
Math. Z. (2018) 290:1223–1247
https://doi.org/10.1007/s00209-018-2060-y Mathematische Zeitschrift

Rotational deviations and invariant pseudo-foliations for
periodic point free torus homeomorphisms

Alejandro Kocsard1 · Fernanda Pereira Rodrigues1

Received: 17 April 2017 / Accepted: 17 January 2018 / Published online: 10 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract This article dealswith directional rotational deviations for non-wandering periodic
point free homeomorphisms of the 2-torus which are homotopic to the identity. We prove
that under mild assumptions, such a homeomorphism exhibits uniformly bounded rotational
deviations in some direction if and only if it leaves invariant a pseudo-foliation, a notion
which is a slight generalization of classical one-dimensional foliations. To get these results,
we introduce a novel object called ρ̃-centralized skew-product and their associated stable
sets at infinity.

1 Introduction

We denote by Homeo0(Td) the space of homeomorphisms of the d-dimensional torus T
d

which are homotopic to the identity. The main dynamical invariant for systems given by
such a map is the so called rotation set. Given a lift f̃ : R

d ý of a homeomorphism f ∈
Homeo0(Td), one defines its rotation set by

ρ( f̃ ) :=
{

ρ ∈ R
d : ∃ni ↑ +∞, zi ∈ R

d ,
f̃ ni (zi ) − zi

ni
→ ρ, as i → ∞

}
.

This invariant was originally defined by Poincaré for the one-dimensional case (i.e. d = 1)
in his celebrated work [23]. In such a case, the rotation set reduces to a point, the so called
rotation number, and a simple but fundamental property holds (see for instance [10, page 21]):∣∣∣ f̃ n(z) − z − nρ( f̃ )

∣∣∣ � 1, ∀n ∈ Z,∀z ∈ R. (1)
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That is, every f̃ -orbit exhibits uniformly bounded rotational deviations with respect to the
rigid rotation (or translation) z 	→ z + ρ( f̃ ).

In higher dimensions the situation dramatically changes: in fact, for d � 2 different orbits
can exhibit different rotation vectors and, moreover, there can exist points with non-well-
defined rotation vector. However, the rotation set ρ( f̃ ) is always non-empty, compact and
connected; and for d = 2, Misiurewicz and Ziemian [22] showed it is also convex. So, in
the two-dimensional case the elements of Homeo0(T2) can be classified according to the
following trichotomy:

(i) ρ( f̃ ) is just a point, and in this case we say f is a pseudo-rotation;
(ii) ρ( f̃ ) is a non-degenerate line segment;
(iii) ρ( f̃ ) has non-empty interior.

In this paper we shall concentrate on the study of rotational deviations in dimension two.
In this case, as a generalization of (1), one says that f exhibits uniformly bounded rotational
deviations when

sup
z∈R2

sup
n∈Z

d
(
f̃ n(z̃) − z̃, nρ( f̃ )

)
< ∞.

When the rotation set ρ( f̃ ) has non-empty interior Le Calvez and Tal [21] has recently
shown that f exhibits uniformly bounded rotational deviations. This result had been pre-
viously gotten by Addas-Zanata [1] for smooth diffeomorphisms, and Dávalos [5] in some
particular cases.

When the rotation set ρ( f̃ ) has empty interior, i.e. it satisfies either condition (i) or (ii)
of above trichotomy, one can consider directional rotational deviations: if v ∈ S

1 denotes
a unit vector such that ρ( f̃ ) is contained in a straight line perpendicular to v, f is said to
exhibit uniformly bounded v-deviations when there exists a constant M > 0 such that〈

f̃ n(z) − z − nρ, v
〉
� M, ∀z ∈ R

2, ∀n ∈ Z,

for some (and hence, any) ρ ∈ ρ( f̃ ).
When f is a pseudo-rotation, i.e. ρ( f̃ ) is just a point, one can study rotational devia-

tions in any direction. Koropecki and Tal has shown in [19] that “generic” area-preserving
rational pseudo-rotations, i.e. satisfying ρ( f̃ ) ⊂ Q

2, exhibit uniformly bounded deviations
in every direction (see also [21]), but there are some “exotic” rational pseudo-rotations with
unbounded deviations in every direction [18]. Contrasting with these results, in [15] the first
author and Koropecki proved that generic diffeomorphisms in the closure of the conjugacy
class of rotations on T

2 are irrational pseudo-rotations exhibiting unbounded deviations in
every direction.

Regarding the remaining case (ii) of above trichotomy, Dávalos [5] have proved that any
f ∈ Homeo0(T2) whose rotation set is a non-trivial vertical segment and contains rational
points, exhibits uniformly bounded horizontal deviations. This result had been proven by
Guelman et al. [8] in the area-preserving setting.

As the reader could have already noticed, in all above boundedness results the homeo-
morphisms have periodic points, and in fact, these orbits play a fundamental role in their
proofs.

The fundamental purpose of this paper consists in pursuing the study of directional rota-
tional deviations for periodic point free homeomorphisms and its topological and geometric
consequences.
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It is well-known that any 2-torus homeomorphism in the identity isotopy class that
leaves invariant a (non-singular one-dimensional) foliation exhibits uniformly bounded v-
deviations, for some v ∈ S

1 whose direction is completely determined by the asymptotic
behavior of the foliation; and in particular, its rotation set has empty interior.

However, as it is shown in [2], there are smooth minimal area-preserving pseudo-rotations
exhibiting uniformly bounded horizontal deviations, but not preserving any foliation.

One of the main results of this paper, that emerges from the combination of Theorems 5.4
and 5.5, establishes that, under somemild and natural conditions, an element of Homeo0(T2)

exhibits uniformly bounded v-deviations for some v ∈ S
1 if and only if it leaves invariant

a pseudo-foliation. Torus pseudo-foliations, which are a slight generalization of classical
one-dimensional foliations, are defined in Sect. 5. Pseudo-foliations have been used in [16]
to show that any minimal homeomorphism which is not a pseudo-rotation is topologically
mixing, and in [17] to prove a particular case of the so called Franks-Misiurewicz conjecture
(even though the authors did not explicitly use this name).

The main character of this work is a new class of dynamical systems on T
2 × R

2, called
ρ̃-centralized skew-products, that are associated to each homeomorphism of T

2 which is
isotopic to the identity. In Sect. 3.1 we define the stable sets at infinity associated to these
skew-products and in Sect. 4 we stablish some important results about the topology of these
sets regarding the directional rotational devitions of the original system. Stable sets at infinity
are used to contruct the invariant pseudo-foliation of Theorem 5.5.

The paper is organized as follows: in Sect. 2 we fix the notation that will be used all along
the article and recall some previous results. In Sect. 3 we introduce the so called ρ̃-centralized
skew-products and their associated stable sets at infinity.Weprove someelementary properties
of these sets and use them to get some fundamental results about rotational deviations,
like Theorem 3.1 and Corollary 3.2, showing that uniformly v- and (−v)-deviations are
equivalent. Then, in Sect. 4 we establish some relations between the topology of stable
sets at infinity and à priori boundedness of rotational deviations for non-wandering periodic
point free homeomorphisms. Then, finally in Sect. 5 we introduce the new concepts of torus
pseudo-foliations we show that under some natural and mild hypotheses, a non-wandering
periodic point free homeomorphism exhibits uniformly bounded rotational deviations in
some direction if and only if it leaves invariant a torus pseudo-foliation.

2 Preliminaries and notations

2.1 Maps, topological spaces and groups

Given a map f : X ý, its set of fixed points will be denoted by Fix( f ). We shall write
Per( f ) := ⋃

n�1 Fix( f
n) for the set of periodic points. The map f is said to be periodic

point free whenever Per( f ) = ∅. If A ⊂ X denotes an arbitrary subset, we define its
positively maximal f -invariant subset by

I +
f (A) :=

⋂
n�0

f −n(A). (2)

When f is bijective, we can also define its maximal f -invariant subset by

I f (A) := I +
f (A) ∩ I +

f −1(A) =
⋂
n∈Z

f n(A). (3)
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1226 A. Kocsard, F. P. Rodrigues

When X is a topological space, a homeomorphism f : X ý is said to be non-wandering
when for every non-empty open set U ⊂ X , there exists n � 1 such that f n(U ) ∩ U �= ∅.
On the other hand, f is said to be minimal when every f -orbit is dense in X .

Given any A ⊂ X , we write int(A) to denote its interior, Ā for its closure and ∂X A for its
boundary inside X . When A is connected, we write cc(X, A) for the connected component
of X containing A. As usual, we write π0(X) to denote the set of all connected components
of X .

If (X, d) is a metric space, the open ball of radius r > 0 and center at x ∈ X will be
denoted by Br (x). Given an arbitrary non-empty set A ⊂ X , we define its diameter by

diam(A) := sup
x,y∈A

d(x, y),

and given any point x ∈ X , we write

d(x, A) := inf
y∈A

d(x, y).

