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A NEW MODEL FOR THE THETA DIVISOR OF THE CUBIC THREEFOLD

MICHELA ARTEBANI, REMKE KLOOSTERMAN, AND MARCO PACINI

Abstract. In this paper we give a birational model for the theta divisor of the intermediate
Jacobian of a generic cubic threefold X. We use the standard realization of X as a conic bundle
and a 4−dimensional family of plane quartics which are totally tangent to the discriminant
quintic curve of such a conic bundle structure. The additional data of an even theta characteristic
on the curves in the family gives us a model for the theta divisor.

1. Introduction

Most of the notions mentioned in this introduction are defined in Sections 2 (curves), 3 (surfaces)
and 6 (threefolds).

In this paper we give a new birational model for the theta divisor of the intermediate Jacobian
of a generic cubic threefold X . In [10, Section 4] a birational model for the theta divisor is given
in terms of linear systems of skew cubics on hyperplane sections of X . We give a model in terms
of even theta characteristics on plane quartics.

Consider the triple (S, p,D), with S a smooth cubic surface, p a point on S, not on any line of
S and D a double six on S. We can associate to such a triple a smooth plane quartic C together
with a bitangent b and an Aronhold set A containing b. Moreover, we can recover (S, p,D) from
the triple (C, b,A). This observation is the main ingredient of our construction.

We try to extend this correspondence as far as possible. The notion of double six can be gener-
alized for a (singular) cubic surface with at most isolated ADE singularities. If S has an elliptic
singularity, contains a double line or is reducible, then it seems harder to define degenerations of
double sixes. In some of these cases the possible limit position of the twelve lines giving a double
six seems to depend on the degenerating family, hence an intrinsic definition of double six would
be impossible.

On the side of plane quartic curves, we need to generalize the notion of bitangent and Aronhold
set. The former can be easily defined, while the latter is harder to generalize. Contrary to the
smooth case, we need to form generalized Aronhold sets using both generalized bitangents and
some components of a curve C̃ associated to C. This is enough to give a correspondence between
generalized Aronhold sets and generalized double sixes. We show that if C is a stable curve, then
our generalization coincides with that given by Cornalba in [12, Section 2].

Let X ⊂ P4 be a generic cubic threefold and ℓ ⊂ X be a generic line. Let π̃ℓ : X̃ → P2

be the resolution of the projection from ℓ. The discriminant curve of the conic bundle π̃ℓ is a
smooth plane quintic Q. If E is the exceptional divisor of X̃ → X, then π̃ℓ|E is a finite covering
of P2 branched over a smooth conic T. Moreover T · Q = 2t so that θ := OQ(t) is an odd theta

characteristic. The line bundle θ(−1) defines a non-split étale double covering Q̃ → Q such that

Q̃ parameterizes the irreducible component of the fibers of π̃ℓ over Q.
Our model for the theta divisor is given by the following:
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Theorem 1.1. Let W be the set of quartic curves C such that dC = 1
2 (Q · C) ∼ θ(1) and C has

at most ADE singularities. Denote with W 0 the locus of smooth quartics in W .
If C ∈ W 0 consider the odd theta characteristic θC = 3KC − dC with associated bitangent bC .

Let B0 = {(C, bC) | C ∈W 0} and B its closure in W ×P2∗.
Then

VX,ℓ = {(C, bC , A) | (C, bC) ∈ B, A generalized even theta characteristic on (C, bC)}

is a birational model for Θ/〈−1〉, the theta divisor of the intermediate Jacobian of X modulo −1.

The paper is organized as follows:
In Section 2 we give some further generalizations of theta characteristics given by Cornalba.
In Section 3 we discuss some basic properties of Del Pezzo surfaces.
In Section 4 we discuss the correspondence between pairs (S,Π) with S a cubic hypersurface

in Pn and Π ⊂ C such that Π ∼= Pn−3 and pairs (Q, θ) with Q a curve of degree n+ 1 and θ an
odd theta characteristic.

In Section 5 we give generalizations of odd and even theta characteristics. We use the properties
mentioned in Sections 2 to 4 to show that our definition coincides with the definition of spin
structure (from Section 2) in the case of a stable quartic curve. Moreover, we prove the existence
of a correspondence between blow-down linear systems on an associated (nodal) Del Pezzo surface
and generalized Aronhold sets.

In Section 6 we compare the model of the theta divisor given by Clemens with our model.
In Section 7 we describe the new model and give some consequences.
In Section 8 we give a connection between the new model and the stable reduction of curves.

2. Spin curves

In this section we discuss degenerations of pairs (C, θ) with C a smooth curve of genus g and
θ a theta characteristic, using the concept of spin curve. Cornalba introduced the notion of spin
curve and constructed a moduli space Sg of stable spin curves (see [12]) with a natural morphism

πg : Sg →Mg of degree 22g.
First, we recall the definition of theta characteristic.

Definition 2.1. Let C be a smooth curve of genus g. Let θ be a line bundle on C. Then θ is
called a theta characteristic if θ ⊗ θ ∼ KC . A theta characteristic θ is called odd (resp. even ) if
h0(C, θ) is odd (resp. even).

It is a classical result that a smooth curve of genus g has 22g theta characteristics, of which
N−

g := 2g−1(2g − 1) are odd and N+
g := 2g−1(2g + 1) are even.

Definition 2.2. A semi-stable curve is a reduced, connected curve with only ordinary double
points as singular points such that every smooth rational component contains at least 2 nodes.

A stable curve is a semi-stable curve such that every smooth rational component contains at
least 3 nodes.

Let C be a semi-stable curve and E an irreducible component of C. Then E is called an
exceptional component of C if E is smooth and rational, such that #(C − E ∩ E) = 2.

A quasi-stable curve is a semi-stable curve such that any pair of distinct exceptional components
is disjoint.

Remark 2.3. If C is a quasi-stable curve then the stable model of C is obtained by contracting
every exceptional component. In particular, its stable model is unique.

We recall the definition of stable spin curve and explain how to calculate the scheme-structure
of the fiber of πg over the points in Mg −Mg. For the latter part we follow [6, Section 1.3], to
which we refer for the proofs.

Definition 2.4. A stable spin curve is a pair (Y, θ) with Y a quasi-stable curve (called the support
of the spin curve) and θ a line bundle on Y such that

(1) the restriction of θ to each exceptional component E is OE(1);
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(2) if we denote Z := Y − ∪E, where we take the union over all exceptional components, then

(θ|Z)⊗2 ≃ ωZ ,

where ωZ is the dualizing sheaf.

A stable spin curve is called even (resp. odd) if h0(Y, θ) is even (resp. odd).
Let C be a stable curve of arithmetic genus g. Let Sg be the moduli space of stable spin curves.

The scheme of spin structures on C is the scheme-theoretical fiber of πg over [C] ∈ Mg and is
denoted by SC . Denote with S+

C (resp. S−
C ) the scheme of even (resp. odd) spin structures on C.

Cornalba ([12, Lemma 6.3]) showed that Sg has two disjoint irreducible components S
+

g and

S
−

g corresponding to even and odd spin curves.
Fix a stable curve C. We characterize all quasi-stable curves appearing as supports in SC . Let

ν : Cν → C be the normalization map, B ⊂ C an irreducible component and Bν the corresponding
component in Cν . For every subset ∆ ⊂ Csing of nodes, set DB := ν−1(∆ ∩B). Note that DB is
a divisor on Bν .

Definition 2.5. We say that ∆ is even if degDB is even for every irreducible component B of C.

Notation 2.6. Let C be a reduced nodal curve. We denote with ΓC the dual graph of C, that is
the graph whose vertices are the irreducible components of C and whose edges are the nodes. An
edge connects two vertices if and only if the two corresponding irreducible components intersect
in the corresponding node. If Γ is a graph we denote with b1(Γ) the first Betti number of Γ, that
is

b1(Γ) = #{ edges } −#{ vertices }+ #{ connected components }.

Moreover, if C is smooth and irreducible then we denote with pg(C) its geometric genus.

The set of all quasi-stable curves Y having C as stable model is in bijection with the set of
subsets of nodes of C. To such a Y we can associate in a unique way the set ∆Y ⊂ Csing of nodes
corresponding to the nodes of Y not contained in an exceptional component. Conversely, for every
∆ ⊂ Csing there is a unique quasi-stable curve Y with stable model C and ∆Y = ∆.

Proposition 2.7. A quasi-stable curve Y is the support of a spin curve in SC if and only if ∆Y

is even. The number of even subsets of nodes of C is 2b1(ΓC).

This is proven in [12]. Fix a quasi-stable curve Y which is the support of a spin curve in SC

with ∆Y = ∆. Denote with ν : Y ν → Y the normalization map.
First we describe which line bundles η on Y ν are the pullback of a line bundle θ on Y such that

(Y, θ) is a spin curve. These η are characterized by the following properties:

(1)’ For every component E of Y ν such that ν(E) is an exceptional component of Y we have
η|E = OE(1).

(2)’ For every non-exceptional component B of Y we have (θν |Bν )⊗2 = KBν ⊗O(DB).

From this we deduce that the number of choices for η is 22
∑

pg(B) where B runs through all the
irreducible components of Y . Let Z as in (2). If we fix η then the set of all θ on Y satisfying
relations (1) and (2) and ν∗θ = η can be calculated using the exact sequence

1→ (C∗)b1(ΓZ) → Pic(Z)→ Pic(Zν)→ 0.

