥ 0. (2.5)
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A very important property about (qn) that we will repeatedly use in the future is
the following:

qn+1 = min
{
q ∈ N : ‖qα‖ < ‖qnα‖}, ∀n ≥ 1. (2.6)

The reader can easily show that the sequences (pn) and (qn) satisfy the following
relation:

pn−1qn − pnqn−1 = (−1)n, ∀ n ≥ −1. (2.7)

Now let us define the sequence (βn)n≥−1 by

β−1 := 1, (2.8)

βn :=
n∏

i=0

αi, ∀ n ≥ 0. (2.9)

By straightforward computations we can show that the sequence (βn) satisfies

βn = (−1)n(qnα − pn) > 0 (2.10)

and

1

qn + qn+1
< βn <

1

qn+1
, (2.11)

for every n ≥ 0.
On the other hand, the growth of the sequences (qn) and (βn) determines whether

the number α is Diophantine or Liouville: if τ denotes any positive real number and
we write

L(α, τ ) := {m ∈ N : βm < βτ
m−1}, (2.12)

then it is very easy to verify that α is Liouville if and only if L(α, τ ) has infinitely
many elements, for every τ > 1. In fact, this can be proved by rewriting (2.1) for
d = 1: we have that α is Diophantine if and only if there exist constants C, τ > 0
such that

βn = |qnα − pn| >
C

q1+τ
n

, ∀n ≥ 0; (2.13)

and, by estimate (2.11), this is equivalent to

βn+1 > Cβ1+τ
n , ∀n ≥ 0. (2.14)
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2.4. Cohomology of minimal rotations on the torus
Let α = (α1, . . . , αd) be an irrational vector in Rd . It is well known that in such a
case the rotation R : Td → Td given by

R : x �→ x + (α + Zd)

is minimal (i.e., all its orbits are dense in Td ) and uniquely ergodic, where the Haar
measure Lebd is the only R-invariant Borel probability measure.

Moreover, we have the following result which belongs to the folklore.

PROPOSITION 2.3
Continuing with the notation we introduced above, we have

D ′(R) = RLebd .

On the other hand, R is cohomologically C∞-stable if and only if α is Diophantine.

Proof
Let ψ ∈ C∞(Td) be such that

∫
ψ dLebd = 0, and let us consider the Fourier

development of ψ :

ψ(x) =
∑

k∈Zd\{0}
ψ̂ke

2πik·x.

Then, the Fourier coefficients of any (integrable) solution of the cohomological
equation ψ = uR − u must satisfy the following relation:

ûk := ψ̂k

e2πik·α − 1
, ∀ k ∈ Zd \ {0}. (2.15)

If {Un}n≥1 is any sequence of finite subsets of Zd such that
⋃

n≥1 Un = Zd \ {0}
and Un ⊂ Un+1, for every n ≥ 1, then one can define the trigonometric polynomials

ψn(x) :=
∑
k∈Un

ψ̂ke
2πik·x,

un(x) :=
∑
k∈Un

ûke
2πik·x for n ≥ 1.

Since unR − un = ψn, we have ψn ∈ B(R, C∞(Td)), and clearly ψn → ψ in
the C∞ topology. Thus, ψ ∈ cl∞

(
B(f, C∞(Td))

)
. By Proposition 2.2, we conclude

that D ′(R) = RLebd .
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Now, when α is Diophantine it is easy to verify that the Fourier coefficients
(ûk)k∈Zd decay sufficiently fast at infinity to guarantee that

u(x) :=
∑

k∈Zd\{0}
ûke

2πik·x

defines a C∞-function which turns out to be a solution for the cohomological equation
uR − u = ψ . Applying Proposition 2.2 once again, we obtain

B
(
f, C∞(Td)

) = ker Lebd = cl∞
(
B(f, C∞(Td))

)
,

and therefore, R is cohomologically C∞-stable.
On the other hand, when α is Liouville it is possible to find a sequence (nj )j≥1 ⊂

Zd \ {0} satisfying nj → ∞, as j → +∞ and

∥∥∥ d∑
i=1

αinj,i

∥∥∥ ≤ 1

maxi |nj,i |j , ∀ j ≥ 1,

where, of course, nj = (nj,1, . . . , nj,d).
This clearly implies that by writing

ψ(x) :=
∑
j∈N

[(e2πinj ·α − 1)e2πinj ·x + (e−2πinj ·α − 1)e−2πinj ·x]

we get ψ ∈ C∞(Td) ∩ ker Lebd . However, ψ �∈ B(R, C∞(Td)) because the Fourier
coefficients (ûk) of an eventual solution of the cohomological equation given by (2.15)
satisfy

ûnj
= 1, ∀ j ∈ N,

with nj → ∞, as j → ∞. �

3. Proofs of the corollaries

Since the proof of Theorem A is rather technical, we will start by proving Corollaries
B and C, assuming Theorem A.

Proof of Corollary B
Let F ∈ Diff∞

+ (T) be such that ρ(F ) ∈ (R \ Q)/Z, let μ denote the only F -invariant

probability measure, and let f ∈ D̃iff∞
+ (T) be a lift of F .
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By the unique ergodicity, it easily follows that∫
T

log Df dμ = 0. (3.1)

On the other hand, by Theorem A we know that D ′(F ) = Rμ. Hence, if we sup-
pose that F is cohomologically C∞-stable, by (3.1) and Proposition 2.2 we conclude
that log Df ∈ B(F, C∞(T)); that is, there exists u ∈ C∞(T) satisfying

uF − u = log Df. (3.2)

Now, let us write

h′ := C−1 exp(−u) ∈ C∞(T),

where C :=∫
T

exp(−u) dLeb. So, in particular h′ is positive and satisfies
∫

T
h′ dLeb =

1. Hence, defining

h(x) :=
∫ x

0
h′(t) dt, ∀x ∈ R,

we have h ∈ D̃iff∞
+ (T), and by (3.2) we get

D(h ◦ f ) = (Dh ◦ f )Df = (h′ ◦ f )Df = h′ = Dh.

This implies that there exists ρ ∈ R such that hf = h + ρ, and by invariance of the
rotation number under conjugacy we have ρ = ρ(f ).

Therefore, F is C∞-conjugate to the rigid rotation x �→ x + ρ(F ), and applying
Proposition 2.3 we conclude that ρ(F ) is Diophantine.

Reciprocally, by the Herman-Yoccoz theorem (see [8, chapitre IX, théorème 5.1],
[14, p. 335]) any circle diffeomorphism with Diophantine rotation number is C∞-
conjugate to the rigid rotation, and by Proposition 2.3 it must be cohomologically
C∞-stable, as desired. �

Proof of Corollary C
To prove Corollary C we will use two different arguments depending on how well we
can approximate the rotation number of the diffeomorphism by rational numbers.

When the rotation number is badly approximated, we will use the finite regularity
version of the Yoccoz linearization theorem (see [14, p. 335]). On the other hand, when
the rotation number is not “too badly” approximated, we will use a finite regularity
version of our Theorem A, which is Theorem 7.1.
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So, let F ∈ Diff11
+ (T) be a minimal diffeomorphism, let f ∈ D̃iff11

+ (T) be a lift of
F , let μ be the only F -invariant probability measure, and let φ ∈ C1(T). Let (pn) and
(qn) be the sequences associated to α := ρ(f ) given by (2.4) and (2.5), respectively,
and let ε > 0 be arbitrary. Then, let us consider the set L(α, 11/2) given by (2.12).

