Periodic point free homeomorphisms of \mathbb{T}^2

Alejandro Kocsard

Universidade Federal Fluminense Brasil

Seminário Resistência Dinâmica

Closing Lemma

Question A Is the set $\{f \in \text{Diff}^r(\mathbb{T}^2) : \text{Per}(f) \neq \emptyset\}$ C^r -dense in $\text{Diff}^r(\mathbb{T}^2)$, for $r \ge 2$?

Closing Lemma

Question A

Is the set

$$\left\{ f \in \operatorname{Diff}^r(\mathbb{T}^2) : \operatorname{Per}(f) \neq \emptyset \right\}$$

 C^r -dense in $\operatorname{Diff}^r(\mathbb{T}^2)$, for $r \ge 2$?

Question B

Has the set

```
\{f \in \operatorname{Diff}^r(\mathbb{T}^2) : f \text{ minimal}\}
```

empty interior in $\text{Diff}^r(\mathbb{T}^2)$?

Closing Lemma

Question A

Is the set

$$\left\{ f \in \operatorname{Diff}^r(\mathbb{T}^2) : \operatorname{Per}(f) \neq \emptyset \right\}$$

 C^r -dense in $\operatorname{Diff}^r(\mathbb{T}^2)$, for $r \ge 2$?

Question B

Has the set

```
\{f \in \operatorname{Diff}^r(\mathbb{T}^2) : f \text{ minimal}\}
```

empty interior in $\text{Diff}^r(\mathbb{T}^2)$?

Yes, for r = 1 (Pugh's closing lemma), still open for $r \ge 2$.

 $f \colon \mathbb{T} := \mathbb{R}/\mathbb{Z} \mathfrak{S}$ homeomorphism, $\tilde{f} \colon \mathbb{R} \mathfrak{S}$ a lift

 $f\colon\mathbb{T}:=\mathbb{R}/\mathbb{Z}$ \circlearrowright homeomorphism, $\tilde{f}\colon\mathbb{R}$ \circlearrowright a lift

• Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$

- $f\colon \mathbb{T}:=\mathbb{R}/\mathbb{Z} \circlearrowleft$ homeomorphism, $\tilde{f}\colon \mathbb{R} \circlearrowright$ a lift
 - Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$
 - Rotation number: $\Delta_{\tilde{f}} := \tilde{f} id_{\mathbb{R}}$ is \mathbb{Z} -periodic, $\exists \rho \in \mathbb{R}$ s.t.

$$\lim_{n \to +\infty} \frac{\Delta_{\tilde{f}^n}}{n} = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \Delta_{\tilde{f}} \circ f^j = \int_{\mathbb{T}} \Delta_{\tilde{f}} d\mu = \rho, \quad \forall \mu \in \mathfrak{M}(f);$$

- $f\colon \mathbb{T}:=\mathbb{R}/\mathbb{Z} \circlearrowleft$ homeomorphism, $\tilde{f}\colon \mathbb{R} \circlearrowright$ a lift
 - Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$
 - Rotation number: $\Delta_{\tilde{f}} := \tilde{f} id_{\mathbb{R}}$ is \mathbb{Z} -periodic, $\exists \rho \in \mathbb{R}$ s.t.

$$\lim_{n \to +\infty} \frac{\Delta_{\tilde{f}^n}}{n} = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \Delta_{\tilde{f}} \circ f^j = \int_{\mathbb{T}} \Delta_{\tilde{f}} d\mu = \rho, \quad \forall \mu \in \mathfrak{M}(f);$$

• Bounded rotational deviations:

$$\left|\tilde{f}^{n}(x) - x - n\rho\right| \leq 1, \quad \forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}$$

- $f\colon \mathbb{T}:=\mathbb{R}/\mathbb{Z} \circlearrowleft$ homeomorphism, $\tilde{f}\colon \mathbb{R} \circlearrowright$ a lift
 - Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$
 - Rotation number: $\Delta_{\tilde{f}} := \tilde{f} id_{\mathbb{R}}$ is \mathbb{Z} -periodic, $\exists \rho \in \mathbb{R}$ s.t.

