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Abstract
A group G is periodic of bounded exponent if there exists k 2 N such that every
element of G has order at most k. We show that every finitely generated periodic
group of bounded exponent G < Diff!.S

2/ is finite, where Diff!.S
2/ denotes the

group of diffeomorphisms of S2 that preserve an area form !.

1. Introduction
A group G is said to be periodic if every element of G has finite order. If there
exists N 2 N such that gN D id for every g 2 G (where id 2 G denotes the identity
element), then G is said to be a periodic group of bounded exponent. The so-called
Burnside problem is a famous question in group theory originally considered by Burn-
side in [3], and which can be stated as follows.

Question 1.1 (Burnside, 1905)
Let G be a finitely generated periodic group. Is G necessarily finite? What if G is
periodic of bounded exponent?

Burnside himself proved in his article [3] that if G is a linear finitely gener-
ated periodic group of bounded exponent (i.e., G < GLn.C/), then G must be finite.
In 1911, Schur in [31] improved Burnside’s result, removing the bounded exponent
hypothesis. However, in general the answer to Question 1.1 turned out to be “no,” as
counterexamples were later discovered in the 1960s by Golod and Schafarevich [12]
and [13] and by Adian and Novikov [28]. Since then, many more examples have been
constructed by Olshanskii, Ivanov, and Grigorchuk, among others, and there is a vast
literature on the subject (see, e.g., [29]).

Nonlinear transformation groups like homeomorphism groups, diffeomorphism
groups, volume-preserving diffeomorphism groups, groups of symplectomorphisms,
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and so on are conjectured to have many common features with linear groups (see
Fisher’s survey [9] on the Zimmer program). For example, the following question,
attributed to Ghys and Farb independently, is stated in [9] (see also [8, Question
13.2]).

Question 1.2 (Burnside problem for homeomorphism groups)
Let M be a connected compact manifold, and let G be a finitely generated subgroup
G < Homeo.M/ such that all the elements of G have finite order. Then, is G neces-
sarily finite?

At this point it is important to note that compactness is an essential hypothesis
in Question 1.2. In fact, it is widely known that, given any finitely presented group
G0, there exists a connected smooth 4-manifold M such that its fundamental group
�1.M/ is isomorphic to G0. Hence, (any subgroup of) G0 clearly acts faithfully on
the universal cover QM of M . To the best of our knowledge, it is not known whether
there exists a finitely presented infinite periodic group, However, free Burnside groups
and Grigorchuk’s group from [14] are known to be recursively presented and, conse-
quently, can be embedded by Higman’s embedding theorem into a finitely presented
group G0 and so act faithfully on a noncompact 4-manifold smoothly.

For the time being, we know Question 1.2 has a positive answer just in a few cases
and no negative one is known. For instance, in the 1-dimensional case, that is, when
M D S

1, this is an easy consequence of the following theorem attributed to Hölder
(see, e.g., [26, Theorem 2.2.32]): Any group G <HomeoC.S1/, where HomeoC.S1/
denotes the group of orientation-preserving homeomorphisms which acts freely on
S
1 (i.e., the identity is the only element exhibiting fixed points), is an abelian group.

Therefore, as any periodic group G <HomeoC.S1/ must act freely on S
1, G must be

abelian and therefore finite, being finitely generated.
In higher dimensions, Rebelo and Silva in [30] give a positive answer to Ques-

tion 1.2 for groups of symplectomorphisms on certain symplectic 4-manifolds. Guel-
man and Liousse in [16] and [17] do so for hyperbolic surfaces and groups of home-
omorphisms of T2 exhibiting an invariant probability measure. In the Appendix we
extend these last results for higher dimensions.

The main result of this article is the following.

THEOREM 1.3
Let ! be an area form on S

2, and let Diff1! .S
2/ be the group C1-diffeomorphisms

of S2 that preserve !. Then, any finitely generated periodic subgroup of bounded
exponent of Diff1! .S

2/ is finite.



THE BURNSIDE PROBLEM 3263

We should point out that Conejeros in [4] recently proved some results about
periodic groups in HomeoC.S2/, using the theory of rotation sets and methods dif-
ferent than ours that are closer to the methods used by Guelman and Lioussse in [16]
and [17].

In the Appendix, we also prove some further results about actions on hyperbolic
manifolds and tori, extending to higher dimensions previous results of Guelman and
Liousse in [16] and [17].

1.1. Outline of this article
In Section 2, we fix some notation we use throughout the paper, and we recall some
previous known results on differential geometry and topology. Sections 3, 4, and 5
are dedicated to the proof of Theorem 1.3. For the sake of readability, let us roughly
explain the strategy of that proof.

To do that, let G be a finitely generated periodic subgroup of Diff1! .S
2/ with

bounded exponent. In Section 3 we show that the group G exhibits subexponen-
tial growth of derivatives; that is, the norm of the derivatives of the elements of G
grows subexponentially with respect to their word length in G. The proof of the
subexponential growth of derivatives is based on encoding the group action as a
Diff1! .S

2/-cocycle over the full-shift k symbols, where k denotes the number of
generators of G. This is a classical construction in random dynamics (see, e.g., [23]),
and we use it to show that the exponential growth of the derivative implies the exis-
tence of an element of G exhibiting a hyperbolic periodic point, which contradicts
the fact that G is periodic. These ideas are closely related to Livšic’s theorem for
diffeomorphism group cocycles (see [1], [24]) and to Katok’s closing lemma (see
Lemma 3.4).

Then, invoking a rather elementary argument, in Section 5 we show that the sub-
exponential growth of derivatives is incompatible with the exponential growth of
the group G itself, with respect to the word length. It is interesting to remark that
this is the only part of the proof where the boundedness of the exponent is indeed
used.

So, in Section 4, which contains the more elaborate and intricate arguments of
the proof, we assume the group G has subexponential growth (with respect to the
word length). The rough idea here is to try to show the existence of a smooth invari-
ant Riemannian metric m on S

2. If such a metric exists, then by the uniformization
theorem of surfaces (Theorem 4.3) there exists a diffeomorphism h W S2 ý such that
the pullback metric h?.m/ is conformally equivalent to the standard metricm0 on S

2.
Consequently, h�1Gh is a group of conformal maps and so h�1Gh< SL2.C/. Then,
as a consequence of Schur’s theorem in [31], G must be finite.
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With the idea of finding an invariant metric, we define for each " > 0 an “almost-
invariant” Riemannian metric given by

m" WD
X
g2G

e�"jgjSg�m0;

where S � G is a finite set of generators of G and j�jS denotes the associated word
length function on G.

Using the assumption that G has subexponential growth and the subexponential
growth of derivatives, we show these metrics are well defined and smooth for every
" > 0. Then, we show in Lemma 4.2 that each element of the generating set S � G
is e"-Lipschitz with respect to m". Using the uniformization theorem we construct a
sequence of conjugacies g" 2Diff1.S2/ such that each diffeomorphism g�1" ı s ı g"
G", with s 2 S , is an e"-quasiconformal map. Invoking rather classical facts about the
compactness of the space of quasiconformal maps (Lemma 4.5) and some elementary
arguments, we obtain a contradiction with our assumption that G is infinite, and this
completes the proof of Theorem 1.3.

2. Preliminaries
In this section we fix some notation we will use throughout the paper and recall some
concepts and results.

