Universidade Federal Fluminense

LISTA 11 - 2006-2

EGM - Instituto de Matemática

Teorema de Rolle

GMA - Departamento de Matemática Aplicada

Teorema do Valor Médio - TVM

Nos exercícios 1. a 6. verifique se o Teorema de Rolle pode ser aplicado à f nos intervalos indicados.

1.
$$f(x) = 1 - |x - 1|, x \in [0, 2]$$

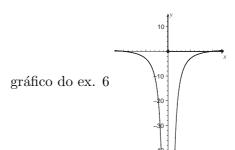
2.
$$f(x) = x^2 - 2x$$
, $x \in [-1, 3]$

3.
$$f(x) = (x-3)(x+1)^2$$
, $x \in [-1,3]$

4.
$$f(x) = x - x^{\frac{1}{3}}, x \in [0, 1]$$

5.
$$f(x) = x - x^{\frac{1}{3}}, x \in [-1, 1]$$

6.
$$f(x) = \begin{cases} \frac{x^2 - 4}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 $I = [-2, 2]$



- 7. A altura de uma bola, t segundos após o lançamento, é dada por $f(t) = -16t^2 + 48t + 32$.
 - (a) Verifique que f(1) = f(2);
 - (b) Segundo o Teorema de Rolle, qual deve ser a velocidade v da bola em algum instante do intervalo [1,2]? Enuncie o Teorema de Rolle;
 - (c) Encontre a velocidade média da bola durante os dois primeiros segundos;
 - (d) Em que instante a velocidade instantânea é igual à velocidade média acima? Enuncie o teorema que nos garante isso.
- 8. Seja $f: [-1,2] \longrightarrow \mathbb{R}$ contínua em [-1,2], diferenciável em (-1,2), com f(-1)=-1 e f(2)=5. Prove que existe um ponto no gráfico de f em que a reta tangente é paralela à reta y=2x.
- 9. Seja $p(x) = Ax^2 + Bx + C$. Prove que, para qualquer intervalo [a, b], o valor de c cuja existência é garantida pelo Teorema do Valor Médio (TVM), é o ponto médio do intervalo.
- 10. Se a > 0 e n é um inteiro não negativo qualquer, prove que $p(x) = x^{2n+1} + ax + b$ não pode ter duas raízes reais.
- 11. Mostre que $g(x) = 8x^3 + 30x^2 + 24x + 10$ admite uma única raiz no intervalo (-3, -2).
- 12. Seja ${\cal P}$ uma função polinomial não constante.
 - (a) Prove que, entre dois zeros consecutivos de P' (isto é, dois valores de x que anulam a derivada e tal que entre eles não existe outro valor que anula a derivada), existe no máximo uma raiz de P.
 - (b) Se P tem três raízes distintas em [a, b], prove que P''(c) = 0, para algum valor $c \in (a, b)$.

RESPOSTAS

- 1. Não, a hipótese f diferenciável em (0,2) falha, pois f não é diferenciável em $x=1\in(0,2)$.
- 2. Sim 3. Sim 4. Sim
- 5. Não, f diferenciável em (-1,1) não se verifica, pois f não é diferenciável em $x=0\in(-1,1)$.
- 6. Não, a hipótese f contínua em [-2,2] não se verifica, pois f não é contínua em $x=0\in[-2,2]$.
- 7. (a) f(1) = f(2) = 64 (b) v = 0 (c) 16 m/seg (d) t = 1 seg
- 8. Existe uma reta tangente ao gráfico e paralela à reta $y = 2x \iff \exists x \in [1,2]$ tal que f'(x) = 2 (coeficientes angulares iguais). Calcule o coeficiente angular da reta secante ao gráfico que contém os pontos (-1, f(-1)) e (2, f(2)), depois aplique o Teorema do Valor Médio (TVM).
- 9. (i) p é contínua em [a,b] pois p é uma função polinomial; (ii) p é diferenciável em (a,b) pois p é uma função polinomial. Se valem as hipóteses (i) e (ii) do TVM, então vale a tese : $\exists c \in (a,b)$ tal que

$$p'(c) = \frac{p(b) - p(a)}{b - a} = \frac{\left(Ab^2 + Bb + C\right) - \left(Aa^2 + Ba + C\right)}{b - a} = \frac{A\left(b^2 - a^2\right) + B(b - a)}{b - a} = \frac{A(b - a)(b + a) + B(b - a)}{b - a} = \frac{(b - a)[A(b + a) + B]}{b - a} = A(b + a) + B.$$

Além disso, como p'(x) = 2Ax + B, temos que p'(c) = 2Ac + B.

