Universidade Federal Fluminense

LISTA 14 - 2006-2

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Crescimento e decrescimento de funções Máximos e mínimos relativos Máximos e mínimos absolutos

OBS.: Os exercícios 1. e 2. são apenas para a disciplina Cálculo Aplicado I.

- 1. Seja $f(x) = \arctan x$.
 - (a) Determine o polinômio de Taylor de grau 7 de f(x) em torno de x=0;
 - (b) Usando (a), calcule arctan(0,3) e estime o erro;.
 - (c) Determine o polinômio de Taylor de grau 14 de $q(x) = \arctan x^2$ em torno de x = 0. (Sugestão: use o polinômio de Taylor de $f(x) = \arctan x$.)
- 2. Prove que se f é uma função par, então o polinômio de Taylor de grau n em torno de x=0 contém apenas potências pares de x. (Sugestão: prove que f par $\Longrightarrow f'$ impar $\Longrightarrow f''$ par $\Longrightarrow f'''$ impar $\Rightarrow \cdots \Longrightarrow f^{(2k)} \text{ par } \Longrightarrow f^{(2k+1)} \text{ impar.}$

Nos exercícios 3. a 5. dê os intervalos em que a função é crescente e em que é decrescente.

3.
$$f(x) = x + \frac{3}{x^2}$$

4.
$$g(t) = \frac{3t^2 + 4t}{1 + t^2}$$

4.
$$g(t) = \frac{3t^2 + 4t}{1 + t^2}$$
 5. $F(u) = \frac{u^2 - u + 1}{2(u - 1)}$

- 6. Seja f uma função tal que f(0) = 0 e $f'(x) = \frac{x^2}{1 + x^2}$, $\forall x \in \mathbb{R}$. Mostre que $0 < f(x) < x, \forall x > 0$.
- 7. Mostre que sen x < x, $\forall x > 0$.

(Sugestão: para $x \ge \pi/2$, use propriedades da trigonometria, para $0 < x < \pi/2$, use derivada)

8. Prove a designaldade $\cos x > 1 - \frac{x^2}{2}, \ x \neq 0.$

(Sugestão: prove para x > 0 e depois use o fato de que as funções de ambos os lados são pares)

- 9. Prove, para x > 0, a designaldade $x \frac{x^3}{6} < \sin x$.
- 10. Mostre que:
- (a) $e^x > x$, $\forall x \in \mathbb{R}$

(b)
$$e^x > \frac{x^2}{2}, \ \forall x \ge 0$$

Nos exercícios 11. a 13. localize os pontos onde ocorrem os extremos absolutos das funções nos intervalos dados.

11.
$$f(x) = x^3 - 3x^2, x \in [-1, 3]$$

13.
$$f(x) = \frac{x^5}{5} - \frac{x^3}{3} + 2, \ x \in [-2, 2]$$

- 12. $f(x) = 2\cos x + \sin 2x, x \in [0, 4\pi]$
- 14. Mostre que $f(x) = \frac{\ln x}{x}$ tem máximo absoluto em x = e. Conclua que $\pi^e < e^{\pi}$.
- 15. Ache a inclinação máxima da curva $y = x^3 3x + 3$ no intervalo $\left[-\frac{3}{2}, \frac{5}{2} \right]$.
- 16. Mostre que $p(x) = x^3 3x^2 + 6$ tem exatamente uma raiz real e localize-a em um intervalo de amplitude máxima 1.
- 17. Mostre que $f(x) = x^2 x \operatorname{sen} x \cos x$ tem <u>exatamente duas</u> raízes reais e localize-as em intervalos de amplitude máxima $\pi/2$.

18. Prove que para todo x > 0 vale a seguinte desigualdade: $x + \frac{1}{x} \ge 2$.

(Sugestão: estude o crescimento da expressão do lado esquerdo e determine o mínimo absoluto dessa expressão no intervalo dado).

19. A concentração C de certa substância química no fluxo sangüínio em t horas após ter sido injetado no músculo é dada por $C=\frac{3t}{54+t^3}$. Em que instante a concentração é máxima? Qual é a concetração máxima?