2.1. Finitely generated groups
Let G be a finitely generated group, and let S �G be a finite set of generators of G.
We say S is symmetric when s�1 2 S for every s 2 S . Then given a symmetric set of
generators S , we define the word length function j�jS W G!N0 by jidjS D 0 and

jgjS WDmin¹n 2N W gD sj1sj2 � � � sjn ; for sji 2 Sº; (1)

for every g 2 G n ¹idº. We say that the group G has subexponential growth when it
holds that

lim
n!C1

log ]¹g 2G W jgjS � nº

n
D 0; (2)

where ]¹�º denotes the number of elements of the set. It is well known that this concept
does not depend on the finite set of generators. Observe that, by classical subadditive
arguments, the above limit (2) always exists.

2.2. Groups of diffeomorphisms and C r -norms
Let M be a closed smooth manifold. The group of C r -diffeomorphisms of M will
be denoted by Diffr .M/. The subgroup of C r -diffeomorphisms which is isotopic to
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the identity will be denoted by Diffr0.M/. When M is orientable and ! is a smooth
volume form on M , we write Diffr!.M/ for the group of C r -diffeomorphisms that
leaves ! invariant. When M is endowed with a Riemannian metric m, we apply the
unit tangent bundle (UTM); that is,

UTM WD
®
v 2 TM W jvj D 1

¯
;

where j�j denotes the norm induced by m. Then, given any f 2Diff1.M/, we define
��D.f /��C WD sup

v2UTM

ˇ̌
Df.v/

ˇ̌
(3)

and
��D.f /�� WDmax

®��D.f /��C;��D.f �1/��C¯: (4)

Next, we will define the C r -norm k�kr (see [10, Section 4] and the references therein
for a more complete discussion). Let us start by noting that the Riemannian metric m
induces an isomorphism (by duality) between T .M/ and T �.M/, that is, the tangent
and cotangent bundles of M . So, g induces an inner product on both bundles and,
consequently, on every tensor bundle over M . For instance, g induces a metric in the
space of symmetric i -tensors, which is denoted by S i .T �.M//, for any i . So, we
consider the space of Riemannian metrics endowed with the topology induced by the
ambient space S2.T �.M//.

The norms k�kr are defined using the language of jets. Given a C r bundle E
over M , let J r.E/ be the vector bundle of r -jets on E (for more details, see [10], [6,
Chapter 1], and references therein). So, a C r -section of E gives a continuous section
of J r.E/ (but not the other way around) and two such sections coincide at some point
in M if and only if the derivatives of the original sections agree up to order r at that
point. Observe there is a natural identification

J r.E/Š

rM
iD1

S i .T �M/˝E

as proven, for example, in [10, Section 4].
Let J r.M/ be the bundle of r -jets of sections of the trivial bundle E WDM �R.

Then notice that any C r -diffeomorphism � W M ý naturally induces a linear map
j r .�/.x/ W J r.M/x! J r.M/��1.x/ that sends each C r -section s W M !R to s ı�.
Therefore, we can define

k�kr WD max
x2M

��j r .�/.x/��; (5)

where kj r .�/.x/k is the operator norm defined from the norms on the vector spaces
J r.M/x and J r.M/��1.x/.
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One can also define norms k�k0r on the bundles J r.M/ using coordinate charts
as follows. Consider a finite covering of M by coordinate charts .Ui ; i /. For a C r -
section s of E DM �R, one defines

ksk0r WDmax
x;j;i

��Dj

 i .x/
.s ı �1i /

��;
where this maximum is taken by considering the functions s ı �1i W R

n!R in each
coordinate chart and then calculating the maximum absolute value of a partial deriva-
tive of degree j less than or equal to r of such functions over x 2 Ui . It is easy to
verify that the norms k�kr and k�k0r are equivalent on J r.M/. Given a diffeomorphism
� 2Diffr.M/, similarly to how we define the norm k�kr , we can define a norm k�k0r ,
and these norms must be equivalent.

We will need the following basic fact relating k�k1 and kD.�/k, which we defined
in (4).

PROPOSITION 2.1
Let M be a closed smooth manifold. Then there exists a constant C > 0 such that

k�k1 � C
��D.�/��; 8� 2Diff1.M/:

Proof
This follows from the fact that the norms k�k01 and k�k1 are equivalent, and k�k01 is
bounded above by the maximum derivative of � in coordinate charts, which is also
bounded by a CkD.�/k, for some constant C just depending on M .

The following notion plays a fundamental role in our work.

Definition 1 (Subexponential growth of derivatives)
Let M be a smooth closed manifold, let G < Diff1.M/ be a finitely generated sub-
group, and let S � G be a finite symmetric set of generators. Then we say that G
has subexponential growth of derivatives when, for every " > 0 and any r 2 N, there
exists N";r 2N such that

kwnkr � e
n"; 8n�N";r ;

and any wn 2 G such that jwnjS � n, where j�jS denotes the word length function
given by (1).

2.3. Riemannian metrics
In Section 4 we will deal with the convergence of Riemannian metrics, so here we
recall some basic facts about the space of metrics. Recall that ifM is a closed smooth
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manifold, a Riemannian structure m on M induces a metric on S2.T �.M//. If s
denotes a section of the tensor bundle S2.T �.M// and � 2 DiffrC1.M/, there is a
natural action of � in the bundle of r -jets of sections of S2.T �.M// which is defined
by sending s to the pullback ��.s/. We will need the following basic result.

PROPOSITION 2.2
There exists a constant C > 0 just depending on M such that

����.s/��
r
� Ck�krC1kskr :

Proof
By taking coordinate charts, we can also define norms on J r.S2.T �.M/// as we did
for J r.M/, coinciding with the norms for metrics defined in [20]. Then, Proposi-
tion 2.2 follows from Lemma 3.2 in [20].

We will also need to make use of the following.

PROPOSITION 2.3
Let r � 1, and let .sn/n be a sequence of sections of S2.T �.M// which is a Cauchy
sequence in the space of r -jets of S2.T �.M//. Then there exists a section s of the
bundle of r -jets in S2.T �.M// such that ksn � skr ! 0 as n!C1.

Proof
This is consequence of the definition of the norms k�k0r in terms of coordinate charts
and the fact that a Cauchy sequence of C r real functions which are supported in a
compact set converges to a C r real function in the C r -topology, which is an easy
consequence of Arzela–Ascoli theorem. More details can be found in [20].

3. Subexponential growth of derivatives
Throughout this section,M will denote a closed orientable surface, and ! will denote
a smooth area form on M . Given any f 2 Diff1.M/, we say p 2M is a hyperbolic
fixed point of f when f .p/D p and the spectrum of Dfp does not contain complex
numbers of modulus equal to 1.

Definition 2
We say that a group G < Diff1.M/ is elliptic if there is no element in G having a
hyperbolic fixed point.

For example, any subgroup of SO.3/ is an elliptic subgroup of Diff1! .S
2/,

where ! denotes the smooth area form induced from the Euclidean structure of
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R
3. There exist other examples of elliptic subgroups of Diff1! .S

2/. For example,
one can construct abelian groups of commuting pseudorotations using the so-called
Anosov–Katok method (see, e.g., [7]).

A natural question about elliptic groups of diffeomorphisms of S2 is the follow-
ing.

Question 3.1
Are all elliptic subgroups of Diff1! .S

2/ either solvable or conjugate to a subgroup of
SO.3/?

The main result of this section is the following.

LEMMA 3.2 (Subexponential growth of derivatives)
Let M be a closed orientable surface, let ! be an area form on M , and let G be a
finitely generated elliptic subgroup of Diff1! .M/. Then,G has subexponential growth
of derivatives (see Definition 1).