$$\lim_{n \to +\infty} \frac{\Delta_{\tilde{f}^n}}{n} = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \Delta_{\tilde{f}} \circ f^j = \int_{\mathbb{T}} \Delta_{\tilde{f}} d\mu = \rho, \quad \forall \mu \in \mathfrak{M}(f);$$

Bounded rotational deviations:

$$\left|\tilde{f}^{n}(x) - x - n\rho\right| \leq 1, \quad \forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}$$

• Unique minimal set: if $\operatorname{Per}(f) = \emptyset$, $\exists ! K_f \subset \mathbb{T}$ minimal set

- $f\colon\mathbb{T}:=\mathbb{R}/\mathbb{Z}$ \circlearrowright homeomorphism, $\tilde{f}\colon\mathbb{R}$ \circlearrowright a lift
 - Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$
 - Rotation number: $\Delta_{\tilde{f}} := \tilde{f} id_{\mathbb{R}}$ is \mathbb{Z} -periodic, $\exists \rho \in \mathbb{R}$ s.t.

$$\lim_{n \to +\infty} \frac{\Delta_{\tilde{f}^n}}{n} = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \Delta_{\tilde{f}} \circ f^j = \int_{\mathbb{T}} \Delta_{\tilde{f}} d\mu = \rho, \quad \forall \mu \in \mathfrak{M}(f);$$

• Bounded rotational deviations:

$$\left|\tilde{f}^{n}(x) - x - n\rho\right| \leq 1, \quad \forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}$$

- Unique minimal set: if $\operatorname{Per}(f) = \emptyset$, $\exists ! K_f \subset \mathbb{T}$ minimal set
- Rigidity: $f: K_f \mathfrak{S}$ is a topological extension of $R_{\rho}: \mathbb{T} \mathfrak{S}$

- $f\colon \mathbb{T}:=\mathbb{R}/\mathbb{Z} \circlearrowleft$ homeomorphism, $\tilde{f}\colon \mathbb{R} \circlearrowright$ a lift
 - Homotopy class: $\operatorname{Per}(f) = \emptyset \implies f \in \operatorname{Homeo}_0(\mathbb{T})$
 - Rotation number: $\Delta_{\tilde{f}} := \tilde{f} id_{\mathbb{R}}$ is \mathbb{Z} -periodic, $\exists \rho \in \mathbb{R}$ s.t.

$$\lim_{n \to +\infty} \frac{\Delta_{\tilde{f}^n}}{n} = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \Delta_{\tilde{f}} \circ f^j = \int_{\mathbb{T}} \Delta_{\tilde{f}} d\mu = \rho, \quad \forall \mu \in \mathfrak{M}(f);$$

• Bounded rotational deviations:

$$\left|\tilde{f}^{n}(x) - x - n\rho\right| \leq 1, \quad \forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}$$

- Unique minimal set: if $Per(f) = \emptyset$, $\exists ! K_f \subset \mathbb{T}$ minimal set
- Rigidity: $f: K_f \mathfrak{S}$ is a topological extension of $R_{\rho}: \mathbb{T} \mathfrak{S}$
- Unique ergodicity: $\mathfrak{M}(f) = \{\mu\}$

${\sf Dimension}\ 2$

$f\colon\mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2$ \circlearrowright orientation preserving homeo, $\tilde{f}\colon\mathbb{R}^2$ \circlearrowright a lift

${\sf Dimension}\ 2$

- $f:\mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2 \circlearrowleft$ orientation preserving homeo, $\tilde{f}:\mathbb{R}^2 \circlearrowright$ a lift
 - Homotopy classes: $Per(f) = \emptyset \implies f$ homotopic to I_k up to conjugacy, where

$$I_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

- $f\colon \mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2 \circlearrowleft$ orientation preserving homeo, $\tilde{f}\colon \mathbb{R}^2 \circlearrowright$ a lift
 - Homotopy classes: $Per(f) = \emptyset \implies f$ homotopic to I_k up to conjugacy, where

$$I_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

- Rotation set:
 - k = 0: If $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$, then $\Delta_{\tilde{f}} := \tilde{f} I_0 \mathbb{Z}^2$ -periodic and

$$\rho(\widetilde{f}) := \left\{ \int_{\mathbb{T}^2} \Delta_{\widetilde{f}} \, \mathrm{d}\mu : \mu \in \mathfrak{M}(f) \right\} \subset \mathbb{R}^2 \text{ convex and compact};$$