We also consider the space of compact subsets

K(X) := {K ⊂ X : K is non-empty and compact}.
and we endow this space with its Hausdorff distance dH (induced by d) defined by

dH (K1, K2) := max

{
max
p∈K1

d(p, K2), max
q∈K2

d(q, K1)

}
, ∀K1, K2 ∈ K(X).

It is well-known that (K(X), dH ) is compact whenever (X, d) is compact itself.
Given a locally compact non-compact topological space Y , we write Ŷ := Y  {∞} for

the one-point compactification of Y . If A ⊂ Y is an arbitrary subset, Â will denote its closure
inside the space Ŷ , and given any continuous proper map f : Y ý, its unique extension to Ŷ
(that fixes the point at infinity) will be denoted by f̂ : Ŷ ý.

Whenever M1, M2, . . . Mn denote n arbitrary sets, we shall use the generic notation
pri : M1 × M2 × · · · × Mn → Mi to denote the i th-coordinate projection map.

2.2 Euclidean spaces and tori

WeconsiderRd endowedwith its usual Euclidean structure denoted by 〈·, ·〉.Wewrite ‖v‖ :=
〈v, v〉1/2, for any v ∈ R

d . The unit (d−1)-sphere is denoted by S
d−1 := {v ∈ R

d : ‖v‖ = 1}.
For any v ∈ R

d\{0} and each r ∈ R, we define the half-space

H
v
r :=

{
z ∈ R

d : 〈z, v〉 > r
}

. (4)

For d = 2, given any v = (a, b) ∈ R
2, we define v⊥ := (−b, a). We also introduce the

following notation for straight lines: given any r ∈ R and v ∈ S
1,

�v
r := rv + Rv⊥ = {rv + tv⊥ : t ∈ R}. (5)

We say that v ∈ S
1 has rational slopewhen there exists some t ∈ R\{0} such that tv ∈ Z

2;
otherwise, v is said to have irrational slope.

We will need the following notation for strips on R
2: given v ∈ S

1 and s > 0 we define
the strip

A
v
s := H

v−s ∩ H
−v−s = {z ∈ R

2 : −s < 〈z, v〉 < s}. (6)

Given any α ∈ R
d , Tα denotes the translation Tα : z 	→ z + α on R

d .
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The d-dimensional torus R
d/Z

d will be denoted by T
d and we write π : R

d → T
d for

the natural quotient projection. Given any α ∈ T
d , we write Tα for the torus translation

Tα : T
d � z 	→ z + α.

As usual, a point α ∈ R
d is said to be rational when α ∈ Q

d and is said to be totally
irrational when Tπ(α) is a minimal homeomorphism of T

d .

2.3 The boundary at infinity of planar sets

Given a non-empty set A ⊂ R
2 and a point v ∈ S

1, we say that A accumulates in the direction
v at infinity if there is sequence {xn}n�0 of points in A such that

lim
n→∞ ‖xn‖ = ∞, and lim

n→∞
xn

‖xn‖ = v.

Then we can define the boundary of A at infinity as the set ∂∞A ⊂ S
1 consisting of all

v ∈ S
1 such that A accumulates in the direction v at infinity.

2.4 Surface topology

Let S denote an arbitrary connected surface, i.e. a two-dimensional topological connected
manifold.

An open subset of S is said to be a topological disk when it is homeomorphic to the open
unitary disk {z ∈ R

2 : ‖z‖ < 1}. Similarly, a topological annulus is an open subset of S
homeomorphic to T × R.

An arc on S is a continuous map α : [0, 1] → S and a loop on S is a continuous map
γ : T → S.

An open non-empty subset U ⊂ S is said to be inessential when every loop in U is
contractible in S; otherwise it is said to be essential. An arbitrary subset V ⊂ S is said to be
inessential when there exists an inessential open set U ⊂ S such that V ⊂ U . On the other
hand, we say that V is fully essential when S\V is inessential.

We say a subset A ⊂ S is annular when it is an open topological annulus and none
connected component of S\A is inessential.

Finally, let us recall two classical results about fixed point free orientation preserving
homeomorphisms:

Theorem 2.1 (Brouwer’s translation theorem [6]) Let f : R
2 ý be an orientation preserv-

ing homeomorphism such that Fix( f ) = ∅. Then, every x ∈ R
2 is wandering for f , i.e.

there exists a neighborhood U of x such that f n(U ) ∩U = ∅, for every n ∈ Z\{0}.
Theorem 2.2 (Corollary 1.3 in [7]) Let f : R

2 ý be an orientation preserving homeomor-
phism such that Fix( f ) = ∅, and D ⊂ R

2 be an open topological disk. Let us suppose
f (D) ∩ D = ∅. Then, f n(D) ∩ D = ∅, for every n ∈ Z\{0}.
2.5 Groups of homeomorphisms

Given any topological manifold M , Homeo(M) denotes the group of homeomorphisms from
M onto itself. The subgroup formed by those homeomorphisms which are homotopic to the
identity map idM will be denoted by Homeo0(M).

We define the subgroup H̃omeo0(Td) < Homeo0(Rd) by

H̃omeo0(T
d) :=

{
f̃ ∈ Homeo0(R

d) : f̃ − idRd ∈ C0(Td , R
d)
}

.
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1228 A. Kocsard, F. P. Rodrigues

Notice that in this definition, we are identifying the elements of C0(Td , R
d) with those

Z
d -periodic functions from R

d into itself.

Making some abuse of notation, we also write π : H̃omeo0(Td) → Homeo0(Td) for the
map that associates to each f̃ the only torus homeomorphism π f̃ such that f̃ is a lift of π f̃ .
Notice that with our notations, it holds πTα = Tπ(α) ∈ Homeo0(Td), for every α ∈ R

d .

Given any f̃ ∈ H̃omeo0(Td), we define its displacement function by

� f̃ := f̃ − idRd ∈ C0(Td , R
d). (7)

Observe this function can be naturally considered as a cocycle over f := π f̃ , so we will use
the usual notation

�
(n)

f̃
:= � f̃ n = Sn

f � f̃ , ∀n ∈ Z, (8)

where Sn
f denotes the Birkhoff sum, i.e. given any n ∈ Z and φ : T

d → R, Sn
f (φ) is given by

Sn
f φ :=

⎧⎪⎨
⎪⎩
∑n−1

j=0 φ ◦ f j , if n � 1;
0, if n = 0;
−∑−n

j=1 φ ◦ f − j , if n < 0.

(9)

The map R
d � α 	→ Tα ∈ H̃omeo0(Td) defines an injective group homomorphism, and

hence, R
d naturally acts on H̃omeo0(Td) by conjugacy. However, since every element of

H̃omeo0(Td) commutes with Tp, for all p ∈ Z
d , we conclude T

d itself acts on H̃omeo0(Td)

by conjugacy, i.e. the map Ad : T
d × H̃omeo0(Td) → H̃omeo0(Td) given by

Adt ( f̃ ) := T−1
t̃

◦ f̃ ◦ Tt̃ , ∀(t, f̃ ) ∈ T
d × H̃omeo0(T

d), ∀t̃ ∈ π−1(t), (10)

is well-defined.

2.6 Invariant measures

Given any topological space M , we shall write M(M) for the space of Borel probability
measures on M . We say μ ∈ M(M) is a topological measure when μ(U ) > 0 for every
non-empty open subset U ⊂ M .

Given any f ∈ Homeo(M), the space of f -invariant probability measures will be denoted
by M( f ) := {ν ∈ M(M) : f�ν = ν ◦ f −1 = ν}.
2.7 Rotation set and rotation vectors

Let f ∈ Homeo0(Td) denote an arbitrary homeomorphism and f̃ ∈ H̃omeo0(Td) be a lift
of f . We define the rotation set of f̃ by

ρ( f̃ ) :=
⋂
m�0

⋃
n�m

{
� f̃ n (z)

n
: z ∈ Rd

}
. (11)

It can be easily shown that ρ( f̃ ) is non-empty, compact and connected. We say that f is a

pseudo-rotation when ρ( f̃ ) is just a point. Notice that whenever f̃1, f̃2 ∈ H̃omeo0(Td) are
such that π f̃1 = π f̃2, then π(ρ( f̃1)) = π(ρ( f̃2)). Thus, given any f ∈ Homeo0(Td), we
can just define

ρ( f ) := π(ρ( f̃ )) ⊂ T
d , (12)
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where f̃ ∈ H̃omeo0(Td) denotes any lift of f . In particular, the fact of being a pseudo-rotation
depends just on f and not on the chosen lift.