Igualando as duas expressões de p'(c) e simplificando, chegamos a $c = \frac{a+b}{2}$.

10. Suponha, por absurdo, que p(x) tem duas raízes reais x_1 e x_2 com $x_1 < x_2$. As hipóteses do Teorema de Rolle para p em $[x_1, x_2]$ são verdadeiras: (i) e (ii) p é contínua em $[x_1, x_2]$ e diferenciável em (x_1, x_2) pois p é uma função polinomial; (iii) $p(x_1) = p(x_2) = 0$ pois x_1 e x_2 são raízes de p(x).

Aplicando o Teorema de Rolle: $\exists c \in (x_1, x_2) \text{ tal que } p'(c) = 0$ (*)

Por outro lado, $p'(x) = (2n+1)x^{2n} + a = (2n+1)(x^n)^2 + a$.

Como, $(2n+1)(x^n)^2 \ge 0$, $\forall x \in \mathbb{R}$ e por hipótese a > 0, temos que p'(x) > 0, $\forall x \in \mathbb{R}$ (**

As conclusões (*) e (**) são contraditórias, logo não é possível supor que existem duas raízes reais.

- 11. 1ª parte: Como a função polinomial g é contínua em [-3, -2], g(-3) = -8 < 0 e g(-2) = 18 > 0, pelo Teorema do Valor Intermediário, g possui pelo menos uma raiz entre -3 e -2.
 - $2^{\underline{a}}$ parte: Suponha, por absurdo, que g admite duas raízes c_1 e c_2 tal que $-3 < c_1 < c_2 < -2$. Logo $g(c_1) = g(c_2) = 0$. Como a função polinomial g é contínua em [-3, -2] e diferenciável em (-3, -2), pelo Teorema de Rolle, $\exists c$ entre c_1 e c_2 tal que g'(c) = 0. (*)

Por outro lado, $g'(x) = 24x^2 + 60x + 24 = 12(x+2)(2x+1)$, analisando o sinal de g'(x), temos g'(x) > 0 quando -3 < x < -2, logo g'(c) > 0, que contradiz com (*). Conclusão: g não admite duas raízes entre -3 e -2.

Pela $1^{\underline{a}}$ parte, g possui <u>pelo menos uma raiz</u> entre -3 e -2 e pela $2^{\underline{a}}$ parte, g <u>não admite duas raízes</u> entre -3 e -2, consequentemente g possui <u>uma única raiz</u> entre -3 e -2.

- 12. (a) Suponha que x_1 e x_2 são dois zeros consecutivos de P'. Suponha, por absurdo, que entre x_1 e x_2 existem duas raízes de P. Sejam x_3 e x_4 , com $x_3 < x_4$ essas raízes de P. Assim, $(x_3, x_4) \subset (x_1, x_2)$. Aplicando o Teorema de Rolle para a função P em $[x_3, x_4]$: $[(i)P(x_3) = P(x_4) = 0]$, verifique as outras duas hipóteses, afirmamos que $\exists c \in (x_3, x_4) \subset (x_1, x_2)$ tal que $P'(c) = 0 \Longrightarrow \exists c \in (x_1, x_2)$ tal que P'(c) = 0, o que contradiz com a hipótese de que x_1 e x_2 são dois zeros consecutivos de P'.
 - (b) Sejam x_1 , x_2 e x_3 as três raízes, com $x_1 < x_2 < x_3$. O Teorema de Rolle aplicado a P nos intervalos $[x_1, x_2]$ e $[x_2, x_3]$ nos garante (verifique as hipóteses) que $\exists c_1 \in (x_1, x_2)$ e $\exists c_2 \in (x_2, x_3)$ tais que $P'(c_1) = P'(c_2) = 0$. Agora, o Teorema de Rolle aplicado a P' no intervalo $[c_1, c_2]$ nos garante (verifique as hipóteses) que $\exists c \in (c_1, c_2)$ tal que P''(c) = 0.