On every node of Z there are two compatible gluings, hence we have 2b1(ΓZ) of such line bundles.
The multiplicity of θ as a point in SC is 2b1(ΓC)−b1(ΓZ) (see [12, Section 5]).

Proposition 2.8. Let C be an irreducible curve of arithmetic genus g. Suppose C has n nodes.
Then there are exactly

(

n
k

)

22g−n−k

points in SC of multiplicity 2k. If k < n then half of them are odd and half of them are even. If
k = n then N−

g−n of them are odd and N+
g−n are even.
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Proof. Since b1(ΓC) = n, there are 2n quasi-stable curves which occur as the support of a spin
curve in SC . Denote by Y a resolution of k nodes. Then there are 22g−2n line bundles on Y ν

satisfying (1)′ and (2)′. There are 2n−k gluing conditions, hence there are 22(g−n)+(n−k) points
in SC with support Y . The multiplicity of (Y, θ) in SC equals 2k. If k < n then half of the
theta characteristics are odd and half of them are even (see for example [17, Corollary 2.7]). If
k = n then the component Z in the support of the spin curve is the normalization of C. The
number of odd (resp. even) spin structures with support Y equals the number of odd (resp. even)
theta characteristics on Z. Note that Z has N−

g−n odd and N+
g−n even theta characteristics. The

multiplicity of such a spin curve (Y, θ) in SC is 2n. There are exactly

(

n
k

)

sets of k nodes,

which gives the proposition. �

Example 2.9. If g = 3 then we have the following results:

smooth one node two nodes three nodes
multiplicity 1 even 36 16 8 4
multiplicity 1 odd 28 16 8 4
multiplicity 2 even − 10 8 6
multiplicity 2 odd − 6 8 6
multiplicity 4 even − − 3 3
multiplicity 4 odd − − 1 3
multiplicity 8 even − − − 1
multiplicity 8 odd − − − 0

3. Del Pezzo surfaces

In the sequel we construct several cubic surfaces and double covers of P2 ramified along a
reduced quartic. The former are Del Pezzo surfaces of degree 3, the latter of degree 2. These
surfaces are the blow-up of P2 in 6, resp. 7 points. In this section we list some properties of
Del Pezzo surfaces and discuss degenerations of Del Pezzo surfaces of degree 2 and 3. Let S be a
smooth Del Pezzo surface of degree d ∈ {2, 3}. This means that S is the blow-up of P2 in 9 − d
distinct points P1, . . . P9−d, such that no three of them lie on a line, and no six lie on a conic. The
(9 − d)-uple (P1, . . . P9−d), (or, equivalently, the corresponding 9 − d exceptional curves on S) is
called a marking of S.

Notation 3.1. To mark the Picard group of S we define the following divisors.

• Let L be the pre-image of a line in P2 not passing through the Pi.
• Let Ei be the exceptional divisor corresponding to Pi.
• Let Li,j, i ≤ j be the strict transform of the line connecting Pi and Pj . In Pic(S) we have
Li,j = L− Ei − Ej .
• If d = 3 then let Ci be the strict transform of the conic passing through all the Pk except
Pi. In Pic(S) we have Ci = 2L−

∑6
t=1Et + Ei.

• If d = 2 then let Ci,j be the strict transform of the conic passing through all the Pk except

for Pi and Pj . In Pic(S) we have Ci,j = 2L−
∑7

t=1Et + Ei + Ej .
• If d = 2 then let Di be the strict transform of the cubic passing through P1, . . . , P7 with

a double point in Pi. In Pic(S) we have Di = 3L−
∑7

t=1Et − 2Ei.

Remark 3.2. Except for L all the above listed divisors have self-intersection −1.

Remark 3.3. If d = 2 there are 56 smooth rational curves D with D2 = −1, we call such a curve
an exceptional line. The morphism π : S → |−KS | ∼= P2 is of degree 2 and the ramification locus
of π is a quartic curve C(S). The 56 lines of D are the irreducible components of the pre-images of
the 28 bitangents of C. The covering involution σ associated to π is called the Geiser involution.

We have σ(Ei) = Di, σ(Ck,l) = Lk,l and σ(L) = 8L − 3
∑7

t=1Et (see [13, Section VII.4], [16,
Section 7]).

Notation 3.4. Suppose d = 2. Let C = C(S) ⊂ P2 be the quartic curve from Remark 3.3. Let
D be a line on S. Then we denote by bD the bitangent corresponding to D, i.e., bD = π(D).
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Remark 3.5. If d = 3 then there are 27 smooth rational curves D with D2 = −1. They are
precisely the 27 lines on the cubic surface S ⊂ | − KS | ∼= P3. Let p be a point on S, not on
any of the 27 lines. Consider the projection πp of S with center p. Resolving this map gives a

morphism π from S̃ to P2 where S̃ is the blow up of S in p. The morphism π coincides with the
anti-canonical map, hence is ramified along a quartic curve C(S, p) = C(S̃). The 28 bitangents of

C(S̃) are the image of the 27 lines of S under πp, plus the images of the exceptional divisor of the
blow-up in p.

Proposition 3.6. If d = 3 then there are exactly 72 ways of obtaining S as the blow-up of six
points in P2. Below we list the 72 associated linear systems |D|, together with the 6 curves with
self-intersection −1 which are blown down by |D|.

L {E1, E2, E3, E4, E5, E6}
2L− El − Em − En {Ei, Ej , Ek, Ll,m, Lm,n, Ll,n}

3L−
∑6

t=1 Et + Ei − Ej {Ei, Ci, Lj,k, Lj,l, Lj,m, Lj,n}

4L−
∑6

t=1 Et − El − Em − En {Ci, Cj , Ck, Ll,m, Lm,n, Ll,n}

5L− 2
∑6

t=1Et {C1, C2, C3, C4, C5, C6}

In all cases i, j, k, l,m, n are such that #{i, j, k, l,m, n} = 6.

Proof. See for example [15, page 485]. �

Definition 3.7. If d = 3 then a double six on S is a six-uple of pairs of lines on S

((D1, D
′
1), . . . , (D6, D

′
6))

such that Di.Dj = D′
i.D

′
j = 0, Di.D

′
j = 1 for i 6= j and Di.D

′
i = 0.

Using Proposition 3.6 one can show that up to permutation there are 36 double sixes.

Proposition 3.8. If d = 2 then there are exactly 576 ways of obtaining S as the blow-up of seven
points on P2:

L {E1, E2, E3, E4, E5, E6, E7}
2L− Em − En − Ep {Ei, Ej , Ek, El, Lm,n, Ln,p, Lm,p}

3L−
∑7

t=1 Et + Ei + Ej − Ek {Ei, Ej , Ci,j , Lk,l, Lk,m, Lk,n, Lk,p}

4L−
∑7

t=1 Et + Ei − Em − En − Ep {Ei, Ci,j , Ci,k, Ci,l, Lm,n, Ln,p, Lm,p}

5L− 2
∑7

t=1Et + 2Ei {Ei, Ci,j , Ci,k, Ci,l, Ci,m, Ci,n, Ci,p}

8L− 3
∑7

t=1Et {D1, D2, D3, D4, D5, D6, D7}

7L− 2
∑7

t=1Et − Em − En − Ep {Di, Dj , Dk, Dl, Cm,n, Cn,p, Cm,p}

6L− 2
∑7

t=1Et − Ei − Ej + Ek {Di, Dj , Li,j , Ck,l, Ck,m, Ck,n, Ck,p}

5L−
∑7

t=1 Et − 2Ei − Ej − Ek − El {Di, Li,j , Li,k, Li,l, Cm,n, Cn,p, Cm,p}

4L−
∑7

t=1 Et − 2Ei {Di, Li,j , Li,k, Li,l, Li,m, Li,n, Li,p}

In all cases i, j, k, l,m, n, p are such that #{i, j, k, l,m, n, p} = 7.

Proof. The order of the Weyl group W (E7) equals the number of ordered 7-uples of points in
P2 (up to automorphisms of P2) giving the same Del Pezzo surface (cf. [13, Theorem 3, VI]).
Since #W (E7) = 576#S7 there are 576 markings up to permutation of the 7 points in P2. One
can easily show that all the above listed systems give different markings and that their number is
576. �

Remark 3.9. The horizontal line divides the linear systems mentioned in Proposition 3.8 in two
groups. The upper half are those coming from the following construction: let Y be the blow-up
of P2 at 6 points out of the 7 points Pi. List all the linear systems that give a blow-down model
Y → P2. Take then the blow-up of the 7th point, to obtain a blow-down model S → P2. The
lower half is obtained by applying the Geiser involution (see Remark 3.3) to the upper half of the
list.

The first 288 items in the list of 7-uples of divisors give rise to 288 sets of 7 bitangents. These
are precisely the 288 Aronhold sets associated to C(S). Each Aronhold set determines an even
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theta characteristic by mapping {D1, . . . , D7} to
∑

bDi
− 3K. Each even theta characteristic can

be obtained from 8 different 7-uples of divisors. Fix a divisor D0 and consider all linear systems
|D| in Proposition 3.8 containing D0, then we find 72 linear systems. These 72 linear systems are
divided up in 36 pairs, such that each pair corresponds to an even theta characteristic. Consider
the cubic surface Y ′ obtained by blowing down D0. Then the 72 above linear systems correspond
to the 72 linear systems on the cubic surface Y ′ which give a blow-down model Y ′ → P2. The 36
pairs of linear systems correspond to the 36 double six.