- $f\colon \mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2 \circlearrowleft$ orientation preserving homeo, $\tilde{f}\colon \mathbb{R}^2 \circlearrowright$ a lift
 - Homotopy classes: $Per(f) = \emptyset \implies f$ homotopic to I_k up to conjugacy, where

$$I_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

- Rotation set:
 - k = 0: If $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$, then $\Delta_{\tilde{f}} := \tilde{f} I_0 \mathbb{Z}^2$ -periodic and

$$\rho(\tilde{f}) := \left\{ \int_{\mathbb{T}^2} \Delta_{\tilde{f}} \, \mathrm{d}\mu : \mu \in \mathfrak{M}(f) \right\} \subset \mathbb{R}^2 \text{ convex and compact};$$

•
$$k \neq 0$$
: $\Delta_{\tilde{f}} := \tilde{f} - I_k \in C^0(\mathbb{T}^2, \mathbb{R}^2)$,
 $\rho_V(\tilde{f}) := \left\{ \int_{\mathbb{T}^2} \operatorname{pr}_2 \circ \Delta_{\tilde{f}} d\mu : \mu \in \mathfrak{M}(f) \right\}$ compact segment

- Rotations: For $\alpha \in \mathbb{R}^2$, $\tilde{f}(z) := z + \alpha$. Then,
 - $\rho(\tilde{f}) = \{\alpha\};$

•
$$\operatorname{Per}(f) = \emptyset \iff \alpha \notin \mathbb{Q}^2;$$

 $\bullet~f$ is minimal $\iff \alpha$ non-resonant or totally irrational

- Rotations: For $\alpha \in \mathbb{R}^2$, $\tilde{f}(z) := z + \alpha$. Then,
 - $\rho(\tilde{f}) = \{\alpha\};$

•
$$\operatorname{Per}(f) = \emptyset \iff \alpha \notin \mathbb{Q}^2;$$

- f is minimal $\iff \alpha$ non-resonant or totally irrational
- Reparametrizations of linear flows: For $\alpha \in \mathbb{R}$, $t \in \mathbb{R} \setminus \{0\}$, $\phi \colon \mathbb{T}^2 \to \mathbb{R}_+$, $X := (\phi, \alpha \phi) \in \mathbb{R}^2$, $\tilde{f} := \Phi_X^t = \text{time-}t X$ -flow

- Rotations: For $\alpha \in \mathbb{R}^2$, $\tilde{f}(z) := z + \alpha$. Then,
 - $\rho(\tilde{f}) = \{\alpha\};$

•
$$\operatorname{Per}(f) = \emptyset \iff \alpha \notin \mathbb{Q}^2;$$

- f is minimal $\iff \alpha$ non-resonant or totally irrational
- Reparametrizations of linear flows: For α ∈ ℝ, t ∈ ℝ \{0}, φ: T² → ℝ₊, X := (φ, αφ) ∈ ℝ², f̃ := Φ^t_X = time-t X-flow
 α ∉ Φ ⇒ Per(f) = ∅;
 - $\forall \alpha \notin \mathbb{Q}, \ \forall \phi, \ \exists t \text{ s.t. } f \text{ is minimal}$

- Rotations: For $\alpha \in \mathbb{R}^2$, $\tilde{f}(z) := z + \alpha$. Then,
 - $\rho(\tilde{f}) = \{\alpha\};$

•
$$\operatorname{Per}(f) = \emptyset \iff \alpha \notin \mathbb{Q}^2;$$

- f is minimal $\iff \alpha$ non-resonant or totally irrational
- Reparametrizations of linear flows: For α ∈ ℝ, t ∈ ℝ \{0}, φ: T² → ℝ₊, X := (φ, αφ) ∈ ℝ², f̃ := Φ^t_X = time-t X-flow
 α ∉ Φ ⇒ Per(f) = Ø;
 - $\forall \alpha \notin \mathbb{Q}, \ \forall \phi, \ \exists t \text{ s.t. } f \text{ is minimal}$
 - [Shklover, Fayad]: $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}, \phi \in C^{\infty}, t \neq 0$, s.t. f is minimal and weak mixing