First, let us suppose that L(α, 11/2) is finite. Thus, as we have already mentioned
at the end of Section 2.3.2, in this case α is Diophantine. More precisely, there exists
C > 0 such that

‖qα‖ ≥ C

q11/2
, ∀q ∈ N. (3.3)

Then, by the Yoccoz linearization theorem [14] we have that F is C1-conjugate
to the rigid rotation Rα . Therefore, applying Proposition 2.3 we can conclude that
D ′

1(F ) = Rμ.
On the other hand, if we suppose that L(α, 11/2) has infinite elements, we can

apply Theorem 7.1 to conclude that D ′
1(F ) = Rμ, too.

In any case, applying Proposition 2.2 we can conclude that there exists u ∈ C1(T)
such that ∥∥∥(uF − u) −

(
φ −

∫
T

φ dμ
)∥∥∥

C1
≤ ε

2
.

Writing

φ̃ := uF − u +
∫

T

φ dμ,

it clearly holds that ∫
T

φ̃ dμ =
∫

T

φ dμ.

Hence, ‖φ̃ − φ‖C1 ≤ ε/2 and

(
φ̃ −

∫
T

φ̃ dμ
)

∈ B
(
F, C1(T)

)
.

On the other hand, if we write

Mn := sup
x∈R

|f qn(x) − x − pn| ,

by the minimality of F we get Mn → 0 when n → ∞, and so there exists N ∈ N
such that ‖Du‖C0Mn ≤ ε/2, provided n ≥ N .
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Finally, applying the Denjoy-Koksma inequality (1.2) (see Proposition 4.2 for the
precise statement) for φ̃ − φ we get∣∣∣Sqnφ(x)−qn

∫
T

φ dμ

∣∣∣
≤

∣∣∣Sqn(φ − φ̃)(x) − qn

∫
T

(φ − φ̃) dμ

∣∣∣ +
∣∣∣Sqn φ̃(x) − qn

∫
T

φ̃ dμ

∣∣∣
≤ Var(φ − φ̃) + ∣∣u(

F qn(x)
) − u(x)

∣∣
≤

∫
T

|D(φ − φ̃)| dμ + ‖Du‖C0Mn ≤ ‖φ − φ̃‖C1 + ε

2
≤ ε

for every x ∈ T and provided that n is sufficiently big. Since ε is arbitrary, Corollary
C is proved. �

4. Cr -estimates for real cocycles

This section can be considered the starting point of the proof of Theorem A. The
principal new result here is Proposition 4.12, which is mainly inspired by the work of
Yoccoz [14].

Throughout this section, F will denote an arbitrary orientation-preserving dif-
feomorphism of T with irrational rotation number. Once and for all we fix a lift
f : R → R of F , and to simplify the exposition, we write α := ρ(f ) ∈ R \ Q.

Using the notation we introduced in Section 2.3, let (an), (αn), (βn), (pn), (qn) be
the sequences associated to α defined by (2.2), (2.4), (2.5), and (2.8).

For each n ≥ 0 and φ : T → R, we define fn and φn by

fn := f qn − pn (4.1)

and

φn := Sqnφ =
qn−1∑
i=0

φ ◦ f i. (4.2)

For any x ∈ R and n ≥ 0, we consider the following closed intervals:

In(x) := [x, fn(x)],

Jn(x) := [fn+1(x), fn(x)],

Kn(x) := [f −2
n (x), fn(x)].

(4.3)

Let us recall that, according to our notation conventions (see Section 2), we denote
intervals of the real line, not taking into account the order of their extreme points.
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On the other hand, for any x̂ ∈ T, we will write Î n(x̂), Ĵ n(x̂), and K̂n(x̂) to denote
the intervals π(In(x)), π(Jn(x)), π(Kn(x)) ⊂ T, respectively, where x is any point
in π−1(x̂) ⊂ R.

The reader can find the proof of the following simple and classical result in [2,
Chapter I, Lemma 1.3].

LEMMA 4.1
Given any n ≥ 0 and any x ∈ T, the interior of the intervals În(x), În(F (x)), . . . ,
În(F qn+1−1(x)) are two-by-two disjoint. In particular, it holds that

Jn(x) = In+1(x) ∪ In(x),

Kn(x) = In

(
f −2

n (x)
) ∪ In

(
f −1

n (x)
) ∪ In(x).

We will need the following notation:

mn(x) = |fn(x) − x| = Leb
(
In(x)

)
,

Mn := max
x∈R

mn(x).
(4.4)

For the sake of completeness, let us recall the Denjoy-Koksma inequality (see,
e.g., [8]).

PROPOSITION 4.2 (Denjoy-Koksma inequality)
If F is C0 and φ : T → R has bounded variation, then for each n ≥ 1, it holds that∥∥∥φn − qn

∫
T

φ dμ

∥∥∥
C0

≤ Var(φ), (4.5)

where μ denotes the unique F -invariant probability measure and Var(φ) denotes the
total variation of φ over T.

On the other hand, for every x ∈ R and 1 ≤ k ≤ qn+1 it holds that

|φk(y) − φk(z)| ≤ Var(φ), ∀y, z ∈ In(x). (4.6)

4.1. Cr -estimates for the log-derivative cocycle
When F is C1, we can consider a very particular cocycle which plays a fundamental
role in the analysis of the dynamical properties of F : this is log DF = log Df ∈
C0(T) and will be called the log-derivative cocycle.

The fundamental property of the log-derivative cocycle that makes it so important
is the chain rule:

S k(log Df ) = log Df k, ∀k ≥ 1.
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Applying Proposition 4.2 for the log-derivative cocycle, we can easily show the
following result.

COROLLARY 4.3
If f is C2, for every n ≥ 2 we have

max
{‖log Dfn‖C0 , ‖ log Df −1

n ‖C0

} ≤ Var(log Df ).

And, on the other hand, for every x ∈ R it holds that

C−1 <
mn(x)

mn(y)
< C, ∀y ∈ Kn−1(x),

where C := exp(3Var(log Df )).

The following three propositions are due to Yoccoz [14].

PROPOSITION 4.4
Let f be C2. Then for every � ≥ 1, n ≥ 2, and 1 ≤ k ≤ qn it holds that

k−1∑
i=0

(
Df i(x)

)� ≤ C
M�−1

n−1

mn−1(x)�
, ∀x ∈ T,

where C = C(f ) := exp (Var(log Df )).

PROPOSITION 4.5
Let f be Cr , with r ≥ 3, and let s be a natural number satisfying 1 ≤ s ≤ r − 1.
Then there exists a real constant C > 0, depending only on f and s, such that for
every n ≥ 2 and 1 ≤ k ≤ qn it holds that

|Ds(S k log Df )(x)| = |Ds log Df k(x)| ≤ C
( √

Mn−1

mn−1(x)

)s

, ∀x ∈ T.

PROPOSITION 4.6
Supposing f is C3 for every n ≥ 2 and any x ∈ R, there exist y ∈ In−1(x) and
z ∈ In(x) such that

mn(y) = βn

βn−1
mn−1(z) = αnmn−1(z).