Del Pezzo surfaces can be defined equivalently as nonsingular rational surfaces with ample
anti-canonical class −KS. If d > 2 then the anti-canonical linear system maps the surface iso-
morphically to a smooth surface of degree d in Pd. As mentioned before, to obtain a Del Pezzo
surface of degree d, d ≥ 1, we have to choose 9− d distinct points Pi in P2 such that no three of
them are collinear and no six of them are on a conic. Thus a parameter space for these surfaces
is an open dense subset of (P2)9−d. Taking the quotient for the action of PGL(3) gives rise to a
moduli spaceMDP (d) for marked Del Pezzo surfaces of degree d ≤ 8 (cf. [13, Theorem VI.3]).

Definition 3.10. A nodal Del Pezzo surface is a smooth surface S with almost ample (i.e., big
and nef) anti-canonical class. The degree of S is K2

S .

Nodal Del Pezzo surfaces can be obtained by taking point sets in P2 in ‘almost general’ position,
namely, point sets containing ‘infinitely near’ points, three collinear points or six points on a conic
(see [13, Sections VII.3 & VII.4] for precise conditions on point sets). A parameter space for such

surfaces is then given by an open set in the smooth variety P̂ 9−d
2 parameterizing infinitely near

point sets in P2.
The anti-canonical model of a nodal Del Pezzo surface S of degree d > 2 is a normal surface

in Pd with rational double points (coming from contracting the −2-curves on S). If d = 2 the
anti-canonical map of S can be factored as the contraction of all the −2-curves, composed with a
degree 2 morphism to P2 ramified along a (possibly singular) quartic curve.

Notation 3.11. We denote with N ⊂ Pic(S) the subgroup generated by smooth rational curves
with self-intersection −2.

Definition 3.12. Let S be a nodal Del Pezzo surface of degree d. The scheme of lines LS is the
Hilbert scheme of smooth rational curves D on S with ωS ⊗OD

∼= OP1(1). The multiplicity of D
is

#{σ ∈ Aut(NS(S)) : σ(D) ≡ D mod N}

#{σ ∈ Aut(NS(S)) : σ(D) = D}
.

The scheme of blow-down models BMS is the zero-dimensional scheme of blow-down models
|L| : S → P2. The multiplicity of |L| is

#{σ ∈ Aut(NS(S)) : σ(L) ≡ L mod N}

#{σ ∈ Aut(NS(S)) : σ(L) = L}
.

If d = 3 we can define an involution on BMS in the following way. Suppose |L| is blow-down
morphism. Then there are six rational curves contracted by L say F1 up to F6. We can form
a unique set of divisors {D1, . . . , D6}, such that the Di are reduced connected effective divisors,
Di.Dj = −δi,j and Di contains at least one component which is an exceptional line. Then
σ(L) = 5L− 2

∑

Di mod N . We define the scheme of double-six DS as BMS modulo the action
of σ.

Remark 3.13. To the knowledge of the authors, there is no place in the literature where the
schemes LS ,BMS and DS are defined. It seems to the authors that this is the most natural
definition.

If S were a classical Del Pezzo surface then Aut(NS(S)) would act transitively on all exceptional
lines in S, and if D is an exceptional line then the divisor σ(D) is an exceptional line for every
σ ∈ Aut(NS(S)). If S is nodal then there might exists σ ∈ Aut(NS(S)) such that σ(D) is not an
exceptional line, but one can show that the class σ(D) mod N contains precisely one exceptional
line. Similar reasonings can justify the definition of the other two schemes.
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To obtain a good definition of double six on a nodal Del Pezzo surface of degree 3, one needs to
describe this double six in terms of the two associated linear systems. One can construct examples
where the position of the −1 divisors modulo N does not determine the double six in the above
sense (cf. Example 5.12).

Remark 3.14. To show that DS is well-defined one has to prove that the set {D1, . . . , D6} exists
and is unique. This is an easy exercise using Dynkin diagrams.

Remark 3.15. If d = 2 then the scheme LS has length 56 and the scheme BMS has length 576.
There is a natural action of the Geiser involution on both schemes.

If d = 3 then the length of DS is 36.

4. Determinantal hypersurfaces

For an overview of this subject we refer to a recent paper of A. Beauville [5]. That paper deals
with the classical question to determine when an integral hypersurface in Pn can be written as the
zero-set of the determinant of a matrix with homogeneous entries. We are interested in a special
case, namely the symmetric determinantal representations of smooth plane curves:

Proposition 4.1 (Beauville, [5, Proposition 4.2]). Let C be a smooth plane curve of degree d,
defined by the equation F = 0. Let θ be a theta characteristic on C.

(1) If h0(θ) = 0 then there exists a minimal resolution of θ (unique up to isomorphism)

0→ OP2(−2)d M
→ OP2(−1)d → θ → 0,

where M is a symmetric matrix of linear forms and det(M) = F .
(2) If h0(θ) = 1 then there exists a minimal resolution of θ (unique up to isomorphism):

0→ OP2(−2)d−3 ⊕OP2(−3)
M
→ OP2(−1)d−3 ⊕OP2 → θ → 0,

where M is a symmetric matrix of the form










L1,1 · · ·  L1,d−3 Q1

...
...

...
L1,d−3 · · · Ld−3,d−3 Qd−3

Q1 · · · Qd−3 H











with Li,j linear forms, Qk quadratic forms, H a cubic and det(M) = F .

Conversely, the cokernel of the map defined by a matrix M of the form in (1) (resp. (2)), such that
det(M) 6= 0, gives rise to a theta characteristic on the curve given by det(M) = 0 with h0(θ) = 0
(resp. h0(θ) = 1.)

If d = 5 then the determinantal representation of C through θ can be endowed with a geometric
interpretation.

Fix a couple (Q, θ) where Q is a smooth plane quintic and θ a theta characteristic on Q with
h0(θ) = 1. The associated matrix M has the form





L1,1 L1,2 Q1

L1,2 L2,2 Q2

Q1 Q2 H



 .

Define the cubic threefold X = X(C, θ) in P4 as the zero-set of

∑

i,j∈{1,2}

uiujLij(x0, x1, x2) +

2
∑

i=1

2uiQi(x0, x1, x2) +H(x0, x1, x2),

with u1, u2, x0, x1, x2 coordinates for P4. The cubic threefold X(Q, θ) is smooth and contains the
line ℓ = {x0 = x1 = x2 = 0}.

Conversely, fix a pair (X, ℓ) with X a smooth cubic threefold and ℓ a line on it. Let πℓ be the

projection of X with center ℓ and π̃ℓ : X̃ → P2 its resolution. The fiber over a point p ∈ P2 is a
conic Cp coplanar with ℓ. Let Q(X, ℓ) ⊂ P2 be the discriminant of this fibration, i.e., the locus in
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P2 parameterizing reducible conics. The curve Q(X, ℓ) is a smooth plane quintic for general ℓ in
X (cf. [18, Lecture 2]). Consider the curve

Q̃ = {(ℓ′, p) ∈ G(2, 5)×Q(X, ℓ) | ℓ′ ∈ π−1
ℓ (p), ℓ 6= ℓ′}

then Q̃ is an unramified double cover of Q. Let ηℓ be the line bundle associated to this double
cover, then ηℓ ⊗OQ(1) is an odd theta characteristic θℓ on Q(X, ℓ) (cf. [9]). We call the couple
(Q(X, ℓ), θℓ) the discriminant curve of the pair (X, ℓ).

With notation as above, the following holds:

Proposition 4.2. The spin curve (Q, θ) is the discriminant curve of the pair (X(Q, θ), ℓ).

In fact, it can be proven that the previous constructions give a birational correspondence (up
to isomorphism on both sides):

{

Smooth quintic plane curves with
a marked odd theta characteristic θ

}

L9999K

{

Smooth cubic threefolds
with a marked line

}

.

Remark 4.3. This result can be generalized to the case of a (reduced) nodal plane quintic plus
an odd theta characteristic on its normalization (cf. [9]).

Consider a couple (Q, θ) and the corresponding matrix M as above. The conic T = {L11L22 −
L12L21 = 0} has an interesting geometric meaning:

Lemma 4.4. The conic T parameterizes plane sections P = ℓ∪Cp of X with Cp tangent to ℓ. In

fact, it is the branch curve of π̃ℓ|E where E is the exceptional divisor of the blow-up X̃ → X.
It is totally tangent to Q and the intersection divisor Q.T is the odd theta characteristic θ on

Q.

Proof. The first two assertions follows from an easy calculation. The third one is proven in [9,
Proposition 4.2]. �

Similarly, in the case of smooth quartics, we can associate to a couple (C, θ) a marked cubic
surface (X, p).

Proposition 4.5. There is a one-to-one correspondence between






Quartic plane curves
with at most isolated singularities

and a marked bitangent







←→







Irreducible cubic surfaces
with at most isolated singularities

and a marked smooth point







up to isomorphisms on both sides.

Proof. Suppose C is a quartic plane curve and b a bitangent of C. Let Y ′ be the double cover of
P2 ramified along C, let E be one of the pre-images of b in Y ′. Let S′ be the surface obtained by
contracting E, then S′ is a cubic surface. The image of E is the marked point p. (Contracting
the other exceptional divisor gives an isomorphic cubic surface.)