We will begin the proof of Lemma 3.2 by proving a similar weaker result that just
considers the first derivative. In fact, we will start by proving the following.

LEMMA 3.3
Let G be a finitely generated elliptic subgroup of Diff2!.M/, and let S be a finite
symmetric generating set of G. Then, for any " > 0, there exists N" > 0 such that��D.wn/��� e"n; 8n�N";
and every wn 2G with jwnj � n.

To prove Lemma 3.3, we first need some definitions. Let S D ¹s1; s2; : : : ; srº be
the generating symmetric set of G, and consider the space † WD SZ consisting of bi-
infinite sequences of elements of S . There is a natural shift map � W † ý given by
� W .: : : ; g�1; g0; g1; : : :/ 7! .: : : ; g0�1; g

0
0; g
0
1; : : :/, where g0i WD giC1, for every i 2 Z.

Then consider the map F W †�M ý given by

F.w;x/D
�
�.w/;g0.x/

�
; 8wD .: : : ; g1; g0; g1 : : :/ 2†;8x 2M:

The map F encodes the group action, and we have the obvious commutative diagram:

†�M
F

����! †�M

�

??y
??y�

† ����!
�

†
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To prove Lemma 3.3, let us start by recalling some classical facts about non-
uniformly hyperbolic dynamics (see [22, Supplement] for more details). Given a C 1-
diffeomorphism f W M ý and an ergodic f -invariant probability measure �, there
are a measurable set X �M with �.X/D 1, real numbers �1 < �2 < � � �< �k with
k � dimM , and a measurable splitting TM jX D

Lk
iD1E

i such that Dfx.Eix/ D
Ei
f .x/

, for every x 2X and any i 2 ¹1; : : : ; kº, and such that

�i D lim
n!˙1

1

n
log
��Df nx .vi /��; 8x 2X;8vi 2Ei n ¹0º;

and every i 2 ¹1; : : : ; kº. The numbers �i are called the Lyapunov exponents of f and
�. The measure � is said to be a hyperbolic measure when all its Lyapunov exponents
are different from zero.

Then the idea of the proof of Lemma 3.3 goes as follows: reasoning by contradic-
tion, we suppose subexponential growth of derivatives does not hold. Then, we show
the existence of an ergodic F -invariant probability measure � exhibiting nonzero top
Lyapunov exponent along the fiber, that is, on M . Since we are assuming the fiber M
has dimension 2 and the action preserves area,1 the lower Lyapunov exponent must
be negative. On the other hand, the dynamics on the base, given by the full shift, are
uniformly hyperbolic. So, � is essentially a hyperbolic measure (see [22, p. 659] for
details).

We now recall the following result due to Katok.

THEOREM 3.4 ([21], [22])
Let N be a compact manifold, let F be a C 1C˛-diffeomorphism of N , and let � be
an ergodic hyperbolic measure for F . Then, there exists a hyperbolic periodic point
of F . Moreover, the periodic point (and its orbit) can be chosen as close to supp.�/
as one wants.

We will prove that Theorem 3.4 is also true if one considers the space N WD
†�M and the map F as before (observe that †�M is not a manifold and F is not
a diffeomorphism), and so we will obtain a hyperbolic periodic point .w;x/ for F of,
say, order k. The element w 2 † is determined by the infinite biconcatenation of a
word of length k that defines an element of G having x as a hyperbolic fixed point,
giving a contradiction.

To avoid re-proving Katok’s theorem for our space†�M and F , we will embed
the dynamics of F into the dynamics of a diffeomorphism F 0 of a 4-manifold N .
Then, we will construct a hyperbolic measure � for F 0 and directly apply Katok’s
theorem as stated above to F 0.

1In fact, this is the only point where the volume-preserving assumption in Theorem 1.3 is crucial.
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Now, we prove Lemma 3.3.

Proof of Lemma 3.3
First we embed the dynamics of the shift � W † ý into the dynamics of a linear 2-
dimensional horseshoe map (see [22, Chapter 2, Section 5] for details). More for-
mally, there exists a C1-diffeomorphism h W S2 ý such that h acts on an open set
U � S

2 as the linear Smale’s horseshoe map, where ƒ WD
T
n2Z h

n.U / is a hyper-
bolic Cantor set for h. So, there is an embedding E 0 W †! S

2 such that E 0.†/Dƒ
and the following commutative diagram holds:

†
E 0

����! S
2

�

??y
??yh

† ����!
E 0

S
2

The embedding E 0 can be naturally extended to an embedding E W † �M ! S
2 �

M . Then we will extend the homeomorphism E ı F ı E�1 W E.† �M/! E.† �

M/ to a smooth diffeomorphism F 0 W S2 �M ý, which is a skew product over the
diffeomorphism h W S2 ý. This extension exists only if G � Diff20.M/; that is, every
element of G is isotopic to the identity. For the sake of simplicity and since we are
mainly interested in the case M D S

2, we will assume G is contained in the identity
isotopy class.

Then such an extension is constructed considering a smooth map f W S2 ý

Diff20.M/ (i.e., S2 �M 3 .z; x/ 7! fz.x/ 2M is C 2) such that fz D g0, for every
z 2 ƒ � S

2, and .: : : ; g�1; g1; g1; : : :/D E�1.z/ 2 †. In fact, given such a map f ,
we can simply define

F 0.z; x/ WD
�
h.z/; fz.x/

�
; 8.z; x/ 2 S2 �M;

and we clearly get the following commutative diagram:

†�M
E

����! S
2 �M

F

??y
??yF 0

†�M ����!
E

S
2 �M

In conclusion, we have embedded the dynamics of F into the dynamics of a C 2-
diffeomorphism F 0 of the 4-manifoldN WD S

2�M that fibers over a diffeomorphism
h W S2 ý. We will now construct the ergodic hyperbolic measure � for F 0.
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Let UTM be the unit tangent bundle ofM . Then we consider the map @F 0 W S2�
UTM ý that fibers over F 0 which is given by

@F 0
�
z; .x; v/

�
WD
�
h.z/;

Dfz.x/v

kDfz.x/vk

�
; 8z 2 S2; 8.x; v/ 2 UTM:

Analogously, one can define the map @F W † � UTM ý that fibers over F and is
given by

@F
�
w; .x; v/

�
WD
�
�.w/;

Dg0.x/v

kDg0.x/vk

�
;

for every w D .: : : ; g�1; g0; g1; : : :/ 2 † and every .x; v/ 2 UTM , and the map
@E W † � UTM ý just given by @E WD E 0 � idUTM . Notice that by our definitions,
it holds that @E ı @F D @F 0 ı @E .