We will also need the following estimate which, to some extent, can be considered as
an improvement of Proposition 4.5 for k = qn.
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PROPOSITION 4.7
Let us assume f is Cr , with r ≥ 3. Then there exist a constant C > 0 and a natural
number n0, such that for any x ∈ R, every n ≥ n0, and 0 ≤ s ≤ r − 2 it holds that

|Ds log Dfn(y)| ≤ C

√
Mn−1

(mn−1(x))s

[
(
√

Mn−1)r−2 + mn(x)

mn−1(x)

]
,

for every y ∈ Kn−1(x).

Proof
See [15, chapitre III, section 3.6]. �

The following elementary formula relates the derivatives of the Birkhoff sums of the
log-derivative cocycles with the derivatives of the iterates of the diffeomorphism. It
can be found in [14, p. 337, equation (A)], too.

PROPOSITION 4.8
Given any r ∈ N0 and g ∈ Diffr+1

+ (R), we have

Dr+1g = Pr (D log Dg, D2 log Dg, . . . , Dr log Dg)Dg,

where Pr is the polynomial in Z[X1, . . . , Xr ] defined inductively by P0 = 1 and

Pr+1(X1, . . . , Xr+1) := X1Pr (X1, . . . , Xr ) +
r∑

i=1

Xi+1
∂Pr

∂Xi

(X1, . . . , Xr ),

for every r ≥ 0.
In particular, all the polynomials Pr satisfy

Pr (tX1, t
2X2, t

3X3, . . . , t
rXr ) = t rPr (X1, . . . , Xr ). (4.7)

As a straightforward consequence of Propositions 4.5 and 4.8, we get the following
result.

COROLLARY 4.9
Given f , s, n, and k as in Proposition 4.5, there exists a constant C > 0, depending
only on f and s, such that

|Dsf k(x)| ≤ C
( √

Mn

mn(x)

)s−1
Df k(x), ∀x ∈ T.

4.2. Cr -estimates for arbitrary real cocycles
In this section we shall concern ourselves with arbitrary real cocycles and get some
estimates for the (higher-order) derivatives of them. The main difference between the
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results of Yoccoz and those examined here is that his estimates hold in the whole circle
and ours are instead “local.”

Now we can get our first C1-estimate for real cocycles.

PROPOSITION 4.10
Let f be C2. Then, there exists a constant C > 0 such that for every φ ∈ C1(T), any
n ≥ 0, any x
 ∈ R satisfying mn(x
) = Mn, and every y ∈ Kn(x
), it holds that

|D(S kφ)(y)| ≤ C
‖Dφ‖C0

Mn

, for k = 1, . . . , qn+1.

proof
Applying estimate (4.6) to the log-derivative cocycle we get

| log Df i(y) − log Df i(z)| ≤ Var(log Df ),

for every x ∈ R, every y, z ∈ In(x), and 0 ≤ i ≤ qn+1. This clearly implies that

C−1 <
Df i(y)

Df i(z)
< C, ∀y, z ∈ Kn(x), (4.8)

where C := exp(3‖D log Df ‖L1(T)).
Then, combining Proposition 4.4 and estimate (4.8) we get, for every y ∈ Kn(x
)

and 1 ≤ k ≤ qn+1,

|D(S kφ)(y)| =
∣∣∣ k−1∑

i=0

Dφ
(
f i(y)

)
Df i(y)

∣∣∣ ≤ ‖Dφ‖C0

k−1∑
i=0

Df i(y)

≤ C‖Dφ‖C0

k−1∑
i=0

Df i(x
) ≤ C
‖Dφ‖C0

mn(x
)
= C

‖Dφ‖C0

Mn

. �

Now let us recall the classical Faà di Bruno equation.

PROPOSITION 4.11
Given g, h ∈ Cr (R), with r ≥ 1, it holds that

Dr (g ◦ h) =
r∑

j=1

(Djg ◦ h)Br,j (D1h, . . . , Dr−j+1h),

where Br,j is polynomial in r − j + 1 variables given by

Br,j (x1, . . . , xr−j+1)

=
∑

(ci )∈�r,j

r!

c1! · · · cr−j+1!(1!)c1 · · · ((r − j + 1)!)cr−j+1
x

c1
1 x

c2
2 · · · xcr−j+1

r−j+1
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and where

�r,j :=
{

(c1, . . . , cr−j+1) ∈ Nr−j+1
0 :

∑
ici = r,

∑
ci = j

}
.

Using the formulas given in Propositions 4.8 and 4.11, together with Yoccoz’s estimate
of Proposition 4.5, we can extend the previous result to higher-order derivatives.

PROPOSITION 4.12
Let f be Cr+1 with r ≥ 2. Then there exists C > 0 depending only on f and r such
that for every φ ∈ Cr+1(T), every n ≥ 0, 1 ≤ k ≤ qn+1, and any x
 ∈ R satisfying
mn(x
) = Mn, it holds that

|Dr (S kφ)(y)| ≤ C‖φ‖Cr

( 1√
Mn

)r+1
, ∀y ∈ Kn(x
). (4.9)

Proof
The case r = 1 was already proved in Proposition 4.10, so let us assume that r ≥ 2.
Applying Proposition 4.11 and the estimate given by Corollary 4.9, for any x ∈ T we
obtain that

|Dr (S kφ)(x)| =
∣∣∣ k−1∑

i=0

Dr (φ ◦ f i)(x)
∣∣∣

=
∣∣∣ k−1∑

i=0

r∑
j=1

Djφ
(
f i(x)

)
Br,j

(
Df i(x), . . . , Dr−j+1f i(x)

)∣∣∣

≤
r∑

j=1

‖Djφ‖C0

k−1∑
i=0

∣∣Br,j

(
Df i(x), . . . , Dr−j+1f i(x)

)∣∣

≤ C‖φ‖Cr

r∑
j=1

( √
Mn

mn(x)

)r−j
k−1∑
i=0

(
Df i(x)

)j

≤ C‖φ‖Cr

r∑
j=1

( √
Mn

mn(x)

)r−j Mj−1
n

mn(x)j

= C
‖φ‖Cr

mn(x)r

r∑
j=1

(
√

Mn)r+j−2 ≤ C‖φ‖Cr

(
√

Mn)r−1

mn(x)r
. (4.10)
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Finally, if y ∈ Kn(x
), by Corollary 4.3 we have mn(y) ≤ Cmn(x
) = CMn,
where C is any constant bigger than exp(3Var(log Df )). Thus, putting together this
last estimate with (4.10), we obtain (4.9). �

5. Fibered Z2-actions and coboundaries

The main purpose of this section is to introduce the fibered Z2-actions on R2, which
shall play a central role in our renormalization scheme. We will see that (a lift of)
a circle diffeomorphism and a cocycle naturally induce a fibered Z2-action. Then,
we shall extend the notion of coboundary to fibered Z2-actions, and in Lemma 5.1
we prove that this new definition indeed generalizes the previous one given in
Section 2.2.

Then, in Proposition 5.3, we give a simple but fundamental characterization of
certain coboundaries which is mainly inspired by the definition of quasi-rotations by
Yoccoz [15].

The space W r := Diffr
+(R) × Cr (R) can be seen as a subgroup of Diffr

+(R2)
defining

(f, ψ) : (x, y) �→ (
f (x), y + ψ(x)

)
,

for each (f, ψ) ∈ W r .
The space of fibered Z2-actions on R2 will be denoted by

Ar := Hom(Z2, W r ) ⊂ Hom
(
Z2, Diffr

+(R2)
)
.