RESPOSTAS

- 1. (a) $\arctan x = x \frac{1}{3}x^3 + \frac{1}{5}x^5 \frac{1}{7}x^7$ (b) $\arctan(0,3) \cong 0,291454757 \quad \text{erro} \leq 10^{-4}$ (c) $\arctan x^2 = x^2 \frac{1}{3}x^6 + \frac{1}{5}x^{10} \frac{1}{7}x^{14}$
- 2. Primeiro vamos provar duas afirmações gerais sobre funções:
 - (i) F é par $\Longrightarrow F'$ é impar. De fato, se F é par então F(-x) = F(x), derivando os dois lados dessa equação, obtemos $F'(-x) \cdot (-1) = F'(x)$, ou ainda F'(-x) = -F'(x), que significa que F' é impar.
 - (ii) F é impar $\Longrightarrow F'$ é par. De fato, se F é impar então F(-x) = -F(x), derivando os dois lados dessa equação, obtemos $F'(-x) \cdot (-1) = -F'(x)$, ou ainda F'(-x) = F'(x), que significa que F' é par.

Agora, considere o polinômio de Taylor $P_n(f(x)) = f(0) + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n.$

De (i) e (ii) temos f par $\Longrightarrow f'$ ímpar $\Longrightarrow f''$ par $\Longrightarrow f'''$ ímpar $\Longrightarrow \cdots \Longrightarrow f^{(2k)}$ par $\Longrightarrow f^{(2k+1)}$ ímpar. Assim, quando f é par, todas as derivadas de ordem ímpar é uma função ímpar, isto é, $f^{2k+1}(-x) = -f^{2k+1}(x)$. Quando x=0, obtemos $f^{2k+1}(0) = -f^{2k+1}(0)$. Mas o único número igual ao seu simétrico é o número zero, logo $f^{2k+1}(0) = 0$, isto é, todos os termos de ordem ímpar do polinômio de Taylor são nulos. Concluímos que o polinômio de Taylor só terá termos de ordem par.

- 3. Crescente em $(-\infty,0) \cup (\sqrt[3]{6},\infty)$, decrescente em $(0,\sqrt[3]{6})$.
- 4. Crescente em $\left(-\frac{1}{2},2\right)$, decrescente em $\left(-\infty,-\frac{1}{2}\right)\cup(2,\infty)$.
- 5. Crescente em $(-\infty,0) \cup (2,\infty)$, decrescente em $(0,1) \cup (1,2)$.
- 6. Primeiro vamos mostrar que f(x) > 0, $\forall x > 0$.
 - (i) $f'(x) = \frac{x^2}{1+x^2} > 0$, $\forall x \neq 0 \Longrightarrow f$ é crescente em $(-\infty, 0) \cup (0, \infty)$;
 - (ii) A função f é contínua em $\mathbb R$ pois f é diferenciável em $\mathbb R$.

Por (i) e (ii) concluímos: f é crescente em $(0, \infty)$ e contínua em $[0, \infty) \Longrightarrow f(x) > f(0), \forall x > 0$.

Finalmente, como por hipótese f(0) = 0, concluímos que f(x) > 0, $\forall x > 0$.

Agora vamos mostrar que f(x) < x, $\forall x > 0$. Mas f(x) < x, $\forall x > 0 \iff x - f(x) > 0$, $\forall x > 0$. Considerando F(x) = x - f(x) temos que provar que F(x) > 0, $\forall x > 0$. Provando:

- (i) $F'(x) = 1 \frac{x^2}{1 + x^2} = \frac{1}{1 + x^2} > 0$, $x \neq 0 \Longrightarrow f$ é crescente em $(-\infty, 0) \cup (0, \infty)$;
- (ii) A função F é contínua em $\mathbb R$ pois é a diferença de funções contínuas em $\mathbb R$

Por (i) e (ii) concluímos: F é crescente em $(0,\infty)$ e contínua em $[0,\infty) \Longrightarrow F(x) > F(0), \forall x > 0$.