By (8), the rotation set is formed by accumulation points of Birkhoff averages of the
displacement function, so given any μ ∈ M(π f̃ ) we can define the rotation vector of μ by

ρμ( f̃ ) :=
∫
Td

� f̃ dμ, (13)

and it clearly holds ρμ( f̃ ) ∈ ρ( f̃ ), whenever μ is ergodic.
When d = 1, by classical Poincaré theory of circle homeomorphisms we know that

ρ( f̃ ) reduces to a point. This does not hold in higher dimensions, but when d = 2, after
Misiurewicz and Ziemian [22] we know that ρ( f̃ ) is not just connected but also convex. In
fact, in the two-dimensional case it holds

ρ( f̃ ) =
{
ρμ( f̃ ) : μ ∈ M

(
π f̃

)}
, ∀ f̃ ∈ H̃omeo0(T

2). (14)

2.8 Rational rotation vectors and periodic points

Let f̃ ∈ H̃omeo0(T2) be a lift of f := π f̃ ∈ Homeo0(T2). For any z ∈ Per( f ), there is
(p1, p2, q) ∈ Z

2 × N such that f̃ q(z̃) = T(p1,p2)(z̃), for every z̃ ∈ π−1(z). Thus, the point
(p1/q, p2/q) ∈ ρ( f̃ )∩Q

2, and in this case one says the periodic point z realizes the rational
rotation vector (p1/q, p2/q).

The following result due to Handel asserts that the rotation set of a periodic point free
homeomorphism has empty interior:

Theorem 2.3 (Handel [9]) Let f ∈ Homeo0(T2) be a periodic point free homeomorphism

and f̃ ∈ H̃omeo0(T2) be a lift of f . Then, there exists v ∈ S
1 and α ∈ R so that〈

f̃ n(z) − z, v
〉

n
→ α, as n → ∞,

where the convergence is uniform in z ∈ R
2. In other words, it holds

ρ( f̃ ) ⊂ �v
α, (15)

where the straight line �v
α is given by (5).

In general, not every rational point in ρ( f̃ ) is realized by a periodic orbit of f . However,
in the non-wandering case the following holds:

Theorem 2.4 If f ∈ Homeo0(T2) is non-wandering and periodic point free, then

ρ( f ) ∩ Q
2/Z

2 = ∅. (16)

Proof Let f̃ ∈ H̃omeo0(T2) be a lift of f . By Theorem 2.3, ρ( f̃ ) has empty interior. So,
ρ( f̃ ) is either a point or line segment.

By a result Misiurwicz and Ziemian [22] we know that every rational extreme point of the
rotation set is realized by a periodic orbit. So, if f is a periodic point free pseudo-rotation,
then condition (16) necessarily holds.

Hence, the only remaining case to consider is when ρ( f̃ ) is a non-degenerate line segment.
In such a case, since f is non-wandering, every rational point of ρ( f̃ )would be also realized
by a periodic orbit (see [4,13,14] for details), and thus (16) holds, too. �
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1230 A. Kocsard, F. P. Rodrigues

2.9 Directional rotational deviations

Let f ∈ Homeo0(T2) and f̃ : R
2 ý be a lift of f . If the rotation set ρ( f̃ ) has empty interior,

then there exists α ∈ R and v ∈ S
1 such that

ρ( f̃ ) ⊂ �v
α = �−v−α, (17)

where �v
α is the straight line given by (5).

In such a case we say that a point z0 ∈ T
d exhibits bounded v-deviations when there

exists a real constant M = M(z0, f ) > 0 such that〈
�

(n)

f̃
(z0), v

〉
− nα � M, ∀n ∈ Z. (18)

Moreover, we say that f exhibits uniformly bounded v-deviations when there exists
M = M( f ) > 0 such that〈

�
(n)

f̃
(z), v

〉
− nα � M, ∀z ∈ T

d , ∀n ∈ Z. (19)

Remark 2.5 Notice that the lines �v
α = αv+Rv⊥ and �−v−α = (−α)(−v)+R(−v)⊥ coincide

as subsets of R
2. However à priori there is no obvious relation between v-deviation and

(−v)-deviation.

Remark 2.6 Once again, notice that this concept of rotational deviation does just depend on
the torus homeomorphism and not on the chosen lift.

Remark 2.7 Let us make a final comment about the negation of the above concept: we will
say that f does not exhibit uniformly bounded v-deviations when for every M > 0, there
exist z ∈ T

2, n ∈ Z and ρ ∈ ρ( f̃ ) such that〈
�

(n)

f̃
(z) − nρ, v

〉
> M.

That means that in such a case we are also considering the possibility that there exists no
α ∈ R such that ρ( f̃ ) ⊂ �v

α .

2.10 Annular and strictly toral dynamics

Here we recall the concepts of annular and strictly toral homeomorphisms that have been
introduced by Koropecki and Tal in [20].

To do this, let f ∈ Homeo0(T2) denote an arbitrary homeomorphism.
We say that f is annular when there exists a lift f̃ : R

2 ý, p/q ∈ Q and v ∈ S
1 with

rational slope such that ρ( f̃ ) ⊂ �v
p/q and f exhibits uniformly bounded v-deviations.1

On the other hand, f is said to be strictly toral when f is not annular and Fix( f k) is not
fully essential, for any k ∈ Z\{0}.

In order to state the main properties of strictly toral homeomorphisms, we first need to
introduce some notations: for any x ∈ T

2 and any r > 0 let us consider the set

Ur (x, f ) := cc

( ⋃
n∈Z

f n(Br (x)), x

)
. (20)

1 Our definition of annular map is slightly more general than the one given in [20]. In fact, they just consider
the case p/q = 0.
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Then, a point x ∈ T
2 is said to be inessential for f if there is some r > 0 such thatUr (x, f )

is inessential; otherwise x is said to be essential for f .
As a consequence of Theorem 2.1, we get the following

Proposition 2.8 If f is periodic point free and non-wandering, then every point of T
2 is

essential for f .

Proof Let us suppose there is an inessential point x ∈ T
2, i.e. there exists r > 0 such that

Ur (x, f ) is inessential. Since,Ur (x, f ) is a connected component of an f -invariant set, and
f is non-wandering, there is a positive integer n0 ∈ N such that f n0

(
Ur (x, f )

) = Ur (x, f ).
On the other hand, sinceUr (x, f ) is inessential, its filling (i.e. the union ofUr (x, f ) with

all the inessential connected components of T
2\Ur (x, f )), which will be denoted by UF , is

a open topological disk; and it can be easily shown that UF is f n0 -invariant itself.
By Theorem 2.1, f n0 has a fixed point in UF , contradicting the hypothesis that f is

periodic point free. �
We shall need the following result about strictly toral dynamics [20, Proposition 1.4]:

Proposition 2.9 If f is strictly toral, then the set Ur (x, f ) is fully essential, for any essential
point x ∈ T

2 and every r > 0.

3 The ρ̃-centralized skew-product

Given a lift f̃ ∈ H̃omeo0(T2) of a torus homeomorphism f := π f̃ and any vector ρ̃ ∈ ρ( f̃ ),
we will define the ρ̃-centralized skew-product induced by f̃ which shall play a key role in
this work.

To do that, we first define the map H : T
2 → H̃omeo0(T2) by

Ht := Adt
(
T−1

ρ̃
◦ f̃

)
, ∀t ∈ T

2, (21)

where Ad denotes the T
2-action given by (10).

Considering H as a cocycle over the torus translation Tρ : T
2 ý, where ρ := π(ρ̃), one

defines the ρ̃-centralized skew-product as the skew-product homeomorphism F : T
2×R

2 ý
given by

F(t, z) := (
Tρ(t), Ht (z)

)
, ∀(t, z) ∈ T

2 × R
2.

One can easily show that

F(t, z) =
(
t + ρ, z + � f̃

(
t + π(z)

) − ρ̃
)

, ∀(t, z) ∈ T
2 × R

2, (22)

where� f̃ ∈ C0(T2, R
2) is the displacement function given by (7).Wewill use the following

classical notation for cocycles: given n ∈ Z and t ∈ T
2, we write

H (n)
t :=

⎧⎪⎨
⎪⎩
idT2 , if n = 0;
Ht+(n−1)ρ ◦ Ht+(n−2)ρ ◦ · · · ◦ Ht , if n > 0;
H−1
t+nρ ◦ · · · ◦ H−1

t−2ρ ◦ H−1
t−ρ, if n < 0.

Using such a notation, it holds Fn(t, z) := (
T n

ρ (t), H (n)
t (z)

)
, for all (t, z) ∈ T

2 × R
2 and

every n ∈ Z.
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1232 A. Kocsard, F. P. Rodrigues

This skew-product F will play a fundamental role in our analysis of rotational deviations
and the following simple formula for iterates of F represents the main reason:

Fn(t, z) =
(
T n

ρ (t), Ht+(n−1)ρ

(
Ht+(n−2)ρ

(
· · ·

(
Ht (z)

))))

=
(
t + nρ,Adt+(n−1)ρ

(
T−1

ρ̃
◦ f̃

) ◦ · · · ◦ Adt
(
T−1

ρ̃
◦ f̃

)
(z)

)
=

(
t + nρ,Adt

(
T−n

ρ̃
◦ f̃ n

)
(z)

)
,

(23)

for every (t, z) ∈ T
2 × R

2 and every n ∈ N.
Notice that assuming inclusion (17), from (23) it easily follows that a point z ∈ R

2 exhibits
bounded v-deviations (as in (18)) if and only if〈

H (n)
0 (z) − z, v

〉
� M, ∀n ∈ Z, (24)

where M = M(z, f ) is the constant given in (18).