Given any � ∈ Ar and any (m, n) ∈ Z2, we write

�(m, n) = (f m,n
� , ψ

m,n
� ) ∈ W r .

Whenever the action is clear from the context, we shall just write (f m,n, ψm,n)
instead of (f m,n

� , ψ
m,n
� ).

There are two group actions on Ar that will be used in our renormalization
scheme: The first one is the left W s-action T : W s × Ar → Ar (with 0 ≤ s ≤ r),
given by conjugation in Diffr

+(R2); that is,

T(g,ξ )(�)(m, n) := (g, ξ )�(m, n)(g, ξ )−1

= (
gf

m,n
� g−1, (ψm,n

� + ξf
m,n
� − ξ ) ◦ g−1

)
,

for every (g, ξ ) ∈ W s , � ∈ Ar , and (m, n) ∈ Z2. The second one is the left
GL(2, Z)-action U : GL(2, Z) × Ar → Ar given by change of basis in Z2; that is,

UA(�)(m, n) := �(m′, n′),
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where A ∈ GL(2, Z) and (
m′

n′

)
:= A−1

(
m

n

)
.

A very simple but fundamental remark about these actions is that T and U

commute.
Most of the time we will work on the subset Ar

0 ⊂ Ar given by

Ar
0 := {

� ∈ Ar : Fix(f m,n
� ) = ∅, ∀(m, n) ∈ Z2 \ {(0, 0)}}.

Observe that this subset is invariant under the actions T and U.
Next, notice that each pair (f, φ) ∈ D̃iffr

+(T) × Cr (T) ⊂ W r naturally induces
an action � = �(f, φ) ∈ Ar given by

� :

{
(1, 0) �→ (τ, 0),

(0, 1) �→ (f, φ),
(5.1)

where τ is the translation x �→ x − 1. Notice that this action � belongs to Ar
0 if and

only if Per(π(f )) = ∅, that is, ρ(f ) is an irrational number.
Now, taking into account that a circle diffeomorphism and a cocycle induce a

fibered Z2-action, it is reasonable to extend the notion of coboundary to fibered Z2-
actions. We say that � ∈ Ar

0 is a Cs-coboundary, with 0 ≤ s ≤ r , if and only if
there exist (g, ξ ) ∈ W s and A ∈ GL(2, Z) such that �′ := UA(T(g,ξ )�) satisfies the
following conditions:

f
1,0
�′ = τ,

ψ
1,0
�′ = ψ

0,1
�′ ≡ 0.

It is very easy to verify that this new notion of coboundary is coherent with the
previous one. In fact, we have the following result.

LEMMA 5.1
Let F ∈ Diffr

+(T) (with 0 ≤ r ≤ ∞) be such that ρ(F ) ∈ (R \ Q)/Z, let φ ∈ Cr (T),

and let f ∈ D̃iffr
+(T) be any lift of F . Then φ ∈ B(F, Cs(T)) if and only if the

induced action �(f, φ) given by (5.1) is a Cs-coboundary.

Proof
Let us start by assuming that � = �(f, φ) is a Cs-coboundary. This means that
there exist (g, u) ∈ W s and A ∈ GL(2, Z) such that � := T(g,u)(UA�) satisfies
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ψ
1,0
� = ψ

0,1
� ≡ 0 and f

1,0
� = τ . This implies that

ψ
m,n
� ≡ 0, ∀ (m, n) ∈ Z2.

In particular, if we write A =
(

a c

b d

)
, we get

ψ
a,b
� = (u ◦ τ − u) ◦ g−1 ≡ 0, (5.2)

ψ
c,d
� = (φ + u ◦ f − u) ◦ g−1 ≡ 0. (5.3)

By (5.2), u is Z-periodic, and by (5.3) φ is a Cs-coboundary for F .
Reciprocally, let us suppose that φ ∈ B(F, Cs(T)). So, we can find u ∈ Cs(T)

satisfying uf −u = φ. Thus, writing �′ := T(id,−u)� we clearly have f
1,0
�′ = f

1,0
� = τ

and ψ
1,0
�′ = ψ

0,1
�′ ≡ 0. Therefore, � is a Cs-coboundary. �

Our next result is a very elementary but useful characterization of coboundaries that
will be our fundamental tool for constructing a coboundary as a small perturbation of
a cocycle after applying our renormalization scheme. However, first we need a very
simple (and well-known) lemma about cohomological equations on the real line.

LEMMA 5.2
Given any f ∈ Diffr

+(R) with Fix(f ) = ∅ and any φ ∈ Cr (R), the cohomological
equation

uf − u = φ

always admits a solution u ∈ Cr (R).

Proof
Let us write z := f (0). Since f is fixed-point free, we do not lose any generality by
assuming z > 0.

Next, let u : [0, z] → R be any Cr -function satisfying

u
∣∣
[0,z/3]

≡ 0, u
∣∣
[2z/3,z]

≡ φ.

Now, since the interval [0, z] is a fundamental domain for f , for any x ∈ R there
is a unique n(x) ∈ Z such that f −n(x)(x) ∈ [0, x1), and so we can extend the function
u to the whole real line by writing

u(x) := u
(
f −n(x)(x)

) + Sn(x)φ
(
f −n(x)(x)

)
, ∀x ∈ R.

By the very definition, u is a Cr -function and satisfies uf − u = φ. �
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Now we can state our characterization of coboundaries within the context of fibered
Z2-actions.

PROPOSITION 5.3
Let � ∈ Ar

0 be so that there exists x
 ∈ R satisfying

ψ1,0(x) = 0, ∀x ∈ [x
, f 0,1(x
)], (5.4)

ψ0,1(x) = 0, ∀x ∈ [x
, f 1,0(x
)]. (5.5)

Then, � is a Cr -coboundary.

Proof
First of all, notice that we do not lose any generality by supposing that

f 0,1(x
) ∈ (
f −1,0(x
), f 1,0(x
)

)
.

In this case there are two possibilities: f 0,1(x
) belongs to either (x
, f 1,0(x
)) or
(f −1,0(x
), x
). For the sake of concreteness, let us suppose that the first case holds
(the second one is completely analogous).

By Lemma 5.2, we can find a function u ∈ Cr (R) such that

ψ1,0 = uf 1,0 − u. (5.6)

Notice that by (5.4), we have

u
(
f 1,0(x)

) = u(x), ∀x ∈ [x
, f 0,1(x
)]. (5.7)

Now, since we are supposing that [x
, f 0,1(x
)] ⊂ [x
, f 1,0(x
)], from (5.7) we
can conclude that there exists a unique function ū ∈ Cr (R) satisfying

ū|[x
,f 1,0(x
)] ≡ u|[x
,f 1,0(x
)],

ū
(
f 1,0(x)

) = ū(x), ∀x ∈ R.
(5.8)

Next, if we define

ψ̄ := ψ0,1 + u − uf 0,1 ∈ Cr (R), (5.9)

it can be easily shown that ψ̄ is f 1,0-periodic. In fact, since (f 1,0, ψ1,0) and (f 0,1, ψ0,1)
commute, we have

ψ1,1 = ψ1,0 + ψ0,1 ◦ f 1,0 = ψ0,1 + ψ1,0 ◦ f 0,1,
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and so

ψ̄f 1,0 = (ψ0,1 + u − uf 0,1)f 1,0 = ψ0,1f 1,0 + uf 1,0 − u + u − uf 1,1

= ψ0,1f 1,0 + ψ1,0 + u − uf 1,1 = ψ0,1 + ψ1,0f 0,1 + u − uf 1,1

= ψ0,1 + (uf 1,0 − u)f 0,1 + u − uf 1,1 = ψ0,1 + u − uf 0,1

= ψ̄. (5.10)

Now, combining (5.5), (5.8), and (5.10), we can conclude that

ψ̄ = ū − ūf 0,1. (5.11)

Then, taking into account equations (5.6), (5.9), and (5.11), we can easily see that

T(id,ū−u)�(i) = (f i, 0), for i = (1, 0), (0, 1).