Como F(0) = 0 - f(0) = 0, concluímos que F(x) > 0, $\forall x > 0$.

7. Para $x \ge \frac{\pi}{2}$. Como $1 < \frac{\pi}{2}$ e sen $x \le 1$, temos que sen $x \le 1 < \frac{\pi}{2} \le x$. Logo sen x < x.

Para $0 < x < \frac{\pi}{2}$. Como sen $x < x \iff x - \sin x > 0$, considere $F(x) = x - \sin x$.

Como F é a soma de funções contínuas em \mathbb{R} , concluímos que F é contínua em \mathbb{R} . (*)

 $F'(x) = 1 - \cos x$ e sabemos que $\cos x < 1$, $\forall x \in \left(0, \frac{\pi}{2}\right)$. Logo $F'(x) = 1 - \cos x > 0 \ \forall x \in \left(0, \frac{\pi}{2}\right)$.

Assim concluímos que F é crescente em $\left(0, \frac{\pi}{2}\right)$. (**)

Pelas conclusões (*) e (**), temos que $F(x) = x - \sin x > F(0) = 0, \ \forall x \in \left(0, \frac{\pi}{2}\right)$.

- 8. Como $\forall x>0$, $\cos x>1-\frac{x^2}{2}\Longleftrightarrow \forall x>0$, $(\cos x)-1+\frac{x^2}{2}>0$, considere $F(x)=(\cos x)-1+\frac{x^2}{2}$. Como F(0)=1-1+0=0, se provarmos que (i) F é contínua em $[0,\infty)$ e (ii) F é crescente em $(0,\infty)$ concluíremos que F(x)>F(0)=0, $\forall x>0$. Provando (i) e (ii):
 - (i) F é contínua em $\mathbb R$ pois é a soma, diferença e quociente de funções contínuas em $\mathbb R$.
 - (ii) Para provar que F é crescente em $(0, \infty)$ basta provar que F'(x) > 0, $\forall x > 0$. Mas $F'(x) = -\sin x + x$. Logo basta provar que $-\sin x + x > 0$, $\forall x > 0$, isto é, $\sin x < x$, $\forall x > 0$, já provado no exercício 5. Agora, seguindo a sugestão, $x < 0 \Rightarrow -x > 0 \Rightarrow F(-x) > 0$ (provado acima). Mas $F(-x) = (\cos(-x)) 1 + \frac{(-x)^2}{2} = F(x)$. Logo $\forall x < 0$, F(x) = F(-x) > 0.
- 9. Considere $G(x) = (\sec x) x + \frac{x^3}{6}$. Temos $G'(x) = (\cos x) 1 + \frac{x^2}{2}$. Esta é a função F do exercício 6. e já provamos que $(\cos x) 1 + \frac{x^2}{2} > 0$, $\forall x > 0$. Assim, concluímos que G é crescente em $(0, \infty)$. (*) Como G é a soma de funções contínuas em \mathbb{R} , concluímos que G é contínua em \mathbb{R} . (**) Pelas conclusões (*) e (**), temos que $G(x) = (\sec x) x + \frac{x^3}{6} > G(0) = 0$, $\forall x > 0$.
- 10. (a) Vamos analisar cada possibilidade.
 - (i) Supondo x < 0. Sabemos que $e^x > 0$, $\forall x$, em particular quando x < 0 temos que $e^x > 0 > x$.
 - (ii) Supondo $x \ge 0$. Para x = 0, $e^0 = 1 > 0$. Considere a função $f(x) = e^x x$, contínua em $[0, \infty)$. Derivando, $f'(x) = e^x 1$. Mas $x > 0 \Rightarrow e^x > 1 \Rightarrow f'(x) > 0 \Rightarrow f$ é estritamente crescente em $[0, \infty)$ $\Rightarrow f(x) > f(0) = e^0 0 = 1 > 0 \Rightarrow f(x) = e^x x > 0 \Rightarrow e^x > x$.
 - (b) Considere a função $f(x) = e^x \frac{x^2}{2}$, contínua em $[0, \infty)$. Derivando $f'(x) = e^x x$. Foi mostrado no item anterior que $e^x > x$, $\forall x$, logo f'(x) > 0. Mas $f'(x) > 0 \Rightarrow f$ é estritamente crescente em $[0, \infty) \Rightarrow f(x) > f(0) = e^0 0 = 1 > 0 \Rightarrow f(x) = e^x \frac{x^2}{2} > 0 \Rightarrow e^x > \frac{x^2}{2}$.
- 11. A função polinomial $f(x) = x^3 3x^2$ é contínua no intervalo fechado e limitado [-1,3], logo f satisfaz as hipóteses do Teorema dos Valores Extremos (é o teorema de Weierstrass). Aplicando esse teorema, comparamos os valores f(-1) e f(3) com os valores de f nos pontos críticos que estão no interior de [-1,3]. Concluímos que: mín f = f(-1) = f(2) = -4 e máx f = f(0) = f(3) = 0.
- 12. A função $f(x)=2\cos x+\sin 2x$ é contínua em $\mathbb R$ pois é a soma de produto e composta de funções contínuas em $\mathbb R$, logo f é contínua no intervalo fechado e limitado $[0,4\pi]$. Assim, pelo Teorema de Weierstrass, comparamos os valores f(0) e $f(4\pi)$ com os valores de f nos pontos críticos que estão em $(0,4\pi)$. Concluímos: mín $f=f(5\pi/6)=(17\pi/6)=-3\sqrt{3}/2$ e máx $f=f(\pi/6)=(13\pi/6)=3\sqrt{3}/2$.
- 13. A função polinomial $f(x) = \frac{x^5}{5} \frac{x^3}{3} + 2$ é contínua no intervalo fechado e limitado [-2,2]. Assim, pelo Teorema dos Valores Extremos, comparamos os valores f(-2) e f(2) com os valores de f nos pontos críticos que estão em (-2,2). Concluímos: mín $f = f(-2) = -\frac{26}{15}$ e máx $f = f(2) = \frac{86}{15}$.
- 14. Domínio de $f = (0, \infty)$. Derivando, $f'(x) = \frac{1 \ln x}{x^2}$. Analisando o sinal de f'(x), temos f'(x) > 0 quando 0 < x < e; f'(x) < 0 quando $x > e \Rightarrow f$ é crescente quando 0 < x < e; f é decrescente quando x > e. Logo f tem um máximo relativo no único ponto crítico x = e. Como f é contínua em x = e, concluímos que f tem um máximo absoluto em x = e.