3.1 Fibered stable sets at infinity

Continuing with the notation we have introduced at the beginning of § 3, let R̂2 denote the
one-point compactification of R

2, and F̂ : T
2 × R̂2 ý be the unique continuous extension

of F , that clearly satisfies F̂(t,∞) := (Tρ(t),∞), for every t ∈ T
2.

Hence, for every r ∈ R and each t ∈ T
2 we define the fibered (r, v)-stable set at infinity

of F by

�̂v
r

(
f̃ , t

) := cc
(
{t} × R̂2 ∩ IF̂

(
T
2 × Ĥv

r

)
, (t,∞)

)
, (25)

whereH
v
r is the semi-plane given by (4), Ĥv

r denotes its closure in R̂2 andI (·) is themaximal
invariant set given by (3).

We also define

�v
r

(
f̃ , t

) := pr2
(
�̂v

r

(
f̃ , t

)\{(t,∞)}
)

⊂ R
2, ∀t ∈ T

2, (26)

where pr2 : T
2 × R

2 → R
2 denotes the projection on the second coordinate. Finally, we

define the (r, v)-stable set at infinity by

�v
r

(
f̃
) :=

⋃
t∈T2

{t} × �v
r

(
f̃ , t

) ⊂ T
2 × R

2. (27)

For the sake of simplicity, if there is no risk of confusion we shall just write �̂v
r (t), �

v
r (t)

and �v
r instead of �̂v

r

(
f̃ , t

)
, �v

r

(
f̃ , t

)
and �v

r

(
f̃
)
, respectively.

By the very definitions, stable sets at infinity are closed and F-invariant, but at first glance
they might be empty. In Theorem 3.4 we will prove this is never the case and we shall use
them to get some results about rotational v-deviations for the original homeomorphism f .

Our first application of these stable sets at infinity is the following result which concerns
the symmetry of boundedness of v- and (−v)-deviations and is just a simple consequence of
the F-invariance:

Theorem 3.1 Assuming inclusion (17), the homeomorphism f exhibits uniformly bounded
v-deviations if and only if it exhibits uniformly bounded (−v)-deviations. More precisely, it
holds
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sup
n∈Z

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃, v

〉
− √

2 � sup
n∈Z

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃,−v

〉

� sup
n∈Z

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃, v

〉
+ √

2,

for ρ̃ ∈ ρ( f̃ ).

Proof By Remark 2.5, the statement is completely symmetric with respect to v and −v.
Thus, let us assume f exhibits uniformly bounded v-deviations and let us prove uniformly
boundedness for (−v)-deviations. So let us define

M := sup
n∈Z

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃, v

〉
∈ R,

and notice that M � 0. Then, by (24) we know〈
H (n)
0 (z) − z, v

〉
� M, ∀z ∈ R

2, ∀n ∈ Z, (28)

and consequently H
−v
M−r ⊂ �−v−r (0).

For an arbitrary t ∈ T
2, notice that

H (n)
t (z) − z = �

(n)

f̃

(
π(z) + t

) − nρ̃, ∀(t, z) ∈ T
2 × R

2, ∀n ∈ Z. (29)

Then, putting together (28) and (29) we conclude that〈
H (n)
t (z) − z, v

〉
� M, ∀(t, z) ∈ T × R

2, ∀n ∈ Z,

and hence, H
−v
M−r ⊂ �−v−r (t), for any t ∈ T

2.
Thus, we have

H
−v
M ⊂ �−v

0 (t) ⊂ H
−v
0 , ∀t ∈ T

2,

and since �−v
0 ⊂ T

2 × H
−v
0 is an F-invariant set, this implies

Fn(
T
2 × H

v
ε ) ∩ T

2 × H
−v
M = ∅, ∀n ∈ Z, (30)

and for any ε > 0.
In particular, if D ⊂ R

2 denotes a squared fundamental domain for the covering map
π : R

2 → T
2 such that D ⊂ H

v
ε , by (22) and (30) it follows that〈

� f̃ n (z) − nρ̃,−v
〉
< M + ε + diam(D) = M + ε + √

2, ∀z ∈ D. (31)

Since the displacement function� f̃ n isZ
2-periodic and (31) holds for any ε > 0,we conclude

that

sup
n∈Z

sup
z∈T2

〈
� f̃ n (z) − nρ̃,−v

〉
� sup

n∈Z
sup
z∈T2

〈
� f̃ n (z) − nρ̃, v

〉
+ √

2.

In particular, f exhibits uniformly bounded (−v)-deviations. �
For the sake of concreteness, we explicitly state the following corollary which is a straight-

forward consequence of Theorem 3.1:

Corollary 3.2 The following assertions are all equivalent:

(i) f exhibits uniformly bounded v-deviations;
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(ii) f exhibits uniformly bounded (−v)-deviations;
(iii) there exists M > 0 such that

H
v
r+M ⊂ �v

r (t), ∀r ∈ R, ∀t ∈ T
2;

(iv) there exists M > 0 such that

H
−v
r+M ⊂ �−v

r (t), ∀r ∈ R, ∀t ∈ T
2.

Our next result describes some elementary equivariant properties of (r, v)-stable sets at
infinity:

Proposition 3.3 For each t ∈ T
2 and any r ∈ R, the following properties hold:

(i) �v
r (t) ⊂ �v

s (t), for every s < r;
(ii)

�v
r (t) =

⋂
s<r

�v
s (t);

(iii)

�v
r+〈t̃,v〉

(
t ′ − π

(
t̃
)) = Tt̃

(
�v

r (t
′)
)
, ∀t̃ ∈ R

2, ∀t ′ ∈ T
2;

(iv)

Tp
(
�v

r (t)
) = �v

r+〈 p,v〉(t), ∀ p ∈ Z
2.

Proof Inclusion (i) trivially follows from the inclusion H
v
r ⊂ H

v
s , for s < r .

To show (ii), let �̂v
s (t) = �v

s (t)  {∞} denote the closure of �v
s (t) inside the one-point

compactification R̂2. Since �̂v
s (t) is compact and connected for every s ∈ R, by (i) we

conclude ⋂
s<r

�̂v
s (t)

is compact and connected itself and contains �̂v
r (t). On the other hand, it clearly holds⋂

s<r �v
s (t) ⊂ IF (T2 × H

v
r ) and thus,

⋂
s<r �v

s (t) = �v
r (t).

To prove (iii), taking into account (10) and (21), we get

H (n)

t ′−π(t̃)
(z) = Adt ′−π(t̃)

(
T−n

ρ̃
◦ f̃ n

)
(z)

= Tt̃ ◦ Adt ′
(
R−n

ρ ◦ f̃ n
) ◦ T−1

t̃
(z)

= H (n)

t ′ (z − t̃) + t̃,

for every z ∈ R
2 and every n ∈ Z. Hence, for any z ∈ �v

r+〈t̃,v〉
(
t ′ − π(t̃)

)
, it holds

r �
〈
H (n)

t ′−π(t̃)
(z), v

〉
− 〈

t̃, v
〉

=
〈
H (n)

t ′ (z − t̃) + t̃, v
〉
− 〈

t̃, v
〉 =

〈
H (n)

t ′ (z − t̃), v
〉
,

for any n ∈ Z. This implies z ∈ Tt̃
(
�v

r (t
′)
)
, and so, �v

r+〈t̃,v〉
(
t ′ − π(t̃)

) ⊂ Tt̃
(
�v

r (t
′)
)
. The

other inclusion is symmetric.
Finally, relation (iv) is just a particular case of (iii). �
Now we can show the main result of this section:

123



Rotational deviations and invariant pseudo-foliations… 1235

Theorem 3.4 Assuming there exist α ∈ R and v ∈ S
1 such that condition (17) holds, the

fibered (r, v)-stable set at infinity �v
r (t) is non-empty, for all r ∈ R and every t ∈ T

2.

Proof of Theorem 3.4 Our strategy to show �v
r (t) is non-empty is mainly inspired by some

ideas due to Birkhoff [3].
By Corollary 3.2, we know that �v

r (t) �= ∅ whenever f exhibits uniformly bounded
(−v)-deviations.

Hence we can suppose this is not the case, so either

sup
n�0

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃,−v

〉
= +∞, (32)

or
sup
n�0

sup
z∈T2

〈
�

(n)

f̃
(z) − nρ̃,−v

〉
= +∞. (33)

For the sake of concreteness, let us suppose (33) holds. Then, consider the set

B̂+ :=
+∞⋂
j=0

F̂− j
(
T
2 × Ĥv

r

)
⊂ T

2 × R̂2.