Finally, applying Lemma 5.2 once again we can construct an orientation-
preserving Cr -diffeomorphism h : R → R satisfying hf 1,0h−1 = τ . Thus,

T(h,ū−u)� =
{

(1, 0) �→ (τ, 0),

(0, 1) �→ (h ◦ f 0,1 ◦ h−1, 0),

and the proposition is proved. �

6. Renormalization of fibered Z2-actions

The main aim of this section is to introduce the renormalization scheme for Z2-actions
and to show how it can be used to construct coboundaries by perturbation of the original
cocycle. Indeed, the notion of coboundary (for Z2-actions) turns out to be expressly
renormalization-invariant, which allows us to take advantage of the smoothing effect
of renormalization.

As in Section 4, F will denote an arbitrary minimal Cr -diffeomorphism of T

(with r ≥ 3), f ∈ D̃iffr
+(T) will denote a lift of F , and φ : T → R will denote an

arbitrary real Cr -cocycle.
To simplify the notation, we write α = ρ(f ), and since we are assuming that

α ∈ R \ Q, we consider the sequences (an), (αn), (βn), (pn), (qn) associated to α

defined by (2.2), (2.4), (2.5), and (2.8).
Then, we define the matrices

An = An(α) := (−1)n
(

qn −pn

−qn−1 pn−1

)
, ∀n ≥ −1. (6.1)

Notice that, by (2.7), all the matrices An belong to GL(2, Z).
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Now, for each n ≥ −1 we define the nth renormalized action �n(φ) by

�n(φ) := UAn

(
�(f, φ)

)
, ∀n ≥ −1, (6.2)

where, of course, �(f, φ) denotes the induced action defined by (5.1). Notice that

�n(φ) :

{
(1, 0) �→ (fn−1, φn−1) = (f qn−1 − pn−1, S

qn−1

f φ),

(0, 1) �→ (fn, φn) = (f qn − pn, S
qn

f φ).

LEMMA 6.1
Let n ≥ 3, and let x
 ∈ R be arbitrary. Then, there exists u ∈ Cr (T) such that the
cocycle φ̄ := φ + u − uF satisfies

φ̄n−1(y) = 0, ∀y ∈ Jn−1(x
). (6.3)

Moreover, there exists a real constant C > 0 depending only on F and r such
that whenever x
 satisfies mn−1(x
) = Mn−1, the function u can be chosen so that it
fulfills the following estimate:

|Dru(y)| ≤ C‖φn−1|Kn−1(x
)‖Cr �(α, n, r)
( 1

Mn−1

)r

, (6.4)

for every y ∈ Jn−1(x
), where

�(α, n, r) :=
r∑

i=0

( βn−1

βn−1 − βn

)i

. (6.5)

Proof
First, let ζ : R → R be any auxiliary smooth function satisfying the following:
� ζ (x) = 0, for every x ≤ 0;
� 0 < ζ (x) < 1, for every x ∈ (0, 1);
� ζ (x) = 1, for every x ≥ 1.

Let x̂ := π(x
) ∈ T. By Lemma 4.1 we know that În(x̂) ∩ În−1(x̂) = {x̂} and
F qn+qn−1 (x̂) belongs to the interior of În−1(x̂). In particular, this implies that In(x
)
and fn−1(In(x
)) are disjoint, and the last interval is contained in In−1(x
).

We can assume n is odd (the other case is completely analogous), so it holds that

fn(x
) < x
 < fn−1

(
fn(x
)

) = fn

(
fn−1(x
)

)
< fn−1(x
).

Notice that since �n(φ) ∈ Ar
0, the previous relation holds for every x ∈ R.
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Now, we define u : Jn−1(x
) → R by

u(y) := ζ
( y − x


fn(fn−1(x
)) − x


)
φn−1

(
f −1

n−1(y)
)
, (6.6)

for every y ∈ Jn−1(x
) = [fn(x
), fn−1(x
)]. Then, it clearly holds that

u
(
fn−1(y)

) − u(y) = φn−1(y),

whenever y and fn−1(y) both belong to Jn−1(x
), that is, for every y ∈ In(x
).
Now, we can extend our function u to the whole real line R to get a Cr Z-periodic

function satisfying

u
(
F qn−1 (y)

) − u(y) = φn−1(y), ∀y ∈ Ĵn−1(x̂). (6.7)

Notice that if we write φ̄ := φ + u − uF , we clearly get

φ̄n−1(y) = S
qn−1

f φ̄(y) = φn−1(y) + u(y) − u
(
fn−1(y)

) = 0,

for every y ∈ Jn−1(x
), as desired.
So, it remains to prove that u satisfies estimate (6.4). To do this, first notice that

by combining Corollary 4.3 and Proposition 4.6 we get

C−1 βn

βn−1
≤ mn(fn−1(x
))

mn−1(x
)
≤ C

βn

βn−1
, (6.8)

where C > 1 is a constant which depends on F but does not depend on either n or x
.
Now, to simplify the notation, let us write

� := ∣∣fn

(
fn−1(x
)

) − x

∣∣.

Observe that, since we are assuming n is odd, we have � = mn−1(x
) −mn(fn−1(x
)).
Hence, by (6.8) it holds that

� ≥
(

1 − C−1 βn

βn−1

)
mn−1(x
) ≥ C−1 βn−1 − βn

βn−1
Mn−1. (6.9)

Now, invoking the Denjoy-Koksma inequality (Proposition 4.2), Corollary 4.9,
the Faà di Bruno formula (Proposition 4.11), Proposition 4.12, and estimate (6.9), we
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can prove (6.4). In fact, for any y ∈ Jn−1(x
) ⊂ Kn−1(x
) we have

|Dru(y)| =
∣∣∣ r∑

i=0

(
r

i

)
Diζ

(y − x


�

)
�−iDr−i(φn−1 ◦ f −1

n−1)(y)
∣∣∣

≤ C

r∑
i=0

( βn−1

(βn−1 − βn)Mn−1

)i∣∣∣ r−i∑
j=1

(Djφn−1)
(
f −1

n−1(y)
)

×Br−i,j (D1f −1
n−1, . . . , D

r−i−j+1f −1
n−1)

∣∣∣
≤ C‖φn−1|Kn−1(x
)‖Cr �(α, n, r)

×
r∑

i=0

( 1

Mn−1

)i
r−i∑
j=1

(
Df −1

n−1(y)
)j

( √
Mn−1

mn−1(y)