- Rotations: For $\alpha \in \mathbb{R}^2$, $\tilde{f}(z) := z + \alpha$. Then,
 - $\rho(\tilde{f}) = \{\alpha\};$

•
$$\operatorname{Per}(f) = \emptyset \iff \alpha \notin \mathbb{Q}^2$$
;

- f is minimal $\iff \alpha$ non-resonant or totally irrational
- Reparametrizations of linear flows: For α ∈ ℝ, t ∈ ℝ \{0}, φ: T² → ℝ₊, X := (φ, αφ) ∈ ℝ², f̃ := Φ^t_X = time-t X-flow
 α ∉ Φ ⇒ Per(f) = Ø:
 - $\forall \alpha \notin \mathbb{Q}, \ \forall \phi, \ \exists t \text{ s.t. } f \text{ is minimal}$
 - [Shklover, Fayad]: $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}, \phi \in C^{\infty}, t \neq 0$, s.t. f is minimal and weak mixing
 - [Franks-Misiurewicz]: $\forall \alpha \in \mathbb{R} \setminus \mathbb{Q}, \exists r \neq 0, \text{ s.t. } \rho(\tilde{f}) = \{(r, r\alpha)\}$

• Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi \colon \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$

• Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi \colon \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$

• [Herman]: $\exists \beta \in \mathbb{R} \text{ s.t. } \rho(\tilde{f}) = \{(\alpha, \beta)\}$

- Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi \colon \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$
 - [Herman]: $\exists \beta \in \mathbb{R} \text{ s.t. } \rho(\tilde{f}) = \{(\alpha, \beta)\}$
 - [Furstenberg]: $\exists \alpha, \phi$ s.t. f is minimal, but not uniquely ergodic

- Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi : \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$
 - [Herman]: $\exists \beta \in \mathbb{R} \text{ s.t. } \rho(\tilde{f}) = \{(\alpha, \beta)\}$
 - [Furstenberg]: $\exists \alpha, \phi$ s.t. f is minimal, but not uniquely ergodic
- Skew-products over Morse-Smale diffeos: $g: \mathbb{T} \mathfrak{S}$ North pole - South pole diffeo, $\phi: \mathbb{T} \to \mathbb{R}$ with $\phi(0), \phi(1/2) \in \mathbb{R} \setminus \mathbb{Q}$, $f(x, y) := (g(x), y + \phi(x))$

$\rho(\tilde{f}) \cap \mathbb{Q}^2 \neq \emptyset$, and $\operatorname{Per}(f) = \emptyset$

- Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi \colon \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$
 - [Herman]: $\exists \beta \in \mathbb{R} \text{ s.t. } \rho(\tilde{f}) = \{(\alpha, \beta)\}$
 - [Furstenberg]: $\exists \alpha, \phi$ s.t. f is minimal, but not uniquely ergodic
- Skew-products over Morse-Smale diffeos: $g: \mathbb{T} \mathfrak{S}$ North pole - South pole diffeo, $\phi: \mathbb{T} \to \mathbb{R}$ with $\phi(0), \phi(1/2) \in \mathbb{R} \setminus \mathbb{Q}$, $f(x, y) := (g(x), y + \phi(x))$
 - $ho(ilde{f})$ rational slope segment with ∞ many rational points
 - But $\Omega(f) \neq \mathbb{T}^2$

- Skew-products over irrational rotations: For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\phi \colon \mathbb{T}^2 \to \mathbb{R}$ with $\tilde{f}(x, y) := (x + \alpha, y + \phi(x, y))$
 - [Herman]: $\exists \beta \in \mathbb{R} \text{ s.t. } \rho(\tilde{f}) = \{(\alpha, \beta)\}$
 - [Furstenberg]: $\exists \alpha, \phi$ s.t. f is minimal, but not uniquely ergodic
- Skew-products over Morse-Smale diffeos: $g: \mathbb{T} \mathfrak{S}$ North pole - South pole diffeo, $\phi: \mathbb{T} \to \mathbb{R}$ with $\phi(0), \phi(1/2) \in \mathbb{R} \setminus \mathbb{Q}$, $f(x, y) := (g(x), y + \phi(x))$
 - $\rho(\widetilde{f})$ rational slope segment with ∞ many rational points
 - But $\Omega(f) \neq \mathbb{T}^2$

In all above case there was an invariant foliation. In most of them $\rho(\tilde{f})$ was a singleton.