Then, let us suppose there is no subexponential growth of derivatives. So, there
exist " > 0, a sequence of words wn of elements of S of length smaller than or
equal to n, and vectors .xn; vn/ 2 UTM such that kDxnwn.vn/k � e

"n, for each
n� 1. Let us define Own 2† to be the bi-infinite periodic word Own D � � �wnwnwn � � � ,
and let ı. Own;.xn;vn// be the Dirac measure on † � UTM supported on the point
. Own; .xn; vn//. We consider the sequence of measures

�n WD
1

n

nX
iD1

�
.@F /i

�
�
.ı. Own;.xn;vn///; 8n� 1:

Then, consider the function  W S2 �UTM !R given by

 
�
z; .x; v/

�
D log

�kDfz.v/kfz.x/
kvkz

�
; 8z 2 S2;8.x; v/ 2 UTM;

and observe thatZ
S2�UTM

 d.@E��n/D
Z
†�UTM

. ı @E/d�n

D
1

n

nX
iD1

 ı @E
�
@F i

�
Own; .xn; vn/

��

�
1

n
log
�kDxnwn.vn/kwn.xn/

kvnkxn

�
� "; (6)

for every n � 1. So, by the Banach–Alaoglu theorem, there exists a subsequence
.@E��nj /nj that converges in the weak-star topology to a measure �0, which is clearly
@F 0-invariant, and by (6), it holds thatZ

S2�UTM

 d�0 � ":
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Then, if we consider the ergodic decomposition of �0, there exists an ergodic @F 0-
invariant probability measure � such that

Z
S2�UTM

 d� � ": (7)

Now, let � be the pushforward measure of � by the projection on the S
2 �M

factor; that is, � WD pr��, where pr W S2 �UTM ! S
2 �M denotes the natural pro-

jection. Observe � is an ergodic F 0-invariant measure. We claim � is a hyperbolic
measure for F 0; that is, all its Lyapunov exponents are different from zero.

In order to prove that, first observe that the measure � is supported on the subset
ƒ �M , where ƒ is the horseshoe of diffeomorphism h, and consequently, it is a
uniform hyperbolic set (see [22, Chapter 2, Section 5] for details). So, to show that �
is a hyperbolic measure, it is enough to show that its both Lyapunov exponents along
the vertical fibers (i.e., on the M factor) are different from zero.

By combining (7) and the result [25, Proposition 5.1], we conclude that the top
Lyapunov exponent of � along vertical fibers is positive. Since the diffeomorphism
fz 2Diff20.M/ leaves invariant the area form !, for every z 2ƒ, and � is supported
on ƒ�M , this implies that the bottom Lyapunov exponent of � along vertical fibers
is negative. Thus, � is an ergodic hyperbolic measure.

We can apply Theorem 3.4 to conclude that, for every open neighborhood V
of ƒ, there is a hyperbolic periodic point p0 2 V �M for F 0. Since ƒ is a locally
maximal invariant set for h, that is, ƒ D

T
n2Z h

n.V / for every sufficiently small
neighborhood V of ƒ, this implies p0 2 ƒ �M . Hence, we can consider the point
.wp; xp/ WD E�1.p0/ 2 † �M , which is a periodic point for F . Since @F 0 ı @E D
@E ı @F , we conclude .wp; xp/ is hyperbolic along the vertical fibers, contradicting
the fact that there is a natural number k such that F k.wp; x/ D .wp; x/, for every
x 2M .

In order to finish the proof of Lemma 3.2, first we need to recall the following
result, which is an easy consequence of the chain rule in dimension 1 and, according
to Fisher and Margulis in [10], a well-known estimate used in KAM theory.

LEMMA 3.5 ([10, Lemma 6.4])
Let M be a compact smooth manifold, let �1; �2; : : : ; �n 2 Diffr.M/, let N1 WD
max1�i�n k�ik1, and let Nr WDmax1�i�n k�ikr . Then, there exists a polynomial Q
(just depending on the dimension of M ) such that

k�1 ı �2 ı � � � ı �nkr �N
rn
1 Q.nNr/:

We can now give a proof of Lemma 3.2.
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Proof of Lemma 3.2
From Proposition 2.1 and Lemma 3.3, one observes that Lemma 3.2 holds for r D 1.
Then, given any r > 1 and " > 0, we apply Lemma 3.2 to guarantee the existence of
a natural number N "

3r ;1
so that

kwnk1 � e
"n
3r ; 8n�N "

3r ;1
;

for any C r -diffeomorphismwn W M ý that can be written as a composition of at most
n elements of S . Then, Lemma 3.2 easily follows from Lemma 3.5 and a properly
chosen constant N";r .

4. The subexponential growth case
In this section we prove Theorem 1.3 for periodic groups of subexponential growth.
So, we will assume G < Diff1.S2/ is a finitely generated periodic subgroup with
bounded exponent and subexponential growth; that is, if S �G is a finite generating
set of G, then condition (2) holds.

THEOREM 4.1
Let ! be an area form on S

2, and let G <Diff1! .S
2/ be a finitely generated periodic

subgroup with bounded exponent and subexponential growth (i.e., if S �G is a finite
generating set of G, then condition (2) holds). Then, G is finite.

The idea of the proof of Theorem 4.1 goes as follows. Combining the subex-
ponential growth of G and the subexponential growth of derivatives we proved in
Lemma 3.2, we find, for each " > 0, a C1 “à la Pesin” Riemannian metric m" on
S
2 such that each element of S is e"-bi-Lipschitz for m" (Lemma 4.2). By the uni-

formization theorem of surfaces, each metricm" is conformally equivalent to the stan-
dard metric m0 in S

2, which implies there are conjugates G" D g�1" Gg" of the group
G such that each element of the generating set S" WD g�1" Sg" is an e"-quasiconformal
homeomorphism of S2. Then, as "! 0, we show that up to conjugationG" converges
to a Burnside group G0 which acts conformally on S

2; that is, the group G0 is a peri-
odic subgroup of PSL2.C/ which, by the Schur theorem, must be finite. We will show
this implies that G is finite as a consequence. We start by constructing the family of
Riemannian metrics .m"/">0, which is mainly motivated by Pesin’s work on nonuni-
form hyperbolicity (see, e.g., [22] for details).

LEMMA 4.2
LetM be a closed smooth manifold, let G <Diff1.M/ be a finitely generated group
with subexponential growth and subexponential growth of derivatives (see Defini-
tion 1), and let S be a finite set of generators of G. Then for any " > 0 there exists a
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C1-metric m" such that

e�"jvj"x �
ˇ̌
Dxs.v/

ˇ̌"
s.x/
� e"jvj"x; (8)

for every s 2 S and every .x; v/ 2 TM , where jvj" WD
p
m"x.v; v/.

Proof
Let us start by considering an arbitrary C1 Riemannian metric m on M , and let " be
any positive number. For each integer n > 0, let us write

m"n D
X
g2Bn

e�"jgjSg�m;

where Bn WD ¹g 2G W jgjS � nº and g�m denotes the pullback metric ofm by g; that
is, g�m.v;w/ WDm.Dg.v/;Dg.w//. The metric m" will be constructed as the limit
of the sequence .m"n/n as n!1.

By fixing an integer r > 0, by Lemma 3.2 there is a natural number N"=2;rC1 > 0
so that, for any g 2G satisfying jgjS �N"=3;rC1, we have

kgkrC1 � e
"jgjS
3 :

On the other hand, since we are assuming G is a group of subexponential growth,
there exists a constant K" > 0 so that

]
®
g 2G W jgjS � n

¯
� e

"n
3 ; 8n�K":

Therefore for any n�max¹N"=3;r ;M"º, by Proposition 2.3 we have

km"n �m
"
n�1kr D

��� X
g2BnnBn�1

e�"ng�m
���
r

� ].Bn nBn�1/e
�"n max

g2BnnBn�1

kg�mkr

� ].Bn nBn�1/e
�"nCe

"n
3 kmkr

� Ckmkre
�"n
3 :

Therefore, the sequence ¹m"nºn�1, when its elements are considered as r -jets of
S2.T �.M//, is a Cauchy sequence. Then, by Proposition 2.3, ¹m"nºn�1 converges to
a C r -tensor m" in S2.T �.M//. The tensor m" is easily seen to be a nondegenerate
metric, and as previous estimates are true for any r > 0, the metric m" is in fact C1,
too.
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To prove the estimates in (8), observe that, given any vector v 2 Tx.M/, we have

.s�m"n/.v; v/D
X
g2Bn

e�"jgjS .gs/�m.v; v/

� e"
� X
g2BnC1

e�"jgjSg�m.v; v/
�

D e"m"nC1.v; v/:

Taking limits in the preceding inequality, we obtain jDxs.v/j"s.x/ � e
"jvj"x . The other

inequality follows in a completely analogous way.