Provando a desigualdade: f tem máximo absoluto em $x=e\Rightarrow f(\pi)< f(e)=\frac{\ln e}{e}=\frac{1}{e}\Rightarrow f(\pi)=\frac{\ln \pi}{\pi}<\frac{1}{e}$. Como e>0 e $\pi>0$, temos: $e\ln \pi<\pi$. Aplicando a propriedade de logaritmo de potência, temos $e\ln \pi=\ln \pi^e$, logo $\ln \pi^e<\pi$. Sabemos que a função exponencial é estritamente crescente, logo $e^{\ln \pi^e}< e^{\pi}$. Sabemos que $e^{\ln x}=x, \forall x>0$, em particular $e^{\ln \pi^e}=\pi^e$. Logo, $\pi^e< e^{\pi}$.

- 15. Máx f' = f'(5/2) = 63/4.
- 16. Estudando o crescimento de f e aplicando o Teorema do Valor Intermediário, conclui-se que a única raiz está em (-2, -1).
- 17. Idem anterior, uma raiz está em $(-\pi/2, 0)$ e a outra em $(0, \pi/2)$.
- 18. No intervalo $(0,\infty)$, o mínimo absoluto de $f(x)=x+\frac{1}{x}$ é igual a f(1)=2. Logo $f(x)\geq f(1)=2$.
- 19. No instante t=3. A concentração máxima é $\frac{1}{9}=0,1111...=0,\overline{1}.$