We will show that B̂+ exhibits unbounded connected components along the fibers. More
precisely, for each t ∈ T

2 we define

B+(t) := pr2
(
cc
(
B̂+ ∩ {t} × R̂2, (t,∞)

))
\{(t,∞)} ⊂ R

2, (34)

where pr2 : T
2 × R

2 → R
2 denotes the projection on the second factor, and we shall show

that B+(t) is non-empty, for all t .
Since we are assuming (33) holds, for every a > 0 we can define the following natural

number:
n(a) := min

{
n ∈ N : F−n(

T
2 × �v

a+r

) ∩ (
T
2 × H

−v−r

) �= ∅

}
. (35)

Then, there exists a point ta ∈ T
2 such that

F−n(a)
({ta + n(a)ρ} × H

v
r+a

) ∩ {ta} × H
−v−r �= ∅.

So, we can find a simple continuous arc γa : [0, 1] → R̂2 such that

γa(0) ∈ �v
r = ∂H

v
r ,

γa(1) = ∞,

γa[0, 1) ⊂ pr2
(
F−n(a)

({t + n(a)ρ} × H
v
r+a

)) ∩ H
v
r ,

(36)

and a lattice point pa ∈ Z
2 such that〈

pa, v
〉
� 0,∥∥γa(0) + pa − rv

∥∥ �
√
2.

(37)

Let us define the set
�a := {

γa(s) + pa : s ∈ [0, 1)} ⊂ R
2. (38)

Putting together (35) and (36), we conclude that

F j (ta, �a
) ⊂ T

2 × H
v
r , for 0 � j � n(a) − 1.
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Now, since R̂2 is compact, its space of compact subsets K(R̂2) is compact, too. Hence,
we can find a strictly increasing sequence of natural numbers (m j ), a point t∞ ∈ T

2 and

�̂ ∈ K(R̂2) such that tm j → t∞ and

�̂m j → �̂, as j → ∞,

where �̂m j denotes the closure of �m j inside the space R̂2 and the convergence is in the
Hausdorff distance.

Then observe that n(m j ) → +∞ as m j → +∞. So, �̂ ⊂ B̂+. Then, the set � :=
�̂\{(t∞,∞)} is closed in R

2, connected, and by (37), is non-empty and unbounded. In
particular, � ⊂ B+(t∞) and so, B+(t∞) is non-empty.

Now, consider an arbitrary point t ∈ T
2 and let us show that B+(t) is non-empty, too.

To do this, let us choose two points t̃∞ ∈ π−1(t∞) and t̃ ∈ π−1(t) so that
〈
t̃∞ − t̃, v

〉
� 0.

Hence, it holds
Tt̃∞−t̃

(
H

v
r

) ⊂ H
v
r . (39)

On the other hand, invoking (21) one easily see that

H (n)
t

(
Tt̃∞−t̃

(
B+(t∞)

)) = Adt (T
−n
ρ̃

◦ f̃ n)
(
Tt̃∞−t̃

(
B+(t∞)

))
= T−1

t̃
◦ T−n

ρ̃
◦ f̃ n ◦ Tt̃ ◦ Tt̃∞−t̃

(
B+(t∞)

)
= Tt̃∞−t̃ ◦ Adt∞(T−n

ρ̃
◦ f̃ n)

(
B+(t∞)

)
⊂ Tt̃∞−t̃ (H

v
r ) ⊂ H

v
r ,

for every n � 0. So, we conclude Tt̃∞−t̃ (B
+(t̃∞)) ⊂ B+(t) and in particular, B+(t) is

non-empty.
Finally, let us show that �v

r (t) �= ∅, for every t ∈ T
2. To do that, let us consider the set

B+ :=
⋃
t∈T2

{t} × B+(t) ⊂ T
2 × R

2.

Notice that F(B+) ⊂ B+ and

�v
r =

⋂
n�0

Fn(B+).

So, if we suppose that �v
r = ∅, then there should exist p ∈ Z

2 and n0 � 0 such that
〈 p, v〉 > 0 and

Fn0(B+) ⊂ T
2 × Tp(H

v
r ) � T

2 × H
v
r .

But since F commutes with the map id × Tp : T
2 × R

2 ý, it follows that

F jn0(B+) ⊂ T
2 × T j

p (Hv
r ), ∀ j ∈ N,

contradicting inclusion (17). So, we have showed �v
r is non-empty. In particular, there exists

t ′ ∈ T
2 such that �v

r (t
′) �= ∅. Invoking the very same argument we used to show that for all

t , B+(t) was non-empty provided B+(t∞) �= ∅, one can prove that �v
r (t) �= ∅, for every

t ∈ T
2. �

The last result of this section is an elementary fact about the topology of fibered invariant
sets at infinity under the assumption of unbounded v-deviations:
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Proposition 3.5 If f does not exhibits uniformly bounded v-deviations, then for any r ∈ R,
any t ∈ T

2 and any z ∈ �v
r (t), it holds

cc
(
�v

r (t), z
) Ć A

v
s , ∀s > 0, (40)

where A
v
s is the strip given by (6).

Proof Let us suppose (40) is not true. Then, by (iii) of Proposition 3.3, we know there exist
s > 0 and z ∈ �v

0(0) such that

�z := cc
(
�v

0(0), z
) ⊂ A

v
s .

Since every connected component of �v
0(0) is unbounded in R

2, without loss of generality
we can assume there exists a sequence (zn)n�0 ⊂ �z such that

lim
n→+∞

〈
zn, v

⊥〉 = +∞. (41)

On the other hand, there exists a sequence ( pn)n�0 in Z
2 such that

0 � 〈 pn, v〉 � 1, ∀n � 0, (42)

lim
n→+∞

〈
pn, v

⊥〉 = −∞. (43)

By Proposition 3.3 and (42), for such a sequence it holds

Tpn (�z) ⊂ �v
0(0) ∩ A

v
s+1, ∀n � 0. (44)

Then, since f̃ preserves orientation and�z is connected and unbounded, as a consequence
of (43) and (44) we get that

⋃
n�0 Tpn (�z) disconnects R

2, and hence, H
v
s+1 ⊂ �v

0(0). By
Corollary 3.2, this implies f exhibits uniformly bounded v-deviations, contradicting our
hypothesis. �

4 Directional deviations for periodic point free homeomorphisms

In this sectionweanalyze the topological properties of stable sets at infinity for non-wandering
periodic point free homeomorphisms.

So, let f ∈ Homeo0(T2) be a non-wandering homeomorphism with Per( f ) = ∅ and
f̃ : R

2 ý a lift of f . By Theorem 2.3 we know that ρ( f̃ ) has empty interior. Thus, without
any further assumption, there are some α ∈ R and v ∈ S

1 such that condition (17) holds.
Continuing with the notation we introduced in § 3, first we will prove a density result:

Theorem 4.1 For every t ∈ T
2 the set ⋃

r�0

�v−r (t)

is dense in R
2.

Proof By Corollary 3.2, Theorem 4.1 clearly holds when f exhibits uniformly bounded
v-deviations. So, from now on we shall suppose this is not the case.

Consider the set

�̃ :=
⋃
r�0

�v−r

(
f̃ , 0

) ⊂ R
2
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We claim that � := π(�̃) ⊂ T
2 is closed, f -invariant, and it holds �̃ = π−1(�).

In order to prove our claim, first observe that �̃ is Z
2-invariant. In fact, this easily follows

from (iv) of Proposition 3.3, noticing

Tp

(
�v−r

(
f̃ , 0

)) = �v〈 p,v〉−r

(
f̃ , 0

)
, ∀r � 0, ∀ p ∈ Z

2.

This immediately implies that � is closed, too, and �̃ = π−1(�).
Secondly, we will prove �̃ is f̃ -invariant. To do that, observe that for every r ∈ R and

every point z ∈ �v
r (0), it holds

r �
〈
f̃ n(z) − nρ̃, v

〉
=

〈
f̃ n−1( f̃ (z)) − (n − 1)ρ̃, v

〉
− 〈ρ̃, v〉 ,

for every n ∈ Z. This implies that

f̃ (z) ∈ �v
r+〈ρ̃,v〉

(
f̃ , 0

)
,

and analogously one can show that

f̃ −1(z) ∈ �v
r−〈ρ̃,v〉

(
f̃ , 0

)
.

Thus, �̃ is totally f̃ -invariant, and we finish the proof of our claim.
Now, let us suppose �̃ �= R

2. This implies that� �= T
2. First, observe that none connected

component of� can be inessential inT
2 (see Sect. 2.4 for definitions). In fact, every connected

component of the pre-image by π : R
2 → T

2 of a compact inessential set in T
2 is bounded

in R
2, and by definition, every connected component of �̃ is unbounded.