Now, we invoke the uniformization theorem for the 2-sphere S
2 for finding nice

conjugates of our group G. We recall the statement of the uniformization theorem in
the following form (see [5, Chapter 10] for more details).

THEOREM 4.3 (Uniformization of S2)
Any C1 Riemannian metricm on S

2 is conformally equivalent to the standard metric
m0 in S

2. That is, there exist a C1-diffeomorphism g W S2 ý and a C1-function
h W S2!R such that

g�mD ehm0:

By invoking Lemma 4.2, we can construct a family of Riemannian metrics
.m"/">0 satisfying estimate (8) for each element of the generating set S . Then,
by applying Theorem 4.3 to this family of metrics,we can construct a family of
C1-diffeomorphisms .g"/">0 and C1 real functions h" such that

g�"m
" D eh"m0; 8" > 0: (9)

Now, for each generator s 2 S we define

s" WD g
�1
" ı s ı g": (10)

We will prove that, as "! 0, the diffeomorphisms s" get closer to being conformal
with respect to the standard metric m0 on S

2. To do that, we first recall the purely
metric definition of quasiconformality (see, e.g., [19] for more details).

Definition 3
Let .X;dX /, .Y; dY / be two metric spaces, and let f W X! Y be a homeomorphism.
For each r > 0 and x 2X we define

Hf .x; r/ WD
sup¹dY .f .x/; f .y// W y 2X; dX .x; y/ < rº

inf¹dY .f .x/; f .y// W y 2X; dX .x; y/ > rº
:
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Then we say that f is K-quasiconformal, for some K � 1, whenever

lim sup
r!0

Hf .x; r/�K; 8x 2X:

Then we have the following.

LEMMA 4.4
For every number " > 0 and every s 2 S , the diffeomorphism s" W S

2 ý given by (10)
is e2"-quasiconformal with respect to the standard Riemannian metric m0 on S

2.

Proof
Let s be an arbitrary element of S , and let " be a fixed positive number. Given any
point x 2 S2 and any vector v 2 Tx.S2/, we write jvj0x and jvj"x for the norms of v in
the standard metric m0 and the metric m", respectively. Observe that to prove that s"
is e2"- quasiconformal it is enough to show that

e�2" �
jDxs".v/j

0
s".x/

jDxs".w/j
0
s".x/

� e2"; 8x 2 S2;8v;w 2 Tx.S
2/; (11)

such that jvjx D jwjx D 1.
Let y be an arbitrary point in S

2, and let v0, w0 be two vectors in Ty.S2/. By the
inequalities (8), we know that

e�"jv0j"y �
ˇ̌
Dys.v

0/
ˇ̌"
s.y/
� e"jv0j"y :

So it follows that

e�2"
jv0j"y

jw0j"y
�
jDys.v

0/j"
s.y/

jDys.w0/j
"
s.y/

� e2"
jv0j"y

jw0j"y
: (12)

We also have that g�"m
" D eh"m0. Then, jDyg".v0/j"g".y/ D e

2h".y/jv0j0y , and
therefore, if we take y D g".x/, v0 D Dxg".v/, and w0 D Dxg".w/ in inequality
(12), then we obtain

e�2" D e�2"
e2h"g".x/jvj0x
e2h"g".x/jwj0x

�
jDg".x/s.Dxg"v/j

"
sg".x/

jDg".x/s.Dxg"w/j
"
sg".x/

� e2"
e2h"g".x/jvj0x
e2h"g".x/jwj0x

D e2": (13)
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On the other hand, we have that

jDg".x/s.Dxg"v/j
"
sg".x/

jDg".x/s.Dxg"w/j
"
sg".x/

D
jDs".x/g".Dxs"v/j

"
g"s".x/

jDs".x/g".Dxs"v/j
"
g"s".x/

D
e2h"s".x/jDxs"vj

0
s".x/

e2h"s".x/jDxs"wj
0
s".x/

D
jDxs"vj

0
s".x/

jDxs"wj
0
s".x/

:

Therefore, putting together the previous inequality and (13), we obtain (11).

We will use the following known fact about quasiconformal maps on surfaces
(see, e.g., [11, Theorem 1.3.13]).

LEMMA 4.5
Let x1, x2, x3 be three different points on S

2, and let .f" W S2 ý/">0 be a family of
homeomorphisms satisfying:
(1) f" is K"-quasiconformal;
(2) K"! 1, as "! 0;
(3) for each " > 0, f" fixes x1, x2, and x3.
Then f"! Id, as "! 0, in the C 0-topology.

Remark 4.6
The same result holds true if the three points xi are allowed to depend on " under the
additional assumption that they remain at a bounded distance away from each other.

Proof
This follows from the compactness of K-quasiconformal maps of S2, which states
that the family of K-quasiconformal maps of S

2 fixing three points x1, x2, x3 is
compact in the C 0-topology (see [11, Theorem 1.3.13] for further details). Therefore,
any subsequence ¹f"nº of maps f" has a convergent subsequence converging to a
map f 0 which must be K"-quasiconformal for every K" and, therefore, conformal.
So, f 0 2 PSL2.C/. Besides, this map f 0 must fix x1, x2, and x3, and so, f 0 must be
the identity.

In what follows, we will make repeated use of the following classical fact.
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PROPOSITION 4.7
If f is a diffeomorphism of S2 which preserves the orientation of finite order k, then
f is conjugate to a rotation of order k.

Proof
Let m0 be any Riemannian metric on S

2, and consider the metric

m WD
1

k

kX
iD1

.gi /�.m0/:

The metric m is g-invariant and, by the uniformization theorem, conformally equiva-
lent to the standard metric m0 on S

2. This implies that g is conjugate to a diffeomor-
phism of S2 which preserves orientation and acts conformally on S

2, and therefore,
g 2 SL2.C/. As g has order k, the element g is conjugate to a rotation of order k in
SO.3/.

We will need the following consequence of Lemma 4.5.

PROPOSITION 4.8
Let s W S2 ý be a periodic homeomorphism different from the identity, and let
¹s" W S

2 ýº">0 be a family of homeomorphisms such that the following conditions
hold:
(1) for each " > 0, s" is topologically conjugate to s;
(2) there is a family of positive real numbers ¹K"º">0 such that s" is K"-

quasiconformal, for every " > 0 and K"! 1, as "! 0;
(3) there exists ı > 0 such that if p", q" are the two fixed points of s", then it holds

that d.p"; q"/ > ı, for every " > 0.
Then the family ¹s"º">0 is precompact with the uniform C 0-topology, and if s0 W S2 ý

is a homeomorphism such that there is a sequence s"n ! s0, with "n! 0, then s0 2
PSL2.C/ and s0 has the same period as s.