)r−i−j

≤ C‖φn−1|Kn−1(x
)‖Cr �(α, n, r)
( 1

Mn−1

)r

, (6.10)

and estimate (6.4) is proved. �

LEMMA 6.2
Let φ, x
, n, u, and φ̄ be as in Lemma 6.1. Then there exists ξ ∈ Cr (T) such that

supp ξ ⊂ În−1

(
π(x
)

) ∪ În−1

(
π(fn−1(x
))

)
, (6.11)

ξ (y) + ξ
(
fn−1(y)

) = φ̄n(y), ∀y ∈ In−1(x
). (6.12)

Moreover, there exists a constant C > 0 depending only on F and r such that the
function ξ can be constructed so that it fulfills the following estimate:

‖ξ‖Cr ≤ C‖φ̄n|In−1(x
)‖Cr

( 1

Mn−1

)r

. (6.13)

Proof
As in the proof of Lemma 6.1, we will assume n is odd, and therefore, for every x ∈ R
it holds that fn(x) < x < fn−1(x) < f 2

n−1(x).
Then, let us start by defining ξ on the interval [x
, f 2

n−1(x
)] = In−1(x
) ∪
In−1(fn−1(x
)) by writing

ξ (y) :=

⎧⎪⎪⎨
⎪⎪⎩

ζ

(
y − x


fn−1(x
) − x


)
φ̄n(y) if y ∈ In−1(x
),

[
1 − ζ

( f −1
n−1(y) − x


fn−1(x
) − x


)]
φ̄n

(
f −1

n−1(y)
)

if y ∈ In−1

(
fn−1(x
)

)
,

(6.14)

where ζ is the auxiliary function we used in the proof of Lemma 6.1.
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In this way, our function ξ is clearly Cr on the interiors of the intervals In−1(x
)
and In−1(fn−1(x
)), and by the very properties of the auxiliary function ζ , we have

Dkξ (x
) = Dkξ
(
f 2

n−1(x
)
) = 0, for k = 0, 1, . . . , r. (6.15)

In order to see that ξ is also continuous and has continuous derivatives up to order
r at fn−1(x
), let us consider the fibered Z2-action � := �n(φ̄) (see (6.2) for the
definition of �n) and notice that condition (6.3) can be translated into the Z2-action
language by stating

ψ
1,0
� (y) = 0, ∀y ∈ Jn−1(x
) = [fn(x
), fn−1(x
)]. (6.16)

On the other hand, since �(1, 0) and �(0, 1) commute in Diffr
+(R2), and taking

into account that f
1,0
� = fn−1 and f

0,1
� = fn, we have

ψ
0,1
� (y) + ψ

1,0
�

(
fn(y)

) = ψ
1,0
� (y) + ψ

0,1
�

(
fn−1(y)

)
, ∀y ∈ R. (6.17)

Now, putting together equations (6.16) and (6.17) and recalling that ψ
0,1
� = φ̄n, we

conclude that

φ̄n(y) = φ̄n

(
fn−1(y)

)
, ∀y ∈ In−1(x
). (6.18)

From (6.18) we can easily show that ξ is continuous and has continuous derivatives
up to order r at the point fn−1(x
).

Hence, by this remark and (6.15) we can affirm that there is a unique extension
of ξ to the whole real line such that it is Cr , Z-periodic, and satisfies

supp ξ ⊂
⋃
k∈Z

[x
 + k, f 2
n−1(x
) + k].

Of course, this is clearly equivalent to (6.11). The condition (6.12) is also satisfied by
the pure construction of ξ .

Next, let us prove that ξ satisfies estimate (6.13). To do this, first let y be an
arbitrary point in In−1(x
) and notice that

|Drξ (y)| =
∣∣∣ r∑

j=0

(
r

j

)
(Djζ )

( y − x


fn−1(x
) − x


)( 1

Mn−1

)j

Dr−j φ̄n(y)
∣∣∣

≤ C
( 1

Mn−1

)r

‖φ̄n|In−1(x
)‖Cr . (6.19)
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Now, if y denotes an arbitrary point of In−1(fn−1(x
)) and 1 ≤ i ≤ r , by
Corollary 4.9 and Proposition 4.11 we have

∣∣∣Di
[
ζ
( f −1

n−1(y) − x


fn−1(x
) − x


)]∣∣∣
=

∣∣∣ i∑
j=1

(Djζ )
( f −1

n−1(y) − x


fn−1(x
) − x


)( 1

Mn−1

)j

× Bi,j

(
Df −1

n−1(y), . . . , Di−j+1f −1
n−1(y)

)∣∣∣
≤ C

i∑
j=1

( 1

Mn−1

)j (
Df −1

n−1(y)
)j

( √
Mn−1

mn−1(y)

)i−j

≤ C

i∑
j=1

( 1√
Mn−1

)i+j

≤ C
( 1

Mn−1

)i

, (6.20)

and so

|Drξ (y)| ≤ C

r∑
i=0

∣∣∣Di
[
ζ
( f −1

n−1(y) − x


fn−1(x
) − x


)]
Dr−i φ̄n

(
f −1

n−1(y)
)∣∣∣

≤ C

r∑
i=0

( 1

Mn−1

)i

‖φ̄n ◦ f −1
n−1|In−1(fn−1(x
))‖Cr−i

≤ C
( 1

Mn−1

)r

‖φ̄n ◦ f −1
n−1|In−1(fn−1(x
))‖Cr

= C
( 1

Mn−1

)r

‖φ̄n|In−1(x
)‖Cr , (6.21)

where the last equality is a consequence of (6.18).
Now, combining (6.19) and (6.21) we can easily get (6.13). �

LEMMA 6.3
Let φ, φ̄, and ξ be as in Lemma 6.2. Then the cocycle φ̃ := φ − ξ is a Cr -coboundary
for F .

Proof
Since φ and φ̄ are Cr -cohomologous, this is equivalent to showing that φ̄ − ξ ∈
B(F, Cr (T)). To do this, we will show that the Z2-action � := �n(φ̄ − ξ ) is a
Cr -coboundary.
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First, observe that �(1, 0) = (fn−1, φ̄n−1 − ξn−1). By (6.3) we know φ̄n−1|In(x
) ≡
0, and if we write x̂ := π(x
), Lemma 4.1 implies that for any y ∈ În(x̂), it holds that

F i(y) �∈ În−1(x̂) \ {x̂}, for i = 0, 1, . . . , qn−1 − 1. (6.22)

On the other hand, we affirm that

F i(y) �∈ În−1

(
F qn−1 (x̂)

)
, for i = 0, 1, . . . , qn−1 − 1. (6.23)

In fact, let us suppose that (6.23) does not hold. So, there exist y ∈ În(x̂) and
i ∈ {1, . . . , qn−1 − 1} such that F i(y) ∈ În−1(F qn−1 (x̂)).

Moreover, we have

F qn−1−i
(
F i(y)

) = F qn−1 (y) ∈ F qn−1
(
În(x̂)

) = În

(
F qn−1 (x̂)

)
, (6.24)

and by Lemma 4.1 we know that F qn−1−i(F 2qn−1 (x̂)) �∈ În−1(F qn−1 (x̂)). In particular,
this last remark and (6.24) imply that F qn−1−i(F 2qn−1 (x̂)) ∈ In(F qn−1 (x̂)), and since F

is topologically conjugate to the irrational rotation Rα , this clearly contradicts (2.6).
Hence, (6.23) is proved.