Henceforth, if A denotes an arbitrary connected component of T
2\�, then A is either a

topological disk or annular (see Sect. 2.4 for definitions). Since f is non-wandering and A
is a connected component of an open f -invariant set, there exists n0 = n0(A) ∈ N such that
f n0(A) = A.
So, if A were a topological disk, then f n0

∣∣
A : A ý would be conjugate to a plane

orientation-preserving non-wandering homeomorphism, and by Theorem 2.1, we know that
Fix

(
f n0

∣∣
A

) �= ∅, contradicting our hypothesis that f is periodic point free.

Thus, A should be annular, i.e. an essential open topological annulus. Let Ã be any
connected component of π−1(A) ⊂ R

2. Since A is annular, Ã separates the plane in two
different connected components, such that both of them are unbounded, and has a well-
defined integral homological direction, i.e. there exists a rational slope vector v′ ∈ S

1 (which
is unique up to multiplication by (−1)) and s = s( Ã) > 0 such that

Ã ⊂ A
v′
s .

Then we have to consider two possible cases: when v and v′ are co-linear; and when they
are linearly independent in R

2.
In the first case, let z ∈ �v

0(0) be an arbitrary point, �z be the connected component of
�v

0(0) containing z and p ∈ Z
2 such that Tp(z) ∈ H

v−s−1. By Proposition 3.3 we know that

Tp(�z) is a connected component of �v〈 p,v〉(0) ⊂ �̃, and since we are assuming f does
not exhibit uniformly bounded v-deviations, we can apply Proposition 3.5 to conclude that
Tp(�z) is not contained in any v-strip. Hence, Tp(�z) intersects both semi-spaces H

v
s+1 and

H
v−s−1. Now, since Ã separates H

v
s+1 and H

v−s−1, we conclude Tp(�z) should intersect Ã,

too. In particular �̃ ∩ Ã �= ∅ and henceforth, � ∩ A �= ∅, contradicting our hypothesis that
A was connected component of T

2\�.
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Let us analyze the second case, i.e. when v and v′ are linear independent in R
2. We

know there exists n0 � 1 such that f n0(A) = A. Hence, there exists p0 ∈ Z
2 such that

f̃ n0( Ã) = Tp0( Ã).

Let us consider the homeomorphism g̃ := T−1
p0

◦ f̃ n0 ∈ H̃omeo0(T2), and notice that g̃

is a lift of f n0 and g̃( Ã) = Ã. Then, n0ρ( f̃ ) − p0 = ρ(g̃) ⊂ �v′
0 , and since v and v′ are not

co-linear, we conclude that f̃ is pseudo-rotation, i.e. ρ( f̃ ) = {ρ̃}.
Then, let G : T

2 × R
2 ý be the (n0ρ̃ − p0)-centralized skew-product induced by g̃, as

defined at the beginning of Sect. 3. Since g̃( Ã) = Ã, it easily follows that the open set

Â :=
{
(t, z) : t ∈ T

2, z ∈ Tp−t̃ ( Ã), t̃ ∈ π−1(t), p ∈ Z
2
}

⊂ T
2 × R

2

isG-invariant.Now,we are supposing v and v′ are not co-linear, sowe can repeat the argument
used in the proof Theorem 3.4 inside the set Â to show that �v

r

(
g̃
) ∩ Â �= ∅. Moreover, it

can be shown that �v
r

(
g̃, 0

) ∩ Ã �= ∅. Finally observe that

�v
r (g̃, 0

) ⊂ �v
r−M

(
f̃ , 0),

where M := n0 supz∈R2

∣∣∣� f̃ (z)
∣∣∣. In particular, we have shown that �̃ ∩ Ã �= ∅, and thus,

� ∩ A �= ∅, contradicting our hypothesis that A is a connected component of T
2\�. �

In Corollary 3.2 we have shown that f exhibits uniformly bounded (±v)-deviations if
and only if the fibered (r, v)-stable sets at infinity contain whole semi-planes.

Here, we will improve this result for periodic point free systems:

Theorem 4.2 Let f ∈ Homeo0(T2) be a periodic point free and non-wandering homeo-
morphism, f̃ : R

2 ý a lift of f , and v ∈ S
1 and α ∈ R such that inclusion (17) holds. If the

set �v
r (t) has non-empty interior for some (and hence, any) t ∈ T

2 and r ∈ R, then there
exists v′ ∈ S

1 such that f exhibits uniformly bounded v′-deviations.

Proof If f is an annular homeomorphism, (see Sect. 2.10 for the definition), then the con-
clusion automatically holds. So, we can assume f is non-annular.

On the other hand, since f is periodic point free, it clearly holds Fix( f k) = ∅, for every
k ∈ Z\{0}. So, according to the classification given in § 2.10, we can assume f is a strictly
toral homeomorphism,

Now, since f is non-wandering and periodic point free, by Proposition 2.8 we know that
every point of T

2 is essential for f .
Let us suppose �v

r (0) has non-empty interior. Let x be a point in interior of �v
r (0), and

ε > 0 such that the ball Bε(x) ⊂ int
(
�v

r (0)
)
. Since π(x) is an essential point for f and we

are assuming f is strictly toral, by Proposition 2.9 the open setUε(π(x), f ) given by (20) is
fully essential.

So, there are simple closed curves γ1, γ2 : [0, 1] → T
2 whose images are contained in

Uε(π(x), f ) and such that they generate the fundamental group of T
2. Since γ1 and γ2 are

compact, there exists m ∈ N such that

γ1[0, 1] ∪ γ2[0, 1] ⊂
m⋃

j=−m

f j
(
π
(
Bε(x)

))
.

Now, recalling that f̃ n(�v
r (0)) ⊂ �v

r+n〈ρ̃,v〉(0) for every n ∈ Z and the coveringπ : R
2 →

T
2 is an open map, we conclude that

γ1[0, 1] ∪ γ2[0, 1] ⊂ int
(
π(�r−m|〈ρ̃,v〉|)(0)

)
.
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So, we can construct a bi-sequence of simple curves
(
γ̃ n : [0, 1] → R

2
)
n∈Z satisfying the

following properties:

(1) γ̃ n(t) ∈ �r−m|〈ρ̃,v〉|(0), for every n ∈ Z and all t ∈ [0, 1];
(2) γ̃ n is a lift either of γ1 or γ2, for each n ∈ Z;
(3) γ̃ n(1) = γ̃ n+1(0), for every n ∈ Z;
(4) there exists a constant M > 0 such

d(γ̃ n(t), �v
r−m|〈ρ̃,v〉|) � M, ∀n ∈ Z, ∀t ∈ [0, 1].

Then, the set
⋃

n γ̃ n[0, 1] clearly separates the plane, and its complement has exactly two
unbounded connected components. In particular, this implies �v

r−m|〈ρ̃,v〉| contains a semi-
plane, and by Corollary 3.2, this implies f exhibits uniformly bounded v-deviations. �

5 Torus pseudo-foliations and rotational deviations

In this section we introduce the concepts of pseudo-foliation which is a generalization of
singularity-free one-dimensioanl plane foliation.

A plane pseudo-foliation is a partitionF of R
2 such that every atom (also called pseudo-

leaf ) is closed, connected, has empty interior and separates the plane in exactly two connected
components.

Given a map h : R
2 ý, we say that the plane pseudo-foliation F is h-invariant when

h(Fz) = Fh(z), ∀z ∈ R
2.

where Fz denotes the atom of F containing z; and F is said to be Z
2-invariant when it is

Tp-invariant for any p ∈ Z
2.

A torus pseudo-foliation is a partitionF of T
2 such that there exists a Z

2-invariant plane
pseudo-foliation F̃ satisfying

π(F̃z) = Fπ(z), ∀z ∈ R
2.

In such a case, the plane pseudo-foliation F̃ is unique and will be called the lift of F .
Notice that a homeomorphism f : T

2 ý leaves invariant a torus pseudo-foliation F̃ if
and only if its lift F̃ is f̃ -invariant, for any lift f̃ : R

2 ý of f .
Some geometric and topological properties of “classical” plane and torus foliations can

be extended to pseudo-foliations:

Proposition 5.1 IfF is a plane pseudo-foliation, both connected components of R2\Fz are
unbounded, for every z ∈ R

2.

Proof This easily follows from Zorn’s Lemma. In fact, let us suppose there exists z0 ∈ R
2

such that a connected component of R
2\Fz0 , called B0, is bounded. So, for every w ∈ B0,

Fw ⊂ B0 and thus, it is bounded itself. This implies that, for all w ∈ B0, there exists a
bounded connected component, called Bw , of R

2\Fw , and it clearly holds Bw ⊂ B0, for any
w ∈ B0.