Proof
Given any " > 0, the diffeomorphism s" is conjugate to a finite-order rotation. So s"
has exactly two fixed points, which are denoted by p" and q". Therefore, there exists
a conformal map A" 2 PSL2.C/ sending p" to Z WD .0; 0; 1/ 2 S

2 � R
3 and q" to

�Z D .0; 0;�1/ 2 S2 �R
3. Moreover, we can suppose that the family ¹kA"kº">0 is

bounded and consequently precompact.
Let us define S" WDA"s"A�1" . If we consider the great circle C in S

2 determined
by the xy-plane in R

3, then there is a point x" 2 C such that S".x"/ 2 C . Then, there
is a rotation R�" 2 SO.3/ fixing Z, �Z and sending x" to S".x"/. Therefore, the map
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S"R
�1
�"

is still K"-quasiconformal and fixes the three points Z, �Z, and S".x"/. By
Remark 4.6, we have S"R�1�" ! Id in the C 0-topology, as "! 0. By the compactness
of SO.3/, there are a subsequence ¹"nºn, with "n! 0 as n!1, and an angle � such
that R�"n !R� as n!1. So, S"n!R� .

To finish the proof, we must show that R� has order k. Since S"n!R� as n!
1, we have that Sk"n ! Rk

�
, and so, Rk

�
D Id. This implies that R� has order k0

dividing k. If k0 < k, then Sk
0

"n
! Id as n!1, where Sk

0

"n
is conjugate to a rotation

of order ˛ WD k
k0

. But this is impossible as any conjugate of a rotation of order ˛ must
move some point in S

2 at least distance ˛ in the standard metric on S
2.

We will now begin the proof of Theorem 4.1. We start by considering the case
where G is 2-generated.

PROPOSITION 4.9
Let S be a generating set of a group G as in Theorem 4.1. For any pair of elements
s; t 2 S , the subgroup G0 D hs; ti of G is finite.

Proof
First let us consider the case where s, t have a common fixed point p in S

2. The
derivative map at p gives a homomorphism ˆ W G0! GL2.R/. As the image of ˆ
is a finitely generated periodic linear group, by Schur’s theorem this homomorphism
must have finite image. On the other hand, ker.ˆ/ is trivial because all the elements
of G0 are smoothly conjugate to rotations. Then, G0 must be finite (and, in fact, G0

must be cyclic). We will then assume that s, t have no common fixed point.
Conjugating by the diffeomorphisms g" given by (9), we obtain diffeomorphisms

s" and t" which are e2"-quasiconformal. Furthermore, by conjugation with a Möbius
map we can suppose the fixed points of s" are Z WD .0; 0; 1/ and �Z D .0; 0;�1/ of
S2 �R3 and one fixed point of t" is the point X D .1; 0; 0/.

Therefore, by Proposition 4.8, there exists a sequence ¹"nºn of positive numbers,
with "n! 0 as n!1, so that the sequence ¹s"nºn converges to a nontrivial rotation
R� 2 SO.3/, fixing the pointsZ and�Z. Recall that each diffeomorphism t" fixes the
point X . Let us writeX"n for the other fixed point of t"n . Then we have the following.

LEMMA 4.10
Either G0 is finite, or it holds that lim"n!0X"n DX .

Proof
Let us assume the sequence ¹X"nºn does not converge to X . So we can invoke Propo-
sition 4.8 to guarantee the existence of a subsequence ¹t"nj ºnj converging in the
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C 0-topology to a Möbius transformation T 2 PSL2.C/. In such a case, the sequences
of diffeomorphisms ¹s"nºn and ¹t"nj ºnj converge to R� and T , respectively. So, the
group hR� ; T i is a periodic subgroup of PSL2.C/, and by Schur’s theorem, it is finite.
Let us show this implies that G0 is finite as well.

To do that, let F2 denote the free group on two elements, and let ¹a; bº � F
¯2

be a generating set of F2. Let us write h W F2! G0 and h0 W F2! PSL2.C/ for the
two unique group homomorphisms such that h.a/ D s, h.b/ D t , h0.a/ D R� , and
h0.b/ D T . If G0 were infinite, then there would be an element w 2 F2 such that
h.w/ ¤ id and h0.w/ D id. However, for each "n we can consider the only group
homomorphism h"n W F2!Diff1.S2/ such that h"n.a/D s"n and h"n.b/D t"n .

Since each s"n and t"n is conjugate to s and t , respectively, we get h"n.w/ ¤
id, for every n. But on the other hand, h"n.w/! h0.w/ D id as n!1, which
contradicts Proposition 4.8. So, G0 is finite.

We will now deal with the case when X"n !X as n!1. In order to simplify
the notation, we will denote "n simply by ", and any statement about "! 0 should be
understood to be true up to passing to the sequence ¹"nºn. We will show the following.

PROPOSITION 4.11
If X"!X , then the group G0 contains an element of infinite order, contradicting the
fact that G0 D hs; ti is periodic.

Proof
Since the point X" is different from X for every " > 0, for each " we can consider the
great circle C" in S

2 passing through the points X" and X . Let M" 2 C" be the mid-
point between X" and X on the shortest geodesic segment determined by these points
(see Figure 1). Then there is a Möbius transformation A" (a loxodromic element in
PSL2.C/) such that A".M"/DM", A".�M"/D �M", and A".X"/D �A".X/. Let
us define Y" WDA".X"/.

By the compactness of S2 and Proposition 4.8, there exist a point Y 2 S2, a rota-
tion S˛ 2 SO.3/, and a subsequence of ¹"nº such that Y"! Y 2 S2 and A"t"A�1" !
S˛ is the C 0-topology as "! 0. Notice the rotation S˛ has a strictly positive finite
order and fixes the points Y and �Y .

Our purpose now is to construct an open disk D � S
2 such that s"t".D/�D, for

" > 0 sufficiently small enough, where the inclusion is strict. This shows the element
s"t" cannot have finite order, and this immediately implies st has infinite order, as
well.

In order to prove that, let ı > 0 be small number (how small ı is will be
determined later), and let Bı.X/ be the ball in S

2 of radius ı with center at X .
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Figure 1. (Color online) The white ball corresponds to Bı .X/, the blue ball
to A".S2 nBı .X//, and the red ball to t".S2 nBı .X//.

By fixing ı, there exists a positive number ".ı/ > 0 such that A".S2 n Bı.X// �
Bı.�M"/, kA"t"A�1" � S˛kC0 < 0:01ı, and A�1" S˛.B1:01ı.�M"// � Bı.X/, for
any " 2 .0; ".ı//. And so we have

t"
�
S
2 nBı.X/

�
DA�1" ıA"t"A

�1
" ıA"

�
S
2 nBı.X/

�
�A�1" ıA"t"A

�1
"

�
Bı.�M"/

�
�A�1" ı S˛

�
B1:01ı.�M"/

�
�Bı.X/:

Now, for " > 0 sufficiently small,we have that s" is close enough to the rotation
R� SO.3/ constructed in the proof of Lemma 4.10, so for such " we can also assume
that s".Bı.X//� S

2 nBı.X/, and thus, we get

s"t"
�
S
2 nBı.X/

�
� S

2 nBı.X/;

where this last inclusion is strict and therefore s"t" has infinite order.

Now we can finish the proof of Theorem 4.1.

Proof of Theorem 4.1
Let s, t be two arbitrary elements of the generating set S . We can suppose that s, t
do not have a common fixed point, because otherwise they would generate a finite
group which must be cyclic because s, t would be conjugate to rotations and in such
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a case we could reduce the number of generators. By the proof of Proposition 4.9, the
conjugates s", t" converge to Möbious transformations As;At 2 PSL2.C/, as "! 0,
generating a finite group. It also follows from the proof of Proposition 4.9 that As and
At cannot have a common fixed point.