Main result

Theorem [K]

If $f \in \text{Homeo}(\mathbb{T}^2)$ is a minimal homeomorphism, then:

(a) either f is topologically weak mixing;

(b) or f is a topological exstension of an irrational circle rotation.

Main result

Theorem [K]

If f ∈ Homeo(T²) is a minimal homeomorphism, then:
(a) either f is topologically weak mixing;
(b) or f is a topological exstension of an irrational circle rotation.

WIP: if $f \in \operatorname{Homeo}_k(\mathbb{T}^2)$ with $k \neq 0$, then (a) doesn't hold.

Main result

Theorem [K]

If f ∈ Homeo(T²) is a minimal homeomorphism, then:
(a) either f is topologically weak mixing;
(b) or f is a topological exstension of an irrational circle rotation.

WIP: if $f \in \operatorname{Homeo}_k(\mathbb{T}^2)$ with $k \neq 0$, then (a) doesn't hold.

Recalling... $f: M \bigcirc$ is topologically weak mixing if $\forall U \subset M$ open, $\forall \varepsilon > 0$, $\exists n \in \mathbb{N} \text{ s.t. } f^n(U)$ is ε -dense in M

 $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$, $\tilde{f} \colon \mathbb{R}^2 \mathfrak{S}$ a lift and $\Delta_{\tilde{f}} := \tilde{f} - id \in C^0(\mathbb{T}^2, \mathbb{R}^2)$:

$$\rho(\tilde{f}) := \left\{ \int_{\mathbb{T}^2} \Delta_{\tilde{f}} \, \mathrm{d}\mu : \mu \in \mathfrak{M}(f) \right\}$$

Question

How is $\rho(\tilde{f})$ if $\operatorname{Per}(f) = \emptyset$?

Conjecture [Franks-Misiurewicz] If $f \in \text{Homeo}_0(\mathbb{T}^2)$ and $\rho(\tilde{f})$ is a segment, then $\rho(\tilde{f}) \cap \mathbb{Q}^2 \neq \emptyset.$

Conjecture [Franks-Misiurewicz] If $f \in \text{Homeo}_0(\mathbb{T}^2)$ and $\rho(\tilde{f})$ is a segment, then $\rho(\tilde{f}) \cap \mathbb{Q}^2 \neq \emptyset.$

Theorem [Avila]

 $\exists f \in \operatorname{Diff}_0^\infty(\mathbb{T}^2)$ minimal and area-preserv. with slope $\rho(\tilde{f}) \notin \mathbb{Q}$.

Conjecture [Franks-Misiurewicz] If $f \in \text{Homeo}_0(\mathbb{T}^2)$ and $\rho(\tilde{f})$ is a segment, then $\rho(\tilde{f}) \cap \mathbb{O}^2 \neq \emptyset$.

Theorem [Avila]

 $\exists f \in \operatorname{Diff}_0^\infty(\mathbb{T}^2)$ minimal and area-preserv. with slope $\rho(\tilde{f}) \notin \mathbb{Q}$.

Theorem [K] There is no f minimal with slope $\rho(\tilde{f}) \in \mathbb{Q}$.

Conjecture [Franks-Misiurewicz] If $f \in \text{Homeo}_0(\mathbb{T}^2)$ and $\rho(\tilde{f})$ is a segment, then $\rho(\tilde{f}) \cap \mathbb{O}^2 \neq \emptyset$.

Theorem [Avila]

 $\exists f \in \operatorname{Diff}_0^\infty(\mathbb{T}^2)$ minimal and area-preserv. with slope $\rho(\tilde{f}) \notin \mathbb{Q}$.

Theorem [K]

There is no f minimal with slope $\rho(\tilde{f}) \in \mathbb{Q}$.

Theorem wip [K-Tal]

There is no f non-wandering with slope $\rho(\tilde{f}) \in \mathbb{Q}$.