Now, by (6.11), (6.22), and (6.23), we have ξn−1|In(x
) ≡ 0, and so

ψ
1,0
� (y) = φ̄n−1(y) = 0, ∀y ∈ In(x
) = [x
, f

0,1
� (x
)]. (6.25)

On the other hand, let z be an arbitrary point in În−1(x̂), and let us consider the
set

Az := {
i ∈ N0 : F i(z) ∈ În−1(x̂) ∪ În−1

(
F qn−1 (x̂)

)
, i < qn

}
.

Let us prove that Az = {0, qn−1}. To do this, first notice that clearly {0, qn−1} ⊂
Az. Then, consider any i ∈ N with 0 < i < qn−1. Observe that by Lemma 4.1 we have
F i(z) �∈ În−1(x̂). On the other hand, if F i(z) belonged to În−1(F qn−1 (x̂)), we would
have {F i(z), F qn−1−i(F i(z))} ⊂ În−1(F qn−1 (x̂)), which clearly contradicts Lemma 4.1.

Now let j be any natural number with qn−1 < j < qn. Applying Lemma 4.1
once again we know F j (z) �∈ În−1(z). On the other hand, if F j (z) belonged to
În−1(F qn−1 (x̂)), it would hold that {F qn−1 (z), F j−qn−1 (F qn−1 (z))} ⊂ În−1(F qn−1 (x̂)),
which contradicts Lemma 4.1 too. Thus, Az = {0, qn−1}.

Now, by (6.12), it holds that

ψ
0,1
� (y) = φ̄n(y) − ξ (y) − ξ

(
fn−1(y)

) = 0, (6.26)

for every y ∈ In−1(x
) = [x
, f
1,0
� (x
)].

Finally, putting together (6.26), (6.25), and Proposition 5.3, we conclude that �

is a Cr -coboundary, and by Lemma 5.1, φ̃ ∈ B(F, Cr (T)), as desired. �
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7. Proof of Theorem A

First of all, let us suppose that ρ(F ) is Diophantine. Then, by the Herman-Yoccoz
theorem (see [8], [14]), F is smoothly conjugate to the rigid rotation Rρ(F ), and by
Proposition 2.3, we know that dim D ′(Rρ(F )) = 1. Then, D ′(F ) is one-dimensional,
too; that is, D ′(F ) is spanned by the only F -invariant probability measure.

Therefore, from now on we can assume that F exhibits a Liouville rotation
number, and Theorem A will follow as a straightforward consequence of the following
result, which can be considered as a finitary version of it.

THEOREM 7.1
Let F ∈ Diffr

+(T) (with r ≥ 5) be such that ρ(F ) satisfies the following condition: the
set L(α, r/2) given by (2.12) contains infinitely many elements for some, and hence
any, α ∈ π−1(ρ(F )) ⊂ R (e.g., when ρ(F ) is Liouville).

Let k := �(r − 5)/6�, and let φ ∈ Ck(T) be such that∫
T

φ dμ = 0,

where μ is the only F -invariant probability measure.
Then, given any ε > 0, there exists φ̃ ∈ Ck(T) such that φ̃ ∈ B(F, Ck(T)) and

‖φ̃ − φ‖Ck ≤ ε. (7.1)

Notice that, by Proposition 2.2, the conclusion of this theorem can be briefly summa-
rized by saying that D ′

k(F ) = Rμ.

Proof of Theorem 7.1

First, let us fix a lift f ∈ D̃iffr
+(T) of F , and then we can suppose that α := ρ(f ). Let

(qn) and (βn) be the sequences given by (2.5) and (2.8) associated to the continued
fraction expansion of α.

By our arithmetical hypothesis, L(α, r/2) is an infinite set, so we can find n ∈
L(α, r/2) with n ≥ n0, where n0 is the natural number given by Proposition 4.7. Let
x
 ∈ R be any point such that mn−1(x
) = Mn−1.

Now, by combining Propositions 4.6 and 4.7, for any 0 ≤ s ≤ r − 2 and any
y ∈ Kn−1(x
) we have

|Ds log Dfn(y)| ≤ C

√
Mn−1

(mn−1(x
))s

(
(
√

Mn−1)r−2 + mn(x
)

mn−1(x
)

)

≤ C
(

(Mn−1)(r−1)/2−s + βn

βn−1
(Mn−1)1/2−s

)
≤ C

(
(Mn−1)(r−1)/2−s + β

r/2−1
n−1 (Mn−1)1/2−s

)
≤ C(Mn−1)(r−1)/2−s, (7.2)
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where the last inequality is a consequence of the fact that

βn−1 =
∫

T

mn−1(t) dμ(t) ≤ Mn−1.

Then, if Ps ∈ Z[X1, . . . , Xs] denotes the polynomial of degree s given by
Proposition 4.8, applying (4.7) and (7.2) we get

|Ds+1fn(y)| = ∣∣Ps

(
D log Dfn(y), . . . , Ds log Dfn(y)

)
Dfn(y)

∣∣
≤ CPs

(
(Mn−1)(r−1)/2−1, (Mn−1)(r−1)/2−2, . . . , (Mn−1)(r−1)/2−s

)
≤ C

( 1

Mn−1

)s

Ps

(
(Mn−1)(r−1)/2, . . . , (Mn−1)(r−1)/2

)
≤ C(Mn−1)s((r−1)/2)−s = C(

√
Mn−1)rs−3s , (7.3)

for every y ∈ Kn−1(x
).
Now, let u ∈ Cr (T) be the function we constructed in Lemma 6.1. We affirm that

we can find a constant C > 0, depending only on f and r , such that

‖ufn − u|In−1(x
)‖Cs ≤ C‖φ‖Cs+1 (
√

Mn−1)r−3s−4. (7.4)

To prove this, first notice that for any 0 ≤ s ≤ r − 2 and y ∈ In−1(x
), we have

∣∣Dsu
(
fn(y)

) − Dsu(y)
∣∣ ≤

∫ fn(y)

y

|Ds+1u(t)| dLeb(t)

≤ mn(y)‖Ds+1u|In−1(x
)‖C0

≤ C
βn

βn−1
Mn−1‖φn−1|Kn−1(x
)‖Cs+1�(α, n, s + 1)

( 1

Mn−1

)s+1

≤ Cβ
r/2−1
n−1 ‖φ‖Cs+1

( 1√
Mn−1

)s+2( 1

1 − β
r/2−1
n−1

)s+1( 1

Mn−1

)s

≤ C‖φ‖Cs+1 (Mn−1)r/2−1
( 1

Mn−1

)(3s+2)/2
= C‖φ‖Cs+1 (

√
Mn−1)r−3s−4. (7.5)

Observe that (7.5) is indeed the proof of (7.4) for the particular case s = 0.
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In the other cases, that is, when s ≥ 1, we can use the Faà di Bruno equation and
estimates (7.2), (7.3), and (7.5) to prove (7.4),

|Ds(ufn − u)(y)| ≤ ∣∣Dsu
(
fn(y)

)
Dfn(y) − Dsu(y)

∣∣
+

∣∣∣ s−1∑
j=1

Dju
(
fn(y)