We will show that there exists a subsequence "n! 0 such that, for any h 2 S ,
the sequence of conjugates h"n WD g

�1
"n
hg"n converges to a nontrivial Möbious map

Ah 2 PSL2.C/. To show this, let p", q" denote the fixed points of h". Arguing as
in Lemma 4.10, if for some h 2 S there is a subsequence h"n such that p"n and q"n
converge to two different points p, q, then h"n must converge to a finite-order element
Ah 2 PSL2.C/ fixing p and q.

If no such subsequence of h" exists, then the sequences of points p", q" have a
common limit point X 2 S2. By possibly replacing As with At , one can suppose that
X is not a fixed point of As . Therefore, we are in the same situation as in Proposition
4.11 for the elements s", h". Applying the very same argument we obtain an element
of G of infinite order, getting a contradiction.

In conclusion, via a diagonal argument, we can find a subsequence "n! 0 so
that each of the conjugates h"n converges to an element of PSL2.C/. This implies that
the conjugate w"n of every element w 2G converges to an element Aw of PSL2.C/.
Moreover, since the orders of w and Aw coincide, by Lemma 4.8 we know that Aw ¤
id provided w¤ id.

The previous discussion implies that there is an injective homomorphism
ˆ W G ! PSL2.C/ sending g to Ag . As G is periodic and PSL2.C/ is linear, the
group G must be finite.

5. The exponential growth case
In this section we finish the proof of Theorem 1.3. By Theorem 4.1, we can now
assume that G has exponential growth. The idea of the proof under this additional
hypothesis goes as follows. As G has exponential growth, the pigeonhole principle
implies there exist a constant c 2 .0; 1/ and N1 > 0 such that, for any point x 2 S2

and any j > N1, there are two elements gj ; hj 2 G with jgj jS ; jhj jS � j such that
d.gj .x/; hj .x// < c

�j .
On the other hand, by Lemma 3.3 for any " > 0 and j sufficiently large, the

derivatives of gj and hj are bounded by e"j . Therefore, the element fj WD h�1j gj
moves x exponentially close to itself. Then, since the group G has bounded expo-
nent, the orbit ¹f ij .x/º

k
iD1 of x has exponentially small diameter, where k 2 N is an

exponent for the whole group.
So, we will prove that this implies that fj has a fixed point exponentially close

to x. This argument also applies if instead of a single point x we consider a finite
collection of points xi 2 S2. This implies that there are nontrivial elements of G with
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as many fixed points as one wants, contradicting the fact that every element of G is
conjugate to some rotation.

LEMMA 5.1
Let us suppose G < Diff1.S2/ is a finitely generated periodic group of bounded
exponent and has subexponential growth of the derivative; that is, the conclusion of
Lemma 3.3 holds. Then, G does have subexponential growth.

Remark 5.2
It is important to notice that this is the only part of Theorem 1.3 where we use the
bounded exponent assumption on the group G.

Observe that Theorem 1.3 just follows as a straightforward combination of Theo-
rem 4.1 and Lemma 5.1. We will now begin the proof of Lemma 5.1. Throughout the
proof we will use the classical Vinogradov “O” notation, which states that given two
sequences ¹fnº, ¹gnº we have fn D O.gn/ if there exist constants C;n0 > 0 such
that 1

C
fn < gn <Cfn for n� n0.

Proof of Lemma 5.1
Reasoning by contradiction, let us suppose that G has exponential growth. Let S be a
finite generating set ofG. By replacing S with a larger generating set, we can suppose
that

]
®
g 2G W jgj � j

¯
� 27j ; 8j � 1:

Observe that the groupG naturally acts on .S2/3 WD S
2�S2�S2 via the diagonal

action. Then consider a fixed triple of distinct points of S2 Nx D .x1; x2; x3/ 2 .S2/3,
let us define

Oj WD
®�
g.x1/; g.x2/; g.x3/

�
2 .S2/3 W g 2G; jgjS � j

¯
;

and observe that the G-orbit of Nx is equal to
S
j Oj . Notice that if we endow .S2/3

with the product Riemannian structure, then the volume of a ball of radius 2�n in
.S2/3 is O.2�6n/.

Then, as there are at least 27j elements in Bj WD ¹g 2 G W jgjS � j º, by the
pigeonhole principle, for each j � 1 there are at least two different elements gj , hj
in Bj such that their corresponding images of Nx 2 .S2/3 satisfy gj . Nx/; hj . Nx/ 2 Oj
and d.gj . Nx/; hj . Nx// < 2�j , for every j � 1.

On the other hand, by Lemma 3.3 we know that, given any " > 0, there exists N2
such that, for any j �N2 and any element g 2Bn, it holds that kD.g/k � e

"
2n. If we

define fj WD h�1j gj , we have fj 2B2j and so kD.fj /k � e"j for every j �N2. So,
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for each i 2 ¹1; 2; 3º and any j � 1 such that j �N2, we have

d
�
fj .xi /; xi

�
�
��D.h�1j /��d�gj . Nx/; hj . Nx/�� e"j 2�j : (14)

We will show that (14) implies that, for j sufficiently large, fj has at least three
fixed points, and consequently, it is the identity, contradicting the fact that gj and hj
were different.

PROPOSITION 5.3
For each j � N2 and each i 2 ¹1; 2; 3º, there exists pi;j 2 S2 such that fj .pi;j /D
pi;j and

d.xi ; pi;n/DO.2
�ne.kC2/"n/:

Consequently, fj D id for j sufficiently large.

Proof
It is clearly enough to prove the statement just for the point x1. Let Sj be the shortest
geodesic segment on S

2 joining the points fj .x1/ and x1. Then we define

Kj WD

k[
iD1

f ij .Sj /;

where k is the exponent of G; that is, gk D id, for every g 2G. Observe that Kj is a
compact fj -invariant set. Also, as kD.fj /k � e"j , the compact set Kj has diameter
of order O.2�j e".kC1/j /.

Therefore, for each j there exists an open disk Dj � S
2 whose radius is of order

O.2�ne".kC1/n/ and containingKj . If j is sufficiently large, then the set S2 nKj has
exactly one connected component Rj containing the set S2 nDj . Therefore, since
kD.fj /k � e

"n, the area of fj .Rj / is greater than O.e�2"n/, and so the connected
component Rj must be fj -invariant, provided j is large enough.

Let K 0j WD S
2 n Rj , and observe that K 0j is an fj -invariant closed set. The set

K 0j is a connected set as it is the union of Kj with the closure of the connected
components of S2 nKj . (The union of connected sets with nonempty intersection is
connected.) Consequently, K 0j is a nonseparating continuum, and by the Cartwright–
Littlewood theorem (see, e.g., [2]), there exists a fixed p1;j 2K 0j of fj . AsK 0j �Dj ,

we have that the distance between p1;j and x1 should be of order O.2�ne".kC1/n/.

Therefore, Lemma 5.1 is proved.
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Appendix. The Burnside problem on T
q and manifolds with hyperbolic funda-

mental group
In this appendix we discuss and prove some results about actions on manifolds of
nonpositive curvature. We will prove the following.

THEOREM A.1
LetM be a closed manifold of dimension q D dimM � 3 such that its universal cover
is homeomorphic R

q and its fundamental group �1.M/ is a nonelementary Gromov
hyperbolic group. Then, any periodic subgroup of Homeo.M/ is finite.

Observe that in Theorem A.1 we are not a priori assuming the subgroup is finitely
generated. Remember that Gromov hyperbolic groups were first introduced in [15],
and any compact manifold admitting a Riemannian structure of nonpositive curvature
satisifies the hypotheses of the theorem.