If
$$\overline{\mathcal{O}} := \overline{\{hR_{\alpha}h^{-1} : h \in \text{Diff}^{\infty}(\mathbb{T}^2), \ \alpha \in \mathbb{T}^2\}}^{C^{\infty}}$$
, then:

If
$$\overline{\mathcal{O}} := \overline{\{hR_{\alpha}h^{-1} : h \in \mathrm{Diff}^{\infty}(\mathbb{T}^2), \ \alpha \in \mathbb{T}^2\}}^{C^{\infty}}$$
, then:

• [Fathi-Herman]: Minimality and unique ergodicity generic in $\overline{\mathcal{O}}$

If
$$\overline{\mathcal{O}} := \overline{\{hR_{\alpha}h^{-1} : h \in \mathrm{Diff}^{\infty}(\mathbb{T}^2), \ \alpha \in \mathbb{T}^2\}}^{C^{\infty}}$$
, then:

- [Fathi-Herman]: Minimality and unique ergodicity generic in $\overline{\mathcal{O}}$
- [K-Koropecki]: Generic diffeos in $\overline{\mathcal{O}}$ have no invariant foliation

If
$$\overline{\mathcal{O}} := \overline{\{hR_{\alpha}h^{-1} : h \in \mathrm{Diff}^{\infty}(\mathbb{T}^2), \ \alpha \in \mathbb{T}^2\}}^{C^{\infty}}$$
, then:

- [Fathi-Herman]: Minimality and unique ergodicity generic in $\overline{\mathcal{O}}$
- \bullet [K-Koropecki]: Generic diffeos in $\overline{\mathcal{O}}$ have no invariant foliation

Key argument

Invariant foliation \implies bounded directional rotational deviations

If
$$\overline{\mathcal{O}} := \overline{\{hR_{\alpha}h^{-1}: h \in \mathrm{Diff}^{\infty}(\mathbb{T}^2), \ \alpha \in \mathbb{T}^2\}}^{C^{\infty}}$$
, then:

- [Fathi-Herman]: Minimality and unique ergodicity generic in $\overline{\mathcal{O}}$
- \bullet [K-Koropecki]: Generic diffeos in $\overline{\mathcal{O}}$ have no invariant foliation

Key argument

Invariant foliation \implies bounded directional rotational deviations

Remember, if $h \in \text{Homeo}_0(\mathbb{T})$, then

$$\left|\tilde{h}^{n}(x) - x - n\rho(\tilde{h})\right| \leq 1, \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{Z}$$

Torus foliations

Rotational deviations

Theorem [K-Rodrigues, K]

If $f \in \text{Homeo}_0(\mathbb{T}^2)$ with $\Omega(f) = \mathbb{T}^2$ and $\text{Per}(f) = \emptyset$, then $\exists v \in \mathbb{S}^1$ s.t. f has bounded v-deviations, iff there is invariant pseudo-foliation \mathscr{F} .

Theorem [K-Rodrigues, K]

If $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$ with $\Omega(f) = \mathbb{T}^2$ and $\operatorname{Per}(f) = \emptyset$, then $\exists v \in \mathbb{S}^1$ s.t. f has bounded v-deviations, iff there is invariant pseudo-foliation \mathscr{F} .

If v has rational slope, then \mathscr{F} has compact leaves and f is topological extension of irrational circle rotation.

Theorem [K-Rodrigues, K]

If $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$ with $\Omega(f) = \mathbb{T}^2$ and $\operatorname{Per}(f) = \emptyset$, then $\exists v \in \mathbb{S}^1$ s.t. f has bounded v-deviations, iff there is invariant pseudo-foliation \mathscr{F} .

If v has rational slope, then \mathscr{F} has compact leaves and f is topological extension of irrational circle rotation.

A plane pseudo-foliation \mathscr{F} is a partition of \mathbb{R}^2 s.t. $\forall z \in \mathbb{R}^2$

- \mathscr{F}_z is closed and connected;
- $\mathbb{R}^2 ackslash \mathscr{F}_z$ has exactly two connected components.

Theorem [K-Rodrigues, K]

If $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$ with $\Omega(f) = \mathbb{T}^2$ and $\operatorname{Per}(f) = \emptyset$, then $\exists v \in \mathbb{S}^1$ s.t. f has bounded v-deviations, iff there is invariant pseudo-foliation \mathscr{F} .