)
Bs,j

(
Dfn(y), . . . , Ds−j+1fn(y)

)∣∣∣
≤ Dfn(y)

∣∣Dsu
(
fn(y)

) − Dsu(y)
∣∣ + |Dfn(y) − 1||Dsu(y)|

+ C

s−1∑
j=1

‖φn−1|Kn−1(x
)‖Cj �(α, n, j )
( 1

Mn−1

)j

× Bs,j

(
1, (

√
Mn−1)r−3, . . . , (

√
Mn−1)(r−3)(s−j )

)
≤ C(‖φ‖Cs+1M

(r−3s−4)/2
n−1 + M

(r−1)/2
n−1 ‖φn−1|Kn−1(x
)‖Cs M−s

n−1)

+ C

s−1∑
j=1

‖φ‖Cj

( 1√
Mn−1

)j+1( 1

Mn−1

)j

(
√

Mn−1)(r−3)(s−j )

≤ C‖φ‖Cs+1 [(
√

Mn−1)r−3s−4 + (
√

Mn−1)r−3s−1]

≤ C‖φ‖Cs+1 (
√

Mn−1)r−3s−4, (7.6)

and (7.4) is proved.
Now, let us consider the cocycle φ̄ as defined in Lemma 6.1, that is, given

by φ̄ := φ + u − uf . Notice that whenever 0 ≤ s ≤ (2r − 3)/3, combining
Proposition 4.12 and (7.4) we get

|Dsφ̄n(y)| ≤ |Dsφn(y)| + |Ds(u − ufn)(y)| ≤ C‖φ‖Cs+1

( 1√
Mn−1

)s+1
, (7.7)

for every y ∈ In−1(x
).
On the other hand, remember that in the middle of the proof of Lemma 6.2 we

show that φ̄ satisfies (6.18); that is,

φ̄n(y) = φ̄n

(
fn−1(y)

)
, ∀y ∈ In−1(x
). (7.8)

This implies that there exists a unique function γ ∈ Cr (R) which coincides with
φ̄n on In−1(x
) and is fn−1-invariant on the whole real line. To estimate the Cr -norm
of γ , first observe that, by the definition of γ and estimate (7.7), it holds that

‖γ |In−1(x
)‖Cs = ‖φ̄n|In−1(x
)‖Cs ≤ C‖φ‖Cs+1

( 1√
Mn−1

)s+1
.
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On the other hand, applying estimate (7.7) and recalling γ = γ ◦ fn−1 for any
y ∈ In−1(fn−1(x
)) we get

|Dsγ (y)| = |Ds(γ ◦ f −1
n−1)(y)| = |Ds(φ̄n ◦ f −1

n−1)(y)|

=
∣∣∣ s∑

i=1

Diφ̄n

(
f −1

n−1(y)
)
Bs,i

(
Df −1

n−1(y), . . . , Ds−i+1f −1
n−1(y)

)∣∣∣
≤

s∑
i=1

‖φ̄|In−1(x
)‖Ci

∣∣Bs,i

(
Df −1

n−1(y), . . . , Ds−i+1f −1
n−1(y)

)∣∣

≤ C‖φ‖Cs+1

s∑
i=1

( 1√
Mn−1

)i+1(
Df −1

n−1(y)
)i

( 1√
Mn−1

)s−i

= C‖φ‖Cs+1

( 1√
Mn−1

)s+1
. (7.9)

Repeating this argument we can show that, given any k ∈ N, there exists a
constant Ck > 0 depending only on f , r , and k such that

|Dsγ (y)| ≤ Ck‖φ‖Cs+1

( 1√
Mn−1

)s+1
, ∀y ∈ In−1

(
f k

n−1(x
)
)
. (7.10)

Now, returning to (7.8), we can affirm that there exists x1 ∈ In−1(x
) satisfying

Dγ (x1) = Dφ̄n(x1) = 0.

Moreover, since γ is (fn−1)-periodic and fn−1 is a diffeomorphism, xk
1 := f k

n−1(x1) is
a critical point of γ , for every k ∈ Z.

This implies that, for each integer k, we can find a point xk
2 ∈ [f k

n−1(x1), f k+1
n−1 (x1)]

such that D2γ (xk
2 ) = 0, and, inductively, we can define the sequence (of sequences)

of points (xk
s )1≤s≤r,k∈Z that satisfies

Dsγ (xk
s ) = 0 and xk

s+1 ∈ [xk
s , x

k+1
s ] ⊂ R, (7.11)

for every 1 ≤ s ≤ r and every k ∈ Z. Now, if we write

Is := In−1(x
) ∪ In−1

(
fn−1(x
)

) ∪ · · · ∪ In−1

(
f s−1

n−1 (x
)
)
,

one can easily check that

x0
s ∈ Is and Leb(Is) ≤ sMn−1. (7.12)
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Now, estimates (7.10), (7.11), and (7.12) can be used to improve estimate (7.7).
In fact, if 0 ≤ s ≤ (2r − 3)/3, one can easily check that

|Ds−1γ (y)| ≤
∫ y

x0
s

|Dsγ (z) dz| ≤ C‖φ‖Cs+1

( 1√
Mn−1

)s+1
sMn−1

= C‖φ‖Cs+1M
1−(s+1)/2
n−1 , ∀y ∈ Is . (7.13)

Iterating this procedure of integration from the appropriate point x0
s we get

|Ds̄−j φ̄n(y)| = |Ds̄−j γ (y)| ≤ C‖φ‖Cs̄+1

( 1√
Mn−1

)s̄+1
M

j

n−1

= C‖φ‖Cs̄+1M
j−(s̄+1)/2
n−1 , ∀y ∈ In−1(x
), (7.14)

and each j ∈ {0, 1, . . . , s̄ − 1}, where s̄ := �(2r − 3)/3�.
Now recall that we are assuming that φ has zero average with respect to μ. Since

φ̄ is is cohomologous to φ, the same holds for φ̄. Therefore, there must exist a point
x0 ∈ In−1(x
) such that φ̄n(x0) = 0. In particular, estimate (7.14) also holds for j = s̄.
Then, recalling that the number k is equal to �(r − 5)/6�, we have

‖φ̄n|In−1(x
)‖Ck ≤ C‖φ‖Cs̄+1M
s̄−k−(s̄+1)/2
n−1 ≤ C‖φ‖Cr M

(r−3)/6
n−1 . (7.15)

Then we apply Lemma 6.2 to construct the function ξ ∈ Cr (T), and putting
together estimates (6.13) and (7.15) we obtain

‖ξ‖Ck ≤ CM−k
n−1‖φ̄n|In−1(x
)‖Ck ≤ C‖φ‖Cr M

(r−3)/6−k

n−1 ≤ C‖φ‖Cr M
1/3
n−1. (7.16)

Taking into account that C is a real constant which only depends on F and r ,
that by the minimality Mm → 0 as m → +∞, and that L(α, r/2) has infinitely
many elements, we conclude that we can choose n ∈ L(α, r/2) big enough such that
C‖φ‖Cr M

1/3
n−1 ≤ ε.

Finally, by Lemma 6.3 the cocycle φ̃ := φ − ξ is a Cr -coboundary for F , and by
the previous remark we have ‖φ̃ − φ‖Ck = ‖ξ‖Ck < ε, as desired. �
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