THEOREM A.2
Let � be a Borel probability measure on the q-dimensional torus T

q , and let
Homeo�.Tq/ denote the group of homeomorphisms of Tq that preserves the measure
�. Then, any finitely generated periodic subgroup of Homeo�.Tq/ is finite.

Theorems A.1 and A.2 extend previous results of Guelman and Liousse in [16]
and [17] to higher dimensions.

A.1. Displacement functions and Newman’s theorem
In this paragraph we introduce some notation we will need in the proofs of Theorems
A.1 and A.2. Let .X;d/ be an arbitrary metric space. We define the displacement
function D W Homeo.X/! Œ0;1	 by

D.f / WD sup
x2X

d
�
f .x/; x

�
; 8f 2Homeo.X/; (15)

where Homeo.X/ denotes the group of homeomorphisms of X .
Then, let us recall a classical result due to Newman from [27].

THEOREM A.3
LetM be a connected complete manifold, let d be a distance function compatible with
the topology ofM , and let k � 1 be a natural number. Then, there exists a real number
".M;d; k/ > 0, depending on M , d , and k, such that, for every f 2 Homeo.M/

satisfying f k D id and f ¤ id, it holds that D.f /� ".

An easy consequence of Theorem A.3 is the following.
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COROLLARY A.4
Let d denote the standard Euclidean distance on R

q , and let f 2 Homeo.Rq/ be a
homeomorphism such that f ¤ id and f k D id, for some k � 1. Then it holds that
D.f /D1.

Proof
Let " WD ".Rq; d; k/ > 0 be the real constant given by Theorem A.3 for M DR

q , and
let us suppose D.f / <1. Now, if we define f� 2Homeo.Rq/ by

f�.x/ WD �f .�
�1x/; 8x 2Rq;

with � WD ".2D.f //�1, then it holds that

D.f�/D sup
x2Rq

��f�.x/� x��D sup
x2Rq

�
��f .��1x/� ��1x��D �D.f /D

"

2
;

and f k
�
D id. Then, by Theorem A.3 it holds that f� D id, contradicting the fact that

f ¤ id.

A.2. Proof of Theorem A.1
Let us consider M endowed with a Riemannian structure, and let d be its induced
distance function on M . Let � W QM !M denote the universal cover of M , and con-
sider QM equipped with the Riemannian structure given by the pullback by � of the
corresponding structure of M . Let Qd be its induced distance function on QM . Recall
that QM is homeomorphic to R

q .
Let Homeo0.M/ be the group of homeomorphisms ofM which are homotopic to

the identity, and consider the quotient group MCG.M/ WDHomeo.M/=Homeo0.M/.
It is well known that MCG.M/ is isomorphic to Out.�1.M//, that is, the group of
outer automorphisms of the fundamental group (see, e.g., [18, Proposition 1B.9]).
Since M is closed and aspherical, dimM � 3, and �1.M/ is a Gromov hyperbolic
group, by [15, Theorem 5.4.A] we know that Out.�1.M// is finite. So, MCG.G/ is
finite as well.

Now, let G < Homeo.M/ be a periodic group, and define G0 WD G \

Homeo0.M/. Since MCG.G/ is finite, we know that G0 has finite index in G;
so in order to prove G is finite it is enough to show that G0 is finite. In fact, we
will prove that G0 D ¹idM º. To do that, let g 2 G0 be an arbitrary element, and let
H W Œ0; 1	 �M !M be a homotopy such that H.0; �/D idM and H.1; �/D g. Let
QH W Œ0; 1	 � QM ! QM denote the only lift of H such that QH.0; �/D id QM , and let us

write Qg WDH.1; �/ 2Homeo. QM/.
Since g has finite order, there is n � 1 and T 2 Deck.�/, the group of deck

transformations of the covering � W QM !M such that Qgn D T .
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Then note that, since Qg is homotopic to the identity, its displacement

D. Qg/D sup
x2 QM

Qd
�
Qg.x/; x

�
<1;

and hence D. Qgn/DD.T / <1 as well. However, since Deck.�/ is isomorphic to
the fundamental group �1.M/ and this is a Gromov hyperbolic group, this implies
that every element of �1.M/ different from the identity exhibits infinite displacement.
Since D.T / <1, we conclude T must be equal to the identy id QM . So, Qg is indeed a
periodic map, and since D. Qg/ <1 and QM is homeomorphic to Rn, by Corollary A.4
we know that QgD id QM .

A.3. Proof of Theorem A.2
Let � W Rq! T

q WDR
q=Zq be the natural projection map. For each f 2Homeo.Tq/,

there is a unique Af 2 GLq.Z/ such that the map 
 Qf WD
Qf �Af W R

q! Rq is Zq-

periodic, for any lift Qf W Rq ý of f . The map

I WHomeo.Tq/ 3 f 7!Af 2GLq.R/

is clearly a group homomorphism. Then we define Homeo0.Tq/ WD ker I.
Let G < Homeo�.Tq/ denote a finitely generated periodic subgroup. Then,

I.G/ <GLq.R/ is a finitely generated periodic group. By Schur’s theorem we know
I.G/ is finite. So, the subgroup

G0 WDG \Homeo0.T
q/ < G

has finite index in G. Thus, it is enough to show G0 is finite.
Then, let us consider the group Homeo0;�.Tq/ WDHomeo�.Tq/\Homeo0.Tq/

and the �-mean rotation vector �� W Homeo0;�.Tq/! T
q given by

��.f / WD �
�Z

Tq


 Qf d�
�
; 8f 2Homeo0;�.T

q/;

where Qf W Rq ý is any lift of f and the function 
 Qf D
Qf � idRq is considered as

an element of C 0.Tq;Rq/. Notice that �� is well defined and does not depend on the
choice of lift.

We claim �� is a group homomorphism. To prove this, let f;g 2Homeo0;�.Tq/
be two arbitrary homeomorphisms, and let Qf ; Qg W Rq ý be two lifts of f and g,
respectively. Then we have

��.f ı g/D �
�Z

Tq


 Qf ı Qg d�
�
D �

�Z
Tq


 Qf ı gC
 Qg d�
�

D �
�Z

Tq


 Qf C
 Qg d�
�
D ��.f /C ��.g/;
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where the first equality is a consequence of the identity 
 Qf ı Qg D
 Qf ı g C
 Qg and
the second one follows from the fact that � is g-invariant.

So, ��.G0/ < T
q is a finitely generated periodic group; since T

q is abelian,
��.G0/ is finite. This implies that G0;0 WD G0 \ ker�� is a finite-index subgroup
of G0. Thus, it is enough to show G0;0 is finite, and we indeed show it just reduces
to the identity map. In order to do that, let f be an arbitrary element of G0;0. Notice
there is a unique lift Qf W Rq ý such that

Z
Tq


 Qf d�D 0:

SinceG0;0 is periodic, there exists n� 1 such that f n D id, and consequently, there is
p 2 Zq such that Qf n.x/D xCp, for every x 2Rq . However, since � is f -invariant,
it holds that

pD

Z
Tq


 Qf n d�D
Z
Tq

n�1X
jD0


 Qf ı f
j d�D n

Z
Tq


 Qf d�D 0:

So, Qf is a periodic homeomorphism of Rq , and since
 Qf is Zq-periodic, it holds that

D. Qf /D sup
x2Rq

��
 Qf .x/
��<1;

where D. Qf / is the displacement function given by (15). Then, by Corollary A.4 we
get that Qf equals the identity, and Theorem A.2 is proven.
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