Now, if we consider the set {Bw : w ∈ B0} endowed with the partial order given by set
inclusion, one can easily check that any totally decreasing chain admits a lower bound, and
consequently, there exists a minimal element. In fact, given a strictly decreasing sequence
Bw1 ⊃ Bw2 ⊃ · · · we have that ∂Bwn ∩ ∂Bwn+1 = ∅ because different pseudo-leaves
are disjoint, and therefore, it holds

⋂
n�1 Bwn = ⋂

n�1 Bwn �= ∅. Now, taking any point
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w ∈ ⋂
n�1 Bwn , Bw happens to be a lower bound for the chain. So, by Zorn’s Lemma there

exists a minimal element Bz but of course, Bw � Bz , for anyw ∈ Bz , getting a contradiction.
�

In order to show that torus pseudo-foliations exhibit some properties similar to classical
foliations, we will use a geometric result due to Koropecki and Tal [19]. To do that, first we
need to introduce some terminology.

Given a closed discrete set � ⊂ R
2, a subset U ⊂ R

2 is said to be �-free when Tp(U ) ∩
U = ∅, for all p ∈ �.

A chain is a decreasing sequence C = (Un)n∈N of arcwise connected subsets of R
2, i.e.

Un+1 ⊂ Un , for all n ∈ N. We say that C is eventually �-free if for every p ∈ �, there is
n ∈ N such that Tp(Un) ∩Un = ∅.

Let us write Z
2∗ := Z

2\{(0, 0)} and recall the following result of [19, Theorem 3.2]:

Theorem 5.2 If C = (Un)n∈N is an eventuallyZ
2∗-free chain of arcwise connected sets, then

one of the following holds:

(i) there exist n ∈ N and q ∈ Z
2 such that Un is Z

2\(Rq)-free;
(ii) there is a unique v ∈ S

1 such that
⋂

n∈N ∂∞Un = {v}, where ∂∞ denotes the boundary
at infinity defined in Sect. 2.3;

(iii) there are v ∈ S
1 and r > 0 such that

⋂
n∈NUn is contained in the strip A

v
r and it

separates the boundary components of A
v
r .

Notice that, if property (iii) holds, then we have
⋂

n∈N ∂∞Un = {−v, v}.
Now we will use Theorem 5.2 to prove our main result about torus pseudo-foliations:

Theorem 5.3 If F is a Z
2-invariant pseudo-foliation, then there exist v ∈ S

1 and r > 0
such that

Fz ⊂ Tz(A
v
r ), ∀z ∈ R

2. (45)

In such a case, v is unique up to multiplication by (−1) and we say that v⊥ is an asymptotic
direction of F .

Moreover, there is w ∈ R
2 such that Fw separates the boundary components of the strip

Tw(Av
r ).

Proof Let z denote an arbitrary point of R
2 and, for each n ∈ N, consider the set

Un(z) :=
{
x ∈ R

2 : d(x,Fz) <
1

n

}
.

Notice all the sets Un(z) are arcwise connected, Un+1(z) ⊂ Un(z) and it holds Fz =⋂
n∈NUn(z).
First, let us suppose that there exists z ∈ R

2 such that the chain
(
Un(z)

)
n∈N is not

eventually Z
2∗-free. So, there is p ∈ Z

2∗, such that Tp
(
Un(z)

)∩Un(z) �= ∅, for every n ∈ N.
By Proposition 5.1, each pseudo-leaf of F is unbounded in R

2. So, this implies that for n
sufficiently big, Tp⊥

(
Un(z)

) ∩Un(z) = ∅. Let us fix such an n, and consider the set

� :=
⋃
j∈Z

T j
p
(
Un(z)

)
.

Then � is open, connected, Tp-invariant and � ∩ Tp⊥(�) = ∅. In particular, it is contained
in the lift of an annular subset of T

2, and this implies there exists r > 0 such that Fz ⊂ A
v
r .
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The uniform result for every pseudo-leaf easily follows from the fact that � ∩ Tp⊥(�) = ∅

and the definition of plane pseudo-foliations.
So, nowwe can assume that (Un(z))n∈N is eventuallyZ

2∗-free for every z ∈ R
2, and hence,

Theorem 5.2 can be applied.
First suppose property (i) of Theorem 5.2 holds for some z ∈ R

2, i.e. there are n0 ∈ N

and q ∈ Z
2 such that Un0(z) is Z

2\(Rq)-free. Since Un(z) ⊂ Un0(z) for n > n0, the same
holds for every n > n0. Without loss of generality we can assume q generates the cyclic
group Z

2 ∩ Rq. Then, since the chain (Un(z))n∈N is eventually Z
2∗-free, there is n′ ∈ N such

that Tq
(
Un′(z)

) ∩Un′(z) = ∅.
By Theorem 2.2, we have

T j
q
(
Un′(z)) ∩Un′(z) = ∅, ∀ j ∈ Z\{0}.

So, given any integer n � max{n0, n′}, we conclude the chain (
Un(z)

)
n�1 is Z

2∗-free.
On the other hand, by Proposition 5.1 we know the pseudo-leaf Fz is unbounded. Then,

there is a sequence (z j ) j∈N ⊂ Fz such that the balls B1/n(z1), B1/n(z2), . . . are pairwise
disjoints. Then, there is a sequence ( p j ) j∈N ⊂ Z

2 such that Tp j
(z j ) ∈ [0, 1]2, for every

j ∈ N. Since
(
Un(z)

)
n�1 is Z

2∗-free and B1/n(z j ) ⊂ Un(z) for every j ∈ N, we get that the

balls
(
Tp j

(B1/n(z j ))
)
j�1 are pairwise disjoint, and this is clearly impossible. So, the chain(

Un(z)
)
n∈N does not verify condition (i) of Theorem 5.2, for every z ∈ R

2.
So, let us suppose the chain

(
Un(z)

)
n�1 satisfies condition (ii) of Theorem 5.2, for every

z ∈ R
2. Then, for each z ∈ R

2, let vz ∈ S
1 denote the only point such that ∂∞Fz = {vz}.

Let �z be the connected component of R
2\Fz such that ∂∞(�z) = {vz}. Notice that �z is

an open disk, and since the boundary of �z is contained in the pseudo-leafFz , we conclude
that �z is simply connected, for all z ∈ R

2.
Then we define the set

M := {
w ∈ R

2 : ∀z ∈ R
2, w /∈ �z

}
.

Since every �z is open, M is clearly closed and might be empty.
Let us define set

� := R
2\

( ⋃
w∈M

�w

)

Observe that ifw and z are twoelements ofM such thatFw �= Fz , then it holds�z∩�w = ∅.
So, since R

2 cannot be partitioned into countably many (and more than two) closed sets, this
implies that � is non-empty; and noticing �z is simply-connected for every z ∈ M, we can
conclude that � is connected. On the other hand, since M is Z

2-invariant, so is �.
Hence, � is a non-empty open connected Z

2-invariant set and we shall consider the
following relation on it: given w1, w2 ∈ �, we define

w1 ∼ w2 ⇐⇒ ∃z ∈ R
2, w1, w2 ∈ �z .

Let us show ∼ is an equivalent relation. First notice it is clearly reflexive and symmetric. To
prove that is transitive too, it is enough to observe that given two arbitrary points z1, z2 ∈ R

2

such that �z1 ∩ �z2 �= ∅, then either �z1 ⊂ �z2 , or �z2 ⊂ �z1 . On the other hand, since
�z is open for every z ∈ R

2, we conclude that ∼ is an open equivalent relation (i.e. every
equivalent class is open). But we had already shown that � is connected, so this implies that
there is just one equivalent class. Thus, taking any point w ∈ � and any p ∈ Z

2∗, we get
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that w ∼ Tp(w) ∼ Tp⊥(w). So, there should exist a point z ∈ R
2 such that �z contains the

points w, Tp(w) and Tp⊥(w). This clearly contradicts the fact that ∂∞�z is a singleton.
Therefore, it is not possible that condition (ii) holds for every

(
Un(z)

)
n�1. So, there exists

z0 ∈ R
2, v ∈ S

1 and r > 0 such thatFz0 ⊂ A
v
r/2 and it separates the connected components

of the boundary of the strip A
v
r/2. Since, the pseudo-foliation F is Z

2-invariant, this clearly
implies that condition (45) holds, as desired. �

Let us relate the existence of pseudo-foliations with the boundedness of rotational devia-
tions:

Theorem 5.4 If f ∈ Homeo0(T2) leaves invariant a torus pseudo-foliationF and v⊥ ∈ S
1

is an asymptotic direction of (the lift of) F , f exhibits uniformly bounded v-deviations.
In particular the rotation set ρ( f ) has empty interior.

Proof This theorem follows from the combination of Theorem 5.3 and the argument used to
prove Proposition 4.2 of [15].

