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Question A

Is the set
{fe Diff"(T?) : Per(f) # o}

C"-dense in Diff"(T?), for r > 27

Question B

Has the set
{f € Diff"(T?) : f minimal}

empty interior in Diff”(T?)?

Yes, for r = 1 (Pugh'’s closing lemma), still open for r > 2.
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f: T :=R/Z < homeomorphism, f: R © a lift
e Homotopy class: Per(f) = @ = f € Homeog(T)

@ Rotation number: A]; = f — idg is Z-periodic, dp € R s.t.

= lim ZAof —LAfduzp, Vi e M(f);
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Bounded rotational deviations:

f”(:c)—x—np‘sl, VneZ, Yz eR

Unique minimal set: if Per(f) = &, 3'K; < T minimal set

Rigidity: f: K; © is a topological extension of R,: T ©

Unique ergodicity: 9(f) = {u}
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f: T2 := R2/Z? © orientation preserving homeo, f: R? © a lift
e Homotopy classes: Per(f) = ¢J = f homotopic to I up to
conjugacy, where

j. (é ’f) € SLo(Z)

@ Rotation set:
o k= 0: If f € Homeog(T?), then A := [ — Iy Z*-periodic and

p(f) = {j Ajdp:pe Sm(f)} c R? convex and compact;
T2

o k#0: A;:=f—I e CO(T? R?),

i

pv(f):=

—

J proo Az du:pe Dﬁ(f)} compact segment
T2
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@ Rotations: For o € R2, f(z) := 2z + «. Then,
o p(f) = {a};
o Per(f) = = a¢ Q%

e fis minimal <= « non-resonant or totally irrational

o Reparametrizations of linear flows: For a € R, ¢ € R\{0},
¢: T2 > Ry, X = (¢,a¢) e R?, | := O, = time-t X-flow
o ¢ Q = Per(f) = ;

o YVa¢ Q, Vo, It s.t. f is minimal

o [Shklover, Fayad]: 3a e R\Q,¢ € C®, t # 0, s.t. f is minimal
and weak mixing

o [Franks-Misiurewicz]: Ya € R\Q, 3r # 0, s.t. p(f) = {(r, )}
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p(f)nQ*# @, and Per(f) =&

Ry): {0} x TO Ry {1/2} xTO
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Examples

@ Skew-products over irrational rotations: For av € R\Q and
¢: T? > R with f(z,y) :== (z + a,y + ¢(z,y))

o [Herman]: 38 e R s.t. p(f) = {(a, B)}

o [Furstenberg|: Ja, ¢ s.t. f is minimal, but not uniquely ergodic

@ Skew-products over Morse-Smale diffeos: g: T <O North pole

- South pole diffeo, ¢: T — R with ¢(0), ¢(1/2) € R\Q,
f(z,y) = (9(x),y + ()

o p(f) rational slope segment with co many rational points

e But Q(f) + T2

In all above case there was an invariant foliation.
In most of them p(f) was a singleton.
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Main result

Theorem [K]

If f € Homeo(T?) is a minimal homeomorphism, then:
(a) either f is topologically weak mixing;

(b) or f is a topological exstension of an irrational circle rotation.

WIP: if f € Homeoy (T?) with k # 0, then (a) doesn't hold.

Recalling. ..
f: M D is topologically weak mixing if VU < M open, Ve > 0,
dneNst. f"(U) is e-dense in M




Rotation set

f € Homeog(T?), f: R? © a lift and Aj = f —id e C°(T?,R?):

p(f) == { Apdp:pe im(f)}

’[[‘2

Question

How is p(f) if Per(f) = &7
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Rotation set

peQ?

(.

p & Q? ~
p(f)NQ* #0

slope € Q

<
/< p(HNQ*=0

slope ¢Q<P(f) NQ2 0

p(f)NQ* =90
\.



Rotation set

(.

/=

[Misiurewicz-Ziemian]
peQ®  Pe(f)#£0

p & Q? [Franks,K-Koropecki,Davalos]
p(f)NQ2 #0 Per(f) =10
\
slope € Q Q) £
lnQ% =0
o) 7Q , [Jonker-Zhang]
slope ¢ @<p(f) N A0 Per(f) £0
p(HHNQ? =0



Rotation set

(.
B p & Q?
slopeEQ\
p(f) =< /< p(f)NQ? =0
slope € Q
p(f)NQ* =90
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One-dimensional rotation set

Conjecture [Franks-Misiurewicz]

If f € Homeoo(T?) and p(f) is a segment, then

p(f) nQ? # &

Theorem [Avila]
3f € Diffd(T?) minimal and area-preserv. with slope p(f) ¢ Q.

Theorem [K]
There is no f minimal with slope p(f) € Q.

Theorem wip [K-Tal]
There is no f non-wandering with slope p(f) € Q.
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Invariant foliations

If O := (hRah—1: h e DIEP(T2), ae TZ}C , then:

e [Fathi-Herman]: Minimality and unique ergodicity generic in
(@]

o [K-Koropecki]: Generic diffeos in O have no invariant foliation

Key argument J

Invariant foliation == bounded directional rotational deviations

Remember, if h € Homeo(T), then

h'(z) —xz —np(h)| <1, VzeR, VnelZ



Torus foliations

Z foliation of T2, .Z lift to R?
Jv e S and C > 0




Rotational deviations

If f preserves .#, then Jv € St and C >0

~

(fr(2) — 2z —np,v)| < C. ¥n € Z, ¥z € R?
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Bounded rotational deviations vs. Invariant foliations

We have seen invariant folation == bounded v-deviations

Reciprocally,

Theorem [K-Rodrigues, K]

If f € Homeog(T?) with Q(f) = T? and Per(f) = 4, then v € S*

s.t. f has bounded wv-deviations, iff there is invariant
pseudo-foliation .%.

If v has rational slope, then .% has compact leaves and f is
topological extension of irrational circle rotation.

A plane pseudo-foliation .Z is a partition of R? s.t. ¥z € R?
@ %, is closed and connected;

e R?\.Z, has exactly two connected components.

A torus pseudo-foliation is Z2-equivariant plane pseudo-foliation.

v
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Idea of the proof of Main Thm

e p(f) rational slope segment:
o [K, K-Tal]: f is minimal (or Q(f) = T?) = bounded

v-deviations for v L p(f)
o [K]: Bounded v-deviations + Q(f) = T? = f is topological
extension irrational rotation

o [Koropecki-Passeggi-Sambarinol]: This is impossible. .. and this
proves Fanks-Misiurewicz conjecture for non-wandering.

e p(f) irrational slope segment:
o [K, K-Tal]: f is minimal (or Q(f) = T?) — bounded
v-deviations for v L p(f).
o [K-Rodrigues|: Q(f) = T? + bounded v-deviations = 3
invaraint irrational slope pseudo-foliation. If f is minimal, then
f is topologically mixing.
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Idea of the proof of Main Thm

Assuming now p(f) is a point:

e Unbounded v-deviations for every v € S' [K]: f minimal
= [ is topologically weak spreading (which implies
topologically weak mixing)

e Bounded v-deviations for some v rational slope [J3ger,
Jager-Tal, K|: Q(f) = T? + something = f is topological
extension of irrational circle rotation

e Bounded v-deviations just for one v with irrational slope:

o [K-Rodrigues|: If Q(f) = T?> = 3 invariant pseudo-foliation

o [K-Rodrigues|: f minimal = f is topologically weak mixing.



Obrigado!