If v has rational slope, then \mathscr{F} has compact leaves and f is topological extension of irrational circle rotation.

A plane pseudo-foliation \mathscr{F} is a partition of \mathbb{R}^2 s.t. $\forall z \in \mathbb{R}^2$

- \mathscr{F}_z is closed and connected;
- $\mathbb{R}^2 ackslash \mathscr{F}_z$ has exactly two connected components.

A torus pseudo-foliation is \mathbb{Z}^2 -equivariant plane pseudo-foliation.

• $\rho(\tilde{f})$ rational slope segment:

• $\rho(\tilde{f})$ rational slope segment:

• [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$

- $\rho(\tilde{f})$ rational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$
 - [K]: Bounded v-deviations $+ \Omega(f) = \mathbb{T}^2 \implies f$ is topological extension irrational rotation

- $\rho(\tilde{f})$ rational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$
 - [K]: Bounded v-deviations + $\Omega(f) = \mathbb{T}^2 \implies f$ is topological extension irrational rotation
 - [Koropecki-Passeggi-Sambarino]: This is impossible...and this proves Fanks-Misiurewicz conjecture for non-wandering.

- $\rho(\tilde{f})$ rational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$
 - [K]: Bounded v-deviations $+ \Omega(f) = \mathbb{T}^2 \implies f$ is topological extension irrational rotation
 - [Koropecki-Passeggi-Sambarino]: This is impossible...and this proves Fanks-Misiurewicz conjecture for non-wandering.
- $\rho(\tilde{f})$ irrational slope segment:

- $\rho(\tilde{f})$ rational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$
 - [K]: Bounded v-deviations + $\Omega(f) = \mathbb{T}^2 \implies f$ is topological extension irrational rotation
 - [Koropecki-Passeggi-Sambarino]: This is impossible...and this proves Fanks-Misiurewicz conjecture for non-wandering.
- $\rho(\tilde{f})$ irrational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded v-deviations for $v \perp \rho(\tilde{f})$.

- $\rho(\tilde{f})$ rational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded *v*-deviations for $v \perp \rho(\tilde{f})$
 - [K]: Bounded v-deviations $+ \Omega(f) = \mathbb{T}^2 \implies f$ is topological extension irrational rotation
 - [Koropecki-Passeggi-Sambarino]: This is impossible...and this proves Fanks-Misiurewicz conjecture for non-wandering.
- $\rho(\tilde{f})$ irrational slope segment:
 - [K, K-Tal]: f is minimal (or $\Omega(f) = \mathbb{T}^2$) \implies bounded v-deviations for $v \perp \rho(\tilde{f})$.
 - [K-Rodrigues]: Ω(f) = T² + bounded v-deviations ⇒ ∃ invaraint irrational slope pseudo-foliation. If f is minimal, then f is topologically mixing.

Assuming now $\rho(\tilde{f})$ is a point:

Assuming now $\rho(\tilde{f})$ is a point:

Unbounded v-deviations for every v ∈ S¹ [K]: f minimal
 ⇒ f is topologically weak spreading (which implies topologically weak mixing)

Assuming now $\rho(\tilde{f})$ is a point:

- Unbounded v-deviations for every v ∈ S¹ [K]: f minimal
 ⇒ f is topologically weak spreading (which implies topologically weak mixing)
- Bounded *v*-deviations for some *v* rational slope [Jäger, Jäger-Tal, K]: $\Omega(f) = \mathbb{T}^2$ + something $\implies f$ is topological extension of irrational circle rotation

Assuming now $\rho(\tilde{f})$ is a point:

- Unbounded v-deviations for every v ∈ S¹ [K]: f minimal
 ⇒ f is topologically weak spreading (which implies topologically weak mixing)
- Bounded *v*-deviations for some *v* rational slope [Jäger, Jäger-Tal, K]: $\Omega(f) = \mathbb{T}^2$ + something $\implies f$ is topological extension of irrational circle rotation
- Bounded v-deviations just for one v with irrational slope:
 - [K-Rodrigues]: If $\Omega(f) = \mathbb{T}^2 \implies \exists$ invariant pseudo-foliation
 - [K-Rodrigues]: f minimal $\implies f$ is topologically weak mixing.

Obrigado!