Let f̃ ∈ H̃omeo0(T2) be a lift of f , and F̃ be the lift of an f -invariant torus pseudo-
foliationF . So, F̃ is f̃ -invariant. Let v ∈ S

1 such that v⊥ determines the asymptotic direction
of F̃ . Without loss of generality we can assume that v ∈ S

1 is not vertical, i.e. pr1(v) �= 0.
Let r be a positive real number given by Theorem 5.3 and let F̃w be a pseudo-leaf of F̃

such that F̃w ⊂ Tw(Av
r ) separates the boundary components of Tw(Av

r ).
Since v⊥ �= (1, 0), we know that T(1,0)(F̃w) ∩ F̃w = ∅. So, we can consider the strip

S := cc
(
R
2\F̃w, T(1,0)

(
F̃w

)) ∩ cc
(
R
2\T(1,0)

(
F̃w

)
, F̃w

)
.

Note that S ⊂ Tw(Av
r+1) and ⋃

n∈Z
T(n,0)(S) = R

2. (46)

This implies that for each n ∈ Z, there exists mn ∈ Z such that

f̃ n
(
F̃w

) ⊂ T(mn ,0)(S),

and consequently,

f̃ n
(
T(1,0)

(
F̃w

)) = T(1,0)

(
f̃ n

(
F̃w

)) ⊂ T(mn+1,0)(S).

Hence, we conclude that

f̃ n(S) ⊂ T(mn ,0)
(
S ∪ T(1,0)(S)

) ⊂ T(mn ,0)(A
v
2r+2), ∀n ∈ Z. (47)

This fact implies that f̃ satisfies condition (17), i.e. , there exists α ∈ R such that

ρ( f̃ ) ⊂ �v
α.

So we can define the ρ̃-centralized skew-product and the ±v-stable sets at infinity as in
§ 3. By Theorem 4.1, there exists r ′ > 0 such that �−v

−r ′(0) ∩ S �= ∅. Let z0 be any point

in �−v
−r ′(0) ∩ S and z be an arbitrary point of R

2. By (46), there exists m ∈ Z such that
T(m,0)(z) ∈ S.

Since z0 ∈ �−v
−r ′(0), it holds〈

f̃ n(z0) − z0, v
〉
− nα � r ′, ∀n ∈ Z. (48)
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So putting together (47) and (48), we conclude that〈
f̃ n(z) − z, v

〉
− nα =

〈
f̃ n ◦ T(m,0)(z) − T(m,0)(z), v

〉
− nα

�
〈
f̃ n(z0) − z0, v

〉
− nα + 2r + 2 � 2r + 2 + r ′,

and hence, every point exhibits uniformly bounded v-deviations. �
The following result is a partial reciprocal of Theorem 5.4:

Theorem 5.5 Let f ∈ Homeo0(T2) be an area-preserving non-annular periodic point free
homeomorphism, f̃ : R

2 ý a lift of f , α ∈ R, v ∈ S
1 and M > 0 such that∣∣∣〈 f̃ n(z) − z, v

〉
− nα

∣∣∣ � M, ∀z ∈ R
2.

Then, there exists an f -invariant torus pseudo-foliation with asymptotic direction equal
to v⊥.

As itwas already shown in [12, §4], the hypothesis is non-annularity is essential to guaranty
the existence of the invariant pseudo-foliation, but the area-preserving assumption might be
relaxed.

Proof of Theorem 5.5 First observe that if f is an area-preserving irrational pseudo-rotation
with uniformly bounded rotational deviations in every direction, then Jäger showed [11,
Theorem C] that f is a topological extension of totally irrational torus rotation. In such a
case, the pre-image by the semi-conjugacy on any linear torus foliation will yield an f -
invariant pseudo-foliation.

So,we can assume f is not a pseudo-rotationwith uniformly bounded rotational deviations
in every direction.

If v has rational slope, taking into account f is non-annular we can conclude α is an
irrational number and this case is essentially considered in Theorem 3.1 of [12]. In fact,
under these hypotheses it can be easily proved that the the family of circloids constructed
there, which are nothing but the fibers of the factor map over the irrational circle rotation, is
an f -invariant pseudo-foliation.

So, from now on let us assume v has irrational slope. Let f̃ : R
2 ý be a lift of f and

choose an arbitrary point ρ̃ ∈ ρ( f̃ ). Then we consider the induced ρ̃-centralized skew-
product F : T

2 × R
2 ý. For each r ∈ R and t ∈ T

2, consider the (r, v)-fibered stable set at
infinity �v

r (t) given by (25).
For simplicity, let us fix t = 0. ByCorollary 3.2, there isM > 0 such thatHv

r+M ⊂ �v
r (0),

for all r ∈ R. Then we can define

Ur := cc
(
int

(
�v

r (0)
)
, H

v
r+M

)
,

Cr := ∂Ur , ∀r ∈ R,

where ∂(·) denotes the boundary operator in R
2. Observe that Ur = Ur ∪ Cr ⊂ �v

r (0), for
any r ∈ R. Hence, Tp(Ur ) = Ur+〈 p,v〉 and consequently, Tp(Cr ) = Cr+〈 p,v〉, too, for every
p ∈ Z

2 and any r .
Then we claim the setsCr are pairwise disjoint. To prove this, reasoning by contradiction,

let us suppose this is not the case and so there exist s0 < s1 such that Cs0 ∩ Cs1 �= ∅. By
monotonicity of the family {�v

r (0) : r ∈ R}, we get that
∅ �= Cs0 ∩ Cs1 ⊂ (

Cs0 ∩ Cr
) ∩ (

Cs1 ∩ Cr
)
, ∀r ∈ (s0, s1). (49)
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Let r0 and r1 be any pair of real numbers such that s0 < r0 < r1 < s1 and consider the
set

L :=
{
p ∈ Z

2 : s0 − r0
2

< 〈 p, v〉 <
s1 − r1

2

}
.

Notice that L has bounded gaps in both coordinates, i.e. there exists N ∈ N such that for
every m ∈ Z it holds

{pri ( p) : p ∈ L} ∩ {n ∈ Z : |m − n| � N } �= ∅, for i ∈ {1, 2}. (50)

On the other hand, consider the open set � := Ur0\Ur1 , and observe that

Tp(�) ⊂ Us0\Us1 , ∀ p ∈ L . (51)

Putting together (49), (50) and (51) we can see that the diameter of the connected com-
ponents of � must be uniformly bounded, i.e. there exists a real number D > 0 such that

diam(�′) � D, ∀�′ ∈ π0(�). (52)

On the other hand, we know that

f̃ n(Cr ) = Cr+nα, and Tp(Cr ) = Cr+〈 p,v〉, ∀n ∈ Z, ∀r ∈ R. (53)

So, putting together (52) and (53) we can conclude that the set{
n ∈ Z : ∃ p ∈ Z

2, Tp
(
f̃ n(�)

) ∈ Us0\Us1

}
has bounded gaps, and consequently, there exists D′ > 0 such that

diam
(
f̃ n(�′)

)
� D′, ∀n ∈ Z. (54)

Then, putting together the fact that f is strictly toral and property (54), we immediately
conclude that f exhibits uniformly bounded rotational deviations in every direction, contra-
dicting our original assumption.

So, we have shown that the open set � separates the closed sets Cs0 and Cs1 , and then
they do not intersect.

Then we define the function H : R
2 → R by

H(z) := sup {r ∈ R : z ∈ Ur } , ∀z ∈ R
2.

Since we have shown that the family {Cr : r ∈ R} is pairwise disjoint, it easily follows that
the function H is continuous. By (53), it follows that

H
(
f̃ n(z)

) = H(z) + nα, ∀n ∈ Z, ∀z ∈ R
2,

so the partition given by the H -level sets is f -invariant. On the other hand, by the topological
properties of the set Ur and Cr , it clearly follows that each H -level set is connected and
disconnects the plane in two connected components.

So, order to show that the level sets of H determines a pseudo-foliation, it just remains
to show that, for each r ∈ R, the set H−1(r) has empty interior. To do that, let us suppose
this is not the case. Thus there exists r such that H−1(r) has non-empty interior in R

2. Let
W be a connected component of the interior of H−1(r). Since H−1(r) separates the plane
in exactly two connected components, we conclude that W is an open topological disc. And
since the covering map π : R

2 → T
2 is an open map, π(W ) will be an open itself.
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Then, taking into account f is non-wandering, there exists n0 � 1 such that

f n0(π(W )) ∩ π(W ) �= ∅. (55)

That means there exists q ∈ Z
2 such that

f̃ n0
(
W )

) ∩ Tq(W ) �= ∅. (56)

Since the partition in level sets of H is f̃ -invariant, this implies f̃ n0
(
H−1(r)

) = Tq
(
H−1(r)

)
,

and taking into accountW is a connected component of the interior of H−1(r), we conclude
that f̃ n0(W ) = Tq(W ). So, (56) can be improved: in fact, it holds f n0(W ) = W . On the
other hand, since v has irrational slope, we know that

Tp
(
H−1(r)

) ∩ H−1(r) = ∅, ∀ p ∈ Z
2\{0}.

This implies π(W ) is an open disc in T
2, and since f is non-wandering, by Theorem 2.1 f n0

should have a fixed point on π(W ), contradicting the fact that f is periodic point free. �
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