Suppose that S′ is a cubic surface and p ∈ S′ a point. Let π be the projection with center
p. Resolving π gives a morphism Y ′ → P2 ramified along a quartic curve with at most isolated
singularities. The marked bitangent is the image of the exceptional divisor of Y ′ → S′.

One can easily show that both constructions are each-other’s inverse. �

5. Del Pezzo surfaces and theta characteristics

In this section we generalize the notion of odd and even theta characteristic to quartic curves
with at most ADE singularities.

Notation 5.1. For the rest of the section let C be a quartic curve with at most ADE singu-
larities. Let π′ : S′ → P2 be the double cover of P2 ramified along C. Let S be the minimal
desingularization of S′. Let π : S → P2 be the composition of both maps. Let N ⊂ Pic(S) be the
subgroup generated by smooth rational curves with self-intersection −2. Let LS and BMS be the
scheme of lines on S and the scheme of blow-down models on S (see Definition 3.12).
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On a smooth plane curve of degree 4 one can describe both the odd and the even theta charac-
teristics in terms of bitangents. We prove that generalized bitangents on a stable quartic curve C
correspond in a natural way to odd spin structures on C, and that generalized Aronhold sets on
C correspond to even spin structures on C.

Definition 5.2. A generalized bitangent on C is a line ℓ ⊂ P2 such that either the intersection
multiplicity (C.ℓ)p is even at every point p ∈ C ∩ ℓ, or ℓ is a component of C.

Proposition 5.3. Suppose E is a line on S then π(E) is a generalized bitangent and the strict

transform of π′−1(b) on S consists of one or two lines. The first case occurs if and only if b is a
component of C or b connects two double points of C.

Proof. Cf. the proof of [13, Proposition IX.1]. �

Definition 5.4. Define the scheme of generalized bitangents B(C) as LS modulo the action of
the Geiser involution.

Remark 5.5. From Proposition 5.3 it follows that points of B(C) correspond to generalized
bitangents. The reason to define B(C) in this way is to obtain the right multiplicity.

Another way of defining the multiplicity of a generalized bitangent would be to define an
unramified degree 28 covering of the set of smooth quartic curves in the moduli space of GIT
semi-stable quartic curves, and compactify this. This is the approach followed in [7, Proposition
2.3.1]. It seems that taking the most natural compactification gives the same multiplicity as
defined above. This strategy has a disadvantage: it does not define a multiplicity for bitangents
on quartic curves that are not GIT semi-stable.

Proposition 5.6. Suppose C is a stable nodal plane curve of degree 4. Then there is an isomor-
phism from S−

C to B(C).

Proof. We want to define an isomorphism of schemes A : S−
C → B(C). Let C → T be a sufficiently

general 1−parameter family of quartics whose general fiber is smooth and whose fiber over o ∈ T is
C. Let S−

C and B(C) be the corresponding families of odd spin curves and bitangents. On the generic
fiber the correspondence between odd theta characteristics and bitangents is an isomorphism of
reduced zero-dimensional schemes. So we get an isomorphism ψ from S−

C to B(C), at least away

from the central fiber. As S−
C is a smooth curve (see [8, Proposition 2.2.1]), we can extend ψ

to the special fiber. Since ψ is generically an isomorphism, it suffices to show that ψ|S−

C
induces

a bijection of sets between S−
C and B(C). It is explained in [7, Section 3] how to construct this

bijection. �

It remains to generalize the notion of even spin curve. First of all, we generalize the notion of
Aronhold set.

Definition 5.7. Let C be a quartic plane curve with at most ADE singularities. A set of three
distinct generalized bitangents A = {ℓ1, ℓ2, ℓ3} is called asyzygetic if one of the following occurs:

• The intersection point of ℓi and ℓj is a singular point of C, for some i 6= j.
• The points of contact of the ℓi with C do not lie on a conic K such that all the hyperflex

lines of C, which are contained in A, are tangents of K.

We recall the definition of Aronhold set for a smooth quartic curve:

Definition 5.8. Suppose C is smooth. A set {ℓ1, . . . , ℓ7} of seven bitangents is called an Aronhold
set if for all I = {i, j, k} ⊂ {1, 2, . . . , 7} such that #I = 3 the triple {ℓi, ℓj, ℓk} is asyzygetic.

For our aims it will not suffice to define an Aronhold set in terms of generalized bitangents. If C
is smooth then there is a 2:1 correspondence between Aronhold sets on C and blow-down models
of S. The data of generalized bitangents together with a multiplicity will not always determine
uniquely a blow-down linear system up to the Geiser involution. See Example 5.12.
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Definition 5.9. The ADE-zation of C ⊂ P2 is a triple (C′, R, ψ) with R a surface, ψ : R → P2

a morphism and C′ = ψ−1(C). The morphism ψ is such that ψ−1(p) is a point if p ∈ P2\Csing

and consists of a union of smooth rational curves Ei,p if p ∈ Csing. For every p ∈ Csing the
intersection-numbers Ei,p.Ej,p, are as on [3, page 88].

The existence of the ADE-zation can be proven as follows. Let ι be the involution associated to
the double cover π′. We can lift ι to S in an unique way, call this involution σ. Then R = S/〈σ〉
is a smooth surface, let p : S → R be the induced morphism. Then the reduced scheme structure
on p∗π

∗(C) gives the ADE-zation curve C′. The morphism ψ is the unique morphism such that
ψp = π.

Definition 5.10. Let (C′, R, π) be the ADE-zation of C. An Aronhold line is a smooth rational
curve D on R that is either the strict transform of a generalized bitangent of C (which we call
type 1) or a component of C′ not contained in the strict transform of C (which we call type 2).

An (unordered) 7-uple A = D1 + · · ·+D7 of Aronhold lines is called a generalized Aronhold set
if the following conditions hold:

(1) Suppose D is an Aronhold line occurring more then once in A, then D is of type 2, occurs
exactly twice in A and eitherD2 = −2 orD2 = −1 andD is tangent at the strict transform
of C.

(2) Every connected component Γ of the dual graph of the Aronhold lines of type 2 (without
multiplicities) in A, is of type Ak, for some k > 0.

(3) For every connected component Γ of the dual graph of the Aronhold lines of type 2 in A,
we have an unique Aronhold line D ∈ A of type 1, which intersects some of the components
corresponding to the vertices of Γ. Moreover, D intersects at most one component, and
intersects it transversally.

(4) For every connected component Γ of the dual graph of the Aronhold lines of type 2 in A,
we have that the subgraph Γ2 of Aronhold lines occuring twice in A, is connected, and
either a −1-curve contained in C intersects one of the components corresponding to Γ or
one of the Aronhold lines occuring twice intersects the strict transform of C.

(5) Any three distinct Aronhold lines of type 1 in S are asyzygetic.

Remark 5.11. Suppose C is smooth, let A be a generalized Aronhold set, then A is a classical
Aronhold set.

Example 5.12. Suppose C has a singularity of type A5 and one of type A2. Let D be the strict
transform on R (the ADE-zation surface) of a bitangent passing through the singular points. Let
E1, E2, E3 be the Aronhold lines of type 2, at the singular point of type A5, (where E3 intersects
the strict transform of C) and E′

1 is the Aronhold line of type 2 over the cusp.
Then both

D + 2E1 + 2E2 + E3 + E′
1} and D + E1 + 2E2 + E3 + 2E′

1

are generalized Aronhold sets, hence D and its multiplicity do not determine the generalized
Aronhold set.

In a very similar way one can construct singular cubic surfaces Y such that one limit position
of a double-six (i.e. lines with a given multiplicity) corresponds to more than one point in DỸ ,

where Ỹ is the minimal desingularization of Y .

Proposition 5.13. Let A = {b1, . . . , bn} be a set of Aronhold lines of type 1. Then the following
are equivalent:

(1) Any triple of distinct Aronhold lines is asyzygetic.
(2) We can choose lines Li, i = 1, . . . , n on S, such that Li.Lj = 0 if i 6= j, and π(Li) = bi.

Proof. Recall the following diagram, where R is the ADE-zation surface:

S
p
→ R

↓ ց π ↓ ψ

S′ π′

→ P2

.
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We have that (2) is not satisfied if and only if π|π−1(bi∪bj∪bk) admits a section for some i, j, k
pairwise distinct. This is equivalent to π′|π′−1(bi∪bj∪bk) admits a section and none of the points

in bi ∩ bj , bj ∩ bk and bj ∩ bk are in the singular locus of C. A reasoning as in [19, Proposition
III.1.7] shows that we can find a section to π′|π′−1(bi∪bj∪bk), only when the points of contact of
the bi with C lie on a conic K such that if bi is hyperflex line then it is tangent to K. From this
we obtain the proposition. �

Proposition 5.14. Let A = b1 + · · · + b7 be an unordered 7-uple of Aronhold lines. Then the
following are equivalent:

(1) A is a generalized Aronhold set.
(2) There are 7 exceptional curves E1, . . . , E7 in S, such that we can blow down subsequently

E1, . . . , E7, if D ∈ A then at least one of the Ei is contained in π−1(D) and if D occurs
twice in A then there are i, j, i 6= j, such that π−1(D) = Ei ∪ Ej.

Proof. Suppose A is a generalized Aronhold set. Then the pre-image of an Aronhold line bi of type
1 consists of one irreducible curve Di or two irreducible curves Di,1 and Di,2, with self-intersection
−1. The fifth condition in Definition 5.10 and Proposition 5.13 imply that we can label the lines
over π−1(bi) as Di,1 and Di,2 such that Di,k and Dj,k do not intersect whenever i 6= j (if π−1(bi)
consists of one line then we take Di,1 = Di,2 = Ei and the intersection property holds also). If bi
is of type 1, we take Ei := Di,1.

Suppose bi is an Aronhold line of type 2 occuring twice in A. Then choose Ei, Ej such that
π−1(bi) = Ei ∪ Ej .

Consider now the bi which are Aronhold lines of type 2 occuring only once in A. We have a
unique way of choosing exceptional curves Ei over bi, such that each connected component of the
dual graph of the −2 curves in {E1, . . . , E7} intersects a unique line contained in {E1, . . . , E7}.
Hence we can reorder E1, . . . , E7 to obtain a blow-down morphism to P2.

Conversely, if (2) holds, then the first four conditions of Definition 5.10 are satisfied, (see for
example [3, page 88]), the fifth condition follows from Proposition 5.13. �

Corollary 5.15. Let C be a quartic curve with at most ADE singularities. Let S be the desingu-
larization of the double cover of P2 ramified along C. Then there is a 2:1 correspondence between
blow-down models S → P2 and generalized Aronhold sets.

Remark 5.16. In [16, Section 7] there is a 1:1 correspondence between blow-down models S → P2

and Aronhold sets, but in that paper the blow-down linear systems are considered up to the Geiser
involution.

Definition 5.17. Define the scheme of Aronhold sets A(C) as the quotient of BMS by the
Geiser-involution.

Let b0 be a generalized bitangent. Let E be a smooth irreducible curve on S such that π(E) = b0.
Let BMS,E be the scheme of blown-down models |L| : S → P2 such that L.E = 0. The multiplicity
of |L| equals

#{σ ∈ Aut(NS(S)) : σ(E) = E, σ(L) ≡ L mod N}

#{σ ∈ Aut(NS(S)) : σ(E) = E, σ(L) = L}
.

The scheme of Aronhold sets containing b0 is BMS,E modulo the Geiser involution and is
denoted by A(C, b0). On A(C, b0) acts the involution induced by the involution of Pic(S) fixing
the irreducible components over b0. The quotient T (C, b0) by this involution is the scheme of
generalized even theta characteristics on (C, b0).

Proposition 5.18. Let b0 be a generalized bitangent of C not passing through any of the singular
points of C. Let (X, p) be the marked cubic surface corresponding to C from Proposition 4.5. Then
there is an isomorphism from A(C, b0) to BMX .

Let X ′ be the nodal Del Pezzo surface corresponding to X. Then there is an isomorphism
between DX′ and T (C, b0). If C is stable the two schemes are both isomorphic to S+

C .

Proof. Our assumption on b0 implies that p is a smooth point on X , not on any of the lines of X .
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From Proposition 5.14 it follows that there is a 2 : 1 correspondence between blow-down linear
systems on S (which is the desingularization of X blown up in p) and generalized Aronhold sets
on C. From this we obtain a 2 : 1 correspondence between blow-down linear systems on X ′

and Aronhold sets containing b0. If X were smooth then there would be a 1 : 1 correspondence
between blow-down models on X and Aronhold sets containing b0 (see Remark 3.9). By definition
of A(C, b0) this correspondence extends to the singular case.

Suppose now that C is a stable curve. Let C → T be a (sufficiently general) 1-parameter family
of plane quartics, such that the generic fiber is smooth and the fiber over o ∈ T is C. Let S+

C be
the scheme of even spin structures on C, let T (C,B0) be the corresponding scheme of Aronhold
sets containing B0 modulo the involution. There is an isomorphism of schemes away from the
central fiber. Since S+

C is a smooth curve, it suffices to give a bijection of points on the central

fiber, to obtain an isomorphism S+
C
∼= T (C,B0).

Given a generalized Aronhold set B, we have B = {E1, . . . , En, F1, . . . , F7−n}, where the Ei

are Aronhold lines of type 1 and the Fj are (distinct) Aronhold lines of type 2. We denote with
F (Ej) the (unique) Aronhold line in B of type 1 intersecting Ej . Let θ be the line bundle on C′,
the ADE-zation curve of C, such that

θ = OC′





1

2





∑

i

Fi +
∑

j

F (Ej) + 2Ej − 6ℓ



 ∩ C′



 ,

with ℓ the strict transform of a general line in P2. Then on every exceptional component of C the
degree of θ is 0 or 1. Let Y be the curve obtained by contracting all the components of C′ such
that θ restricted to that component has degree 0. Then the push forward of θ gives a line bundle
on Y . Since (Y, L) is the limit of family of even spin structures, we obtain that (Y, L) is even.

Given a spin curve (Y, L), take a family of smooth plane quartics with even theta characteristics
with central fiber (Y, L). Associate to this an Aronhold set containing b0 (this is possible away
from the central fiber). Let D1, . . . , D7 the limit position of the bitangents in the Aronhold set.
These lines are of the form Ei (of type 1) or a sum of Aronhold lines of type 1 and type 2, with only
one of type 1. The set A consisting of the irreducible components of the Di has 7 elements. Since
being asyzygetic is an open condition, all triples of Aronhold lines of type 1 in A are asyzygetic.

Since b0 does not pass through any singular points of C we have a canonical isomorphism
BMX′ → BMS,E, where E is one of the components of the pre-image of b0. This induces an
isomorphism T (C, b0) and DX′ . �

Remark 5.19. If we drop the assumption that b0 does not pass through any singular point, then
there exists at least two distinct double-six on X giving rise to the same point in T (C, b0).

Remark 5.20. We would like to use points in either A(C) or A(C, b0) to define a line bundle on
the ADE-zation curve C′.

Fix a point θ in A(C). Fix a blow-down linear system L ∈ BMS over θ. We can find seven
distinct, effective and reduced divisors Di on S such that

• The support of Di contains exactly one line E(i), and E(i) is contracted by L.
• All the irreducible components of Di−E(i) are smooth rational curves Fj , with F 2

j = −2
and Fj .L = 0.
• The dual graph of the support of Di − E(i) is connected.
• Di.Dj = −δi,j.

The most natural line bundle to associate to θ is the intersection divisor of C′ with the sum of
the push-forwards of the Di minus 3 times a general line and this divided by two (as in the proof
of Proposition 5.18). If we choose a different blow-down linear system, corresponding to the same
Aronhold set, we obtain 7 divisors on S which differ from the Di by the Geiser involution.

Example 5.21. Consider a family of Del Pezzo surfaces of degree 2. Suppose that the generic
fiber is a smooth Del Pezzo surface and the special fiber S is a nodal Del Pezzo surface with a
unique −2-curve F .
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The linear system |−KS| is the blow-down of S onto a normal surface S′ with a node combined
with a degree 2 morphism π : S → P2. The morphism π is branched along a quartic curve C(S).
One way of obtaining such a family is to take 7 points in general position Pi in P2 and then move
P3 to a point on the line connecting P1 and P2 with P3 6= P1, P2. We consider now this case. The
Picard group of S has still rank 8 and is generated by L and the Ei. In Notation 3.1 we gave 56
divisors expressed in terms of L and the Ei. Of these divisors only 44 define irreducible divisors
on S. The reducible ones are the Li,j and Di for 1 ≤ i < j ≤ 3 and Ci,j for 4 ≤ i < j ≤ 7. They
satisfy the following relations in Pic(S):

Li,j = F + Ek, Dk = F + Ci,j for {i, j, k} = {1, 2, 3},(1)

Ci,j = F + Lk,m for {i, j, k,m} = {4, 5, 6, 7}.(2)

In total we have 56 curves on S with self-intersection −1. If we contract F then we get 12 pairs
of divisors that coincide.

The curve C(S) is a curve with one node P . If D is an effective divisor on S with D2 = −1
then D.S = 0 if and only if bD does not pass through the node P . In total there are 16 bitangents
not passing through the node, and 6 bitangents passing through the node. The latter 6 bitangents
correspond to theta characteristics with multiplicity 2.

For the even theta characteristics, we study the Aronhold sets, or, equivalently the linear
systems on S giving blow-downs S → P2, modulo the Geiser involution. We characterize the
degeneration of the linear system |D| by the intersection number F.D:

(1) Suppose F.D = 2, then |D| : S → P2 is the blow-up of seven points P1, . . . , P7 such that
P1, . . . , P6 are on a conic, no other set of six points lie on a conic, no three points are on
a line and no two points coincide.

(2) Suppose F.D = 1, then |D| : S → P2 is the blow-up of seven points P1, . . . , P7 such that
P1, P2 and P3 are collinear, no other set of three points lie on a line, no six points are on
a conic and no two points coincide.

(3) Suppose F.D = 0, then |D| : S → P2 is the blow-up of seven points P1, . . . , P7 such that
P1 and P2 are infinitesimal close, no other two points are infinitesimal close, no three
points lie on a line and no six points are on a conic.

(4) Suppose F.D = −1, then F is in the fixed part of |D|, and the movable part of |D| is a

linear system |D̃| with D̃.F = 1.

(5) Suppose F.D = −2, then F is in the fixed part of |D|. The linear system D̃ = D − 2F is
a blow-down linear system.

The frequencies of intersection numbers are given below:

Linear system |D| \ D.F 2 1 0 −1 −2
L 0 1 0 0 0
2L− Em − En − Ep 4 18 12 1 0

3L−
∑7

t=1Et + Ei + Ej − Ek 12 39 36 18 0

4L−
∑7

t=1Et + Ei − Em − En − Ep 12 40 48 36 4

5L− 2
∑7

t=1Et + 2Ei 0 3 0 4 0

8L− 3
∑7

t=1Et 0 0 0 1 0

7L− 2
∑7

t=1Et − Em − En − Ep 0 1 12 18 4

6L− 2
∑7

t=1Et − Ei − Ej + Ek 0 18 36 39 12

5L−
∑7

t=1Et − 2Ei − Ej − Ek − El 4 36 48 40 12

4L−
∑7

t=1Et − 2Ei 0 4 0 3 0
total 32 160 96 160 32

.

To each even theta characteristic we can associate 16 Aronhold sets. The linear systems with
D.F = ±1 identify all Aronhold sets on C(S) for which the associated even theta characteristic
has multiplicity 2. So 160

16 = 10 even theta characteristics have multiplicity 2.
It turns out that for every even theta characteristics with multiplicity 1 there are exactly 2

linear systems |D| with D.F = 2, there are 2 linear systems with D.F = −2 and 12 linear systems
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with D.F = 0. In total there are 256
16 = 16 even theta characteristics with multiplicity 1. The

symmetry in the above table follows from the fact that the Geiser involution sends F to −F .

Example 5.22. Consider a family of Del Pezzo surfaces of degree 3. Suppose that the generic
fiber is a smooth Del Pezzo surface and the special fiber S is a degenerate Del Pezzo surface with
two -2-curves F1, F2 intersecting transversally.

The linear system | − KS | is the blow-down of S onto a cubic surface with an A2 singularity
combined with a degree 2 morphism π branched along a quartic curve C(S) with a cusp. One
way of obtaining such a family is to take 6 points in general position Pi in P2 and then move P1

infinitely close to P2 and P3 infinitely close P2. Define E2 = F2 + E1 and E1 = F1 + F2 + E3.
Then E3 up to E6 still exists. Define E2 = F2 + E1 and E1 = F1 + F2 + E3. Then L1,k, for

k = 2 and k ≥ 4, the line Li,j for 4 ≤ i ≤ j ≤ 7 and Ck for k ≥ 3 are irreducible. The other
−1-curves satisfy the following relations

L2,k = L1,k + F1, L3,k = L1,k + F1 + F2, for k ≥ 4(3)

C2 = C3 + F2, C1 = C3 + F1 + F2(4)

L1,3 = L1,2 + F2, L2,3 = L1,2 + F1 + F2(5)

In total there are six −1 curves with multiplicity 3, and nine −1 curves with multiplicity 1. From
this we can deduce that a quartic curve with a cusp has 10 proper bitangents and six bitangents
passing through the cusp.

There are 12 linear systems with multiplicity 1, there are 18 linear systems with multiplicity
3, and one linear system L with multiplicity 6. The linear system L gives rise to the double six
(L,L). This double-six has multiplicity 3. Hence on a quartic curve with a cusp there are 6 even
theta characteristics of multiplicity 1, and 10 of multiplicity 3.

Example 5.23. Suppose S is a Del Pezzo surface of degree 2 containing 7 curves of self-intersection
−2 such that they intersect as E7. Then X contains a unique line, so C(S) has only one generalized
bitangent b, and b is the unique line intersecting C(S) with multiplicity 4. There is an unique
generalized Aronhold set A and a unique blow-down linear system.

The unique Aronhold set A has multiplicity 36 in A(C, b), and multiplicity 288 in A(C). The
fact that the multiplicity of A is different in both schemes comes from the fact that b has a
multiplicity in B(C).

6. Clemens’ model

An essential tool in the study of the geometry of the cubic threefold X ⊂ P4 is given by its
intermediate Jacobian J(X), defined as

J(X) = (H3,0 ⊕H2,1)∗/H3(X,Z).

Since H3,0(X) = 0 we have that J(X) is a principal polarized abelian variety. We denote with Θ ⊂
J(X) the theta divisor of J(X). Mumford has established a connection between the intermediate
Jacobian of cubic threefolds and Prym varieties. Given a smooth cubic threefold X and a line
ℓ ⊂ X , there is an isomorphism of principally polarized abelian varieties:

(J(X),Θ) ∼= (P(C, η),Ξ),

where (P(C, η),Ξ) is the Prym variety associated to the double cover η : C̃ → C coming from
the conic bundle induced by (X, ℓ) (see Section 4). Analogous to the case of Jacobians of smooth
projective curves, Clemens and Griffiths defined an Abel-Jacobi map (see [11, Section 4]):

A : A1(X)→ J(X),

where A1(X) is the group of algebraic 1-cycles on X homologically equivalent to zero modulo the
group generated by cycles rationally equivalent to zero. For a family {Γb}b∈B of algebraic 1-cycles
with a base point b0, denote by AB the Abel-Jacobi map base changed by the map b 7→ Γb − Γb0 .
In this section we consider the cases where B is either the Fano scheme F (X) of lines on X
or the scheme T of rational cubics on X . The maps AF (X) and AT have interesting geometric
interpretations and both lead to parameterizations of the theta divisor Θ ⊂ J(X).
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A complete description of the Abel-Jacobi map AF on the Fano scheme is due to Clemens and
Griffiths (cf. [11]). In the following, let ψ : (F × F )−∆→ P4∗ be the map:

(ℓ, ℓ′) 7→

{

span(ℓ, ℓ′) if ℓ ∩ ℓ′ = ∅
TxX if {x} = ℓ ∩ ℓ′

Let G : Θ→ P4∗ be the Gauss map, via identification of P(H1,2(X)) with P4∗ through Griffiths
residue calculus (see [14]). Let ϕ : F × F → J(X) be the difference of the Abel-Jacobi map, i.e.
ϕ(ℓ, ℓ′) = AF (ℓ)−AF (ℓ′).

Theorem 6.1 (Clemens-Griffiths [11]). We have the following

• The image of ϕ is contained in Θ and ϕ has degree 6 onto its image.
• The general fiber of ϕ is given by a double six {(l1,m1), . . . , (l6,m6)} (li pairwise skew,
mi pairwise skew, li and mj skew if and only if i = j) in a smooth hyperplane section of
X.
• On F × F −∆ we have Gϕ = ψ.
• The branch locus of G equals X ′, the dual variety of X.

A different model of the theta divisor using smooth cubic curves on X has been given by
Clemens in [10, Section 4]. Cubic curves in the family T are of two types: those contained in
a plane sections and smooth twisted cubics contained in an hyperplane. It can be easily proven
that if X ∩H is a smooth hyperplane section, then the smooth twisted cubics in H give all the
blow-down linear systems on the cubic surface X ∩H .

Theorem 6.2 (Clemens [10]). We have the following:

• The image of the Abel-Jacobi map AT : T → J(X) is the theta divisor Θ ⊂ J(X).
• The general fiber of AT consists of a linear system LH of twisted cubics in a single hy-

perplane section XH = H ∩X. In particular, this holds for hyperplane sections of X with
A1-singularities.
• The set of rational plane cubics is mapped by AT to the only singular point of Θ.

Let U be the set of hyperplane sections having at most rational double points. Let

C = {(H,LH) : H ∈ U , LH ∈ BMXH
},

with, in the case that XH is singular, we define BMXH
as BMX̃H

with X̃H the desingularization
of XH .

Corollary 6.3. The Abel-Jacobi map AT induces a birational correspondence between C and Θ.

Combining the previous results, we obtain a simple description of the Gauss map on the theta
divisor:

Proposition 6.4. There exists a birational map A : C 99K Θ such that GA = π where π : C → P4∗

is the projection on the first factor. Moreover the map A induces a birational isomorphism Ã
between

C̃ = {(H,DH) : H ∈ U , DH ∈ DXH
} 99K Θ̃ = Θ/〈−1〉.

In the following we call C̃ Clemens’ model for the theta divisor Θ. Essentially, Clemens’ model
is the blow-up of Θ at its triple point.

7. The new model

Let X be a smooth cubic threefold in P4. Assume that all isolated singularities on hyperplane
sections X ∩ H are of type ADE. Fix a line ℓ on X . Let (Q, θ) be the associated pair from
Proposition 4.2, where Q is a quintic plane curve and θ an odd theta characteristic on Q. Assume
that Q is smooth and h0(θ) = 1 (the last assertion is equivalent to θ 6∼= OP2(1)|Q). For a general
smooth cubic threefold X the above assumptions are satisfied. We identify divisors and line
bundles, whenever no confusion arises.

Let V = |θ(1)| and d ∈ V . Since

2d ∈ |θ(1)⊗2| = |OQ(4)|
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and d is effective, we have that 2d is cut out by a unique quartic Cd ⊂ P2. By varying d we obtain
a four dimensional irreducible family of quartics totally tangent to Q. Note that d is also a divisor
on Cd. If Cd is smooth, then the divisor θd := 3KCd

− d gives an (odd) theta characteristic on
Cd, call the corresponding bitangent bd. The idea is to take the family of quartics in V (possibly
singular) with all possible even theta characteristics on them.

Notation 7.1. Let U ⊂ V be the set of d ∈ V such that Cd is non-reduced. Let B0 = {(Cd, bd) |
Cd smooth} and B its closure in (V − U)×P2∗. We define:

VQ,θ := {(Cd, bd, A)|(Cd, bd) ∈ B, A ∈ T (Cd, bd)}.

Consider the natural projection

F : VQ,θ → V (Cd, bd, A) 7→ d.

Since a smooth quartic possesses 36 even theta-characteristics, F is generically 36-to-1 and hence
it is dominant. We show in Proposition 7.13 that the elements of U are conics with a double line.
In the sequel, we show that VQ,θ is a birational model for the quotient Θ̃ = Θ/〈−1〉 and the map

F is essentially the Gauss map G̃ : Θ/〈−1〉 → P4∗.

Definition 7.2. Let η := θ(−1) ∈ Jac(Q)[2]. The morphism defined by V = |KQ ⊗ η| is called
Prym canonical map associated to η:

ϕ : Q→ Q′ ⊂ |KQ ⊗ η|
∗.

We can define an isomorphism Λ∗ :| KQ ⊗ η |∗→ P4 such that {Λ∗(ϕ(x))} is the singular point of

π−1
ℓ (x) (cf. [4]).
If d ∈| KQ ⊗ η | then we denote by Hd the corresponding hyperplane in P4. We call a point in

the intersection of X ∩Q′ a vertex. We call Λ : V → P4∗ the dual Prym canonical map. Denote
Xd := X ∩ Λ(d) for d ∈ V .

Lemma 7.3. Let d ∈ V and let ℓ be a line not contained in Hd. Then the quartic Cd is the
ramification curve of the projection πd of Xd from pd = Hd ∩ ℓ.

Proof. Let Bd be the ramification curve of the projection πd. Notice that πd = πℓ|Xd
. A point

x ∈ P2 lies on the intersection Bd ∩Q if and only if the hyperplane Hd cuts the plane spanned by
ℓx and ℓ′x in a line containing the vertex v = ℓx ∩ ℓ′x, where ℓx ∪ ℓ′x = π−1

ℓ (x).

On the other hand, the support of d is given by Λ∗−1(Q′∩Hd), that is, by planes with vertexes
on Hd. Then the quartic Bd cuts the quintic Q in d. Since Cd and Bd cut out the same divisor d
on Q it follows that Bd = Cd. �

Proposition 7.4. There is a birational map B : VQ,θ → Θ̃.

Proof. It suffices to give a birational correspondence Φ between VQ,θ and Clemens’ model C̃.

The correspondence between V and P4∗ is given by Λ. Suppose Hd is a hyperplane in P4 such
that ℓ is not contained in H . Then Lemma 7.3 assures that the corresponding plane quartic Cd

is the ramification curve of the resolution of πℓ|Hd
. Moreover, if H is a generic hyperplane then

Proposition 5.18 implies that the double-six on Xd correspond to the even theta-characteristics
on Cd. This defines the birational correspondence between VQ,θ and C̃. �

Corollary 7.5. Let G̃ : Θ̃→ P4∗ be the Gauss map. Then G̃B = F .

In the following we describe the ramification divisor of the model F : VQ,θ → V for the

Gauss map G̃. Moreover, we compare it with Clemens’ model π̃ : C̃ → P4∗. We have seen
(Proposition 6.1) that the branch locus of G is given by the dual variety of X . The branch locus
of F has additional components.

Notation 7.6. Denote

Cℓ := {(H,DH) ∈ C̃ | ℓ ⊂ H} and H := {(H,DH) ∈ C̃ | H ∈ X ′}

It follows from the proof of Proposition 7.4 that we obtain a birational map

Ψ : C̃ 99K VQ,θ.
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The map Ψ is defined on an open dense subset U ′ of H. For generic (H,DH) ∈ U ′ the curve
CH is a quartic with one node q, and q does not lie on the quintic Q.

Let H1 be the closure in VQ,θ of the locus corresponding to quartics with a node not on Q. An
easy calculation shows that H1 has dimension 3.

Let H2 be the closure in ⊂ VQ,θ of the locus corresponding to quartics C with a node p ∈ Q.

Denote Π : P4∗
99K V the morphism associating to a hyperplane section H , such that ℓ 6⊂ H ,

the ramification curve of the resolution of πℓ|X∩H . We can extend the map ΠΛ to whole P4 such
that it is the identity map (see Lemma 7.3).

If (H,DH) ∈ Cℓ then Ψ is not defined at (H,DH). Since ℓ ⊂ H , the rational map πℓ|XH
is not

a projection with center in a point, hence we cannot obtain a quartic curve as branch locus.
Let Π̃ : P′ → V the morphism obtained by blowing up P4∗ along the plane parameterizing

hyperplanes containing ℓ. Denote with C̃′ = P′ ×P4∗ C̃
ν
→ C̃. Then C̃′ parameterizes triples

(H,DH , p) with p ∈ ℓ∩H . The regularized map Ψ′ : C̃′ → VQ,θ maps (H,DH , p) to the ramification
curve of the projection with center p and associates an even theta-characteristic to it. Note that
p is on a line of X ∩H , hence C(X ∩H, p) is singular.

We denote with F (X)ℓ the subvariety of the Fano surface of lines on X given by

F (X)ℓ := {ℓ̃ ∈ F (X) : ℓ ∩ ℓ̃ 6= ∅}.

Define
H′ = {(H,DH , p) ∈ C̃

′ : p ∈ ℓH with ℓH ∈ F (X), ℓH ⊂ H},

i.e., the set of hyperplane sections such that p lies on one of the lines of X contained in that
hyperplane.

Proposition 7.7. Let d ∈ V such that Xd is a smooth hyperplane section of X, the line ℓ is not
contained in Xd and the point p ∈ ℓ ∩ Xd lies on one of the 27 lines contained in Xd. Then the
quartic Cd is nodal with at most three nodes. The singularities lie on the common intersection of
Cd, the quintic Q and the bitangent bd.

The locus H2 ⊂ VQ,θ is of dimension 3.

Proof. Let X̃d be the blow-up of Xd in p. Then X̃d is a Del Pezzo surface containing at least one
and at most three disjoint −2-curves, namely the strict transforms of lines through p.

The morphism π̃p contracts the −2-curves to nodes of Cd (see Example 5.21). Consider now
the projection from X with center ℓ. Let ℓ′ be a line intersecting ℓ. All the points on ℓ′ − (ℓ′ ∩ ℓ)
are mapped to one point q′ (namely the image of the 2-plane spanned by ℓ and ℓ′). The fiber of
π̃ℓ over q′ is a reducible conic, hence q′ ∈ Q. Since ℓ′ is mapped to q′ we obtain that the node q
of C coincides with q′. The line bd parameterizes lines that are tangent at Xd in p, so q′ ∈ bd.

The locus H2 is birational to a covering of degree 36 onto the set of hyperplanes containing a
line in F (X)ℓ. Since F (X)ℓ is a curve in the Fano scheme F (X) ([18, Lecture 2.1]), it follows that
H2 is 3-dimensional. �

Remark 7.8. Suppose ℓ1, ℓ2 and ℓ3 are coplanar lines having a common intersection point p.
(Then p is called a star point or Eckardt point). If we project from p we obtain a quartic curve Cd

with three collinear nodes, hence Cd is reducible and contains the line bd. Such a d exists, because
the locus of cubic surface with a star point in {Xd}d∈V has codimension at most 1, so the locus
of cubic surfaces Xd with Xd ∩ ℓ as star point has codimension at most 3.

Lemma 7.9. Suppose H is a hyperplane such that X ∩ H has non-isolated singularities. Then
X ∩H is an irreducible cubic surface containing a double line. Resolving the projection π̃p from a
point p ∈ X ∩H not on the double line gives rise to a double cover of P2 ramified along a reduced
conic and a double line, or a triple line union with a line.

Proof. If X ∩ H is reducible then X contains a 2-plane. An easy calculation shows that then
X is singular, which contradicts our assumptions on X . Hence X ∩ H is irreducible. By the
classification of cubic surfaces it follows that the singular locus of X ∩H is a double line.

Since XH can be obtained in a family of smooth cubic surfaces, the ramification locus of π̃p is
a quartic curve C. Since the singular locus of the double cover is mapped to the singular locus
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of C, we obtain that C is non-reduced. If C were a double conic or a line with multiplicity four,
then the double cover would be reducible. So C is either the union of a conic and a double line or
the union of a line and a triple line. �

We describe what type of non-reduced quartics occur in {Cd}d∈V . Let

N := {d ∈ V : Cd is non-reduced}.

Lemma 7.10. The family V contains no d such that Cd is a double (possibly singular) conic.

Proof. Suppose d ∈ |KQ ⊗ η| is such that Cd is a double conic. This means that 2d is cut out by
the double conic, hence d is cut out by a conic, so d ∈ |OQ(2)| = |KQ|. This implies that η ∼ 0,
hence θ ∼ O(1). This cannot happen, since h0(θ) = 1. �

Let T be the conic cutting out on Q the effective divisor of θ.

Proposition 7.11. The morphism Λ maps N isomorphically to the set of hyperplanes in P4

containing the line ℓ. In fact, N = {θ + t : t ∈| O(1) |}.The quartic curves Cd with d ∈ N are the
union of the conic T and a double line.

Proof. From Lemma 7.10 it follows that d ∈ N if and only if the quartic Cd contains at least a
double line r. This means that d − (r.Q) ∼ θ is effective, d = (r.Q) + (T.Q) and Cd = 2r + T .
Thus N = θ+ | O(1) |∼= P2 and the last assertion follows.

Let I be the 2-dimensional subvariety in P4∗ of hyperplanes containing ℓ. Let H ∈ I and
Ξ := Q′ ∩ ℓ be the set of vertexes on the line ℓ. We have seen (cf. Lemma 4.4) that the conic T
parameterizes plane sections P = Cp ∪ ℓ such that the conic Cp is tangent to ℓ. Then the set Ξ
parameterizes plane sections P over T ∩Q. Let d ∈ V be such that Λ(d) = H . If the support of
d contains T ∩Q, then d ∈ θ+ | O(1) | and Cd is the union of T and a double line r. The pencil
of planes in H containing ℓ gives a line h = πℓ(H) in P2. The intersection Q∩ h is the projection
of vertexes in H\ℓ, so r = h.

Conversely, let d ∈ N such that 2d is cut out by the non-reduced quartic Cd = T + 2r. The
corresponding hyperplane Hd contains the 5 vertexes in Q′ ∩ ℓ, hence H contains ℓ. In fact, Hd is
the unique hyperplane containing ℓ and the pencil of planes corresponding to r. �

Remark 7.12. The conic T can be reducible. In this case there are d1, d2 ∈ N such that Cd1
and

Cd2
are the union of a triple line and a line.

The five points in Q ∩ T correspond to plane sections of X with a vertex on ℓ. These are the
Eckardt planes in X containing ℓ.

Proposition 7.13. There does not exist an H ∈ P4∗ such that X ∩H has non-isolated singular-
ities. Moreover, if d ∈ Im(Π) then Cd is a quartic curve with at most ADE singularities.

Proof. If X ∩H had non-isolated singularities, then by Lemma 7.9, there would be a d ∈ Im(Π)
with Cd a conic with a double line or a triple line with a line. However, by Proposition 7.11,
non-reduced quartics in V are not in the image of Π. �

Consider the diagram:

C̃′ ν
−→ C̃

Ã
−→ Θ̃

↓ Ψ′ G̃ ↓

VQ,θ
F
−→ V

Λ
−→ P4∗.

We define

X ′
F := {H ∈ P4∗ : ∃ℓ′ ∈ F (X)ℓ, ℓ

′ ⊂ H}

Proposition 7.14. The following properties hold:

(1) the branch locus of π̃ = G̃Ã is X ′ and π̃−1(X ′) = H;

(2) the map Ψ′ induces an isomorphism from C̃′\(H′) to VQ,θ\H2;
(3) the locus in V of points p such that F−1(p) has less then 36 elements is Λ−1(X ′ ∪X ′

F ).
Moreover, (ΛF)−1(X ′ ∪X ′

F ) = H1 ∪H2.



A NEW MODEL FOR THE THETA DIVISOR OF THE CUBIC THREEFOLD 19

Proof. (1) The map π̃ is regular on the open subset corresponding to nodal hyperplane sections
(see 6.2), where it is just the projection (H,DH) → H . Then the result follows from
Example 5.21.

(2) This follows from Proposition 5.18.
(3) The map VQ,θ → V is ramified over the locus of d ∈ V such that Cd is singular. These

d correspond to hyperplanes H such that either XH is singular or H contains a line in
F (X)ℓ.

�

It is natural to consider the stratification of the new model VQ,θ corresponding to the number
of nodes of the quartics. So we define VQ,θ(δ) the subset of the model whose general element has
a support curve with δ nodes. In this way we find a stratification induced in the two divisors
corresponding to singular quartics. We denote the induced strata with Hi(δ) := Hi ∩ VQ,θ(δ).

Proposition 7.15. The subset of the quartics in V which are the union of a cubic K and a
line M such that K ∩M ⊂ Q, is isomorphic to the blow-up of Q in 5 points. In particular, the
corresponding subset of H2(3) is one dimensional.

Proof. Consider a line l tangent to Q with l.Q = p + q + r + 2s. The set of cubics K passing
transversally through the points p, q, r with K + l ∈ V is parameterized by linear systems L with:

2L ∼ O(3)− p− q − r ∼ O(2) + 2s,

L+O(1)− s ∼ θ(1).

Then L ∼ θ + s. Let Q ∩ T = {p1, . . . , p5} then h0(θ + pi) = 2 with i = 1, . . . , 5.
If s ∈ Q − (Q ∩ T ) then, h0(θ − s) = 0, because θ has a unique section which is non-zero at

s, from the Riemann-Roch Theorem it follows that then h0(θ + s) = 1. With the same type of
argument it follows that h0(θ + pi) = 2 for i = 1, . . . 5.

Consider the morphism H2(3)
ϕ
→ Q defined as ϕ(l,K) = (l ∩Q)\(K ∩Q). The fiber of ϕ over s

is isomorphic to P(H0(θ+ s)). Then ϕ is the blow-up of Q in p1, . . . , p5, in particular the variety
H2(3) is 1-dimensional. �

Remark 7.16. The special interest for H2(3) lies in the fact that, as we observed in Remark 7.8,
the existence of quartics of a cubic and a line in H2 corresponds to the existence of hyperplanes
H such that the section X ∩H contains an Eckardt point p and {p} = ℓ ∩H .

As VQ,θ is a fourfold it is natural to expect that the stratum VQ,θ(4) is a zero dimensional
scheme. We count the number of elements in VQ,θ(4).

Definition 7.17. A triple θ1, θ2, θ3 of odd theta-characteristics on a smooth quintic curve Q is
called syzygetic if and only if θ1 + θ2 − θ3 is an odd theta characteristic.

Note that three odd theta characteristics are syzygetic if and only if their points of contact
with Q lie on a quartic curve. Each theta characteristic θ on Q defines a quadratic form qθ on
Jac(Q)[2]:

qθ(η) = h0(θ + η) + h0(θ) mod 2.

This quadratic form it closely related to the Weil-pairing 〈·, ·〉 on Jac(Q)[2] by the Riemann-
Mumford relation:

qθ(α + β) + qθ(α) + qθ(β) = 〈α, β〉, α, β ∈ Jac(Q)[2],

see for example [1, page 290].

Lemma 7.18. A triple of odd theta characteristics θ1, θ2, θ3 is syzygetic if and only if:

qθ1
(θ2 − θ3) = 0.

Proof. We have that qθ1
(θ2 − θ3) = 0 is equivalent to

h0(θ1 + θ2 − θ3) ≡ h
0(θ1) mod 2.

Since h0(θ1) ≡ 1 mod 2, the above is equivalent to h0(θ1 + θ2 − θ3) ≡ 1 mod 2. �
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Proposition 7.19. There are 495 curves appearing as supports of spin curves in H1(4) cor-
responding to unordered pairs of conics {C1, C2} such that (C1.Q)p + (C2.Q)p is even for all
p ∈ Q ∩ (C1 ∪ C2).

Proof. Suppose D ∈ 2 Div(Q) then we denote red(D) := 1
2D. If C is a conic everywhere tangent

to Q, then red(C ·Q) is an odd theta characteristic on Q. We are looking for all unordered couples
(C3, C4) of distinct conics such that red(C3 ·Q+ C4 ·Q) ∈ θ(1). Let θ3 and θ4 be the associated
odd theta-characteristics. Then θ3 + θ4 ∼ θ(1).

Let θ1 = θ and θ2 = O(1). We are looking for all θ3 6= θ,O(1) such that θ1, θ2, θ3 are syzygetic.
Given these three, θ4 ∼ θ1 + θ2 − θ3.

Define η = θ1−θ2. Consider Z = (q−1
θ1

(0)∩q−1
θ2

(0))\{η, 0}. From Lemma 7.18 it follows that the

elements in α ∈ Z give rise to syzygetic triple (θ1, θ2, θ2 +α), and every syzygetic triple (θ1, θ2, θ3)
gives rise to an element θ3 − θ2 ∈ Z.

We have

qθ2
(α) = qθ1

(α) + 〈α, η〉

for every α ∈ Jac(Q)[2] (cf. [19, Corollary I.3.21]).
Let α ∈ Z, then 〈α, η〉 = 0. Thus α is an element of V = (F2η)

⊥/F2η ∼= F2
10. We have also

qθ1
(η) = qθ2

(η) = 0. It can be shown that the induced quadratic forms on V coincide and give an
odd quadratic form q. The fiber q−1(0) contains 24(25 − 1) = 496 elements (see for example [16,
Section 1]). We get 2 · 495 = 990 elements in Z. To any (unordered) pair of conics correspond two
elements in Z, we get 495 pairs of conics in total. �

8. New model and stable reduction of algebraic curves

In this section we explain one consequence of the existence of our model for the theta divisor
for the stable reduction of non-reduced quartic curves.

First, we recall the stable reduction theorem, a proof can be found in [2, proof of Theorem 1.1].
In this section we denote with ∆ the disc ∆ := {t ∈ C : |t| ≤ 1}.

Theorem 8.1. Let f : C → ∆ be a flat family with Ct = f−1(t) a Deligne-Mumford stable curve
of genus g ≥ 2 for 0 6= t ∈ ∆. Then there exists a commutative diagram:

Y
ϕ
−→ C ×∆ ∆ → C

↓ f̃ ↓ f ×∆ p ↓ f

∆ = ∆
p
−→ ∆

such that

(1) the morphism p : ∆→ ∆ is given by z 7→ zk for some integer k > 0.

(2) the extension f̃ is a family of Deligne-Mumford stable curves.
(3) ϕ is an isomorphism away from the fiber over 0 ∈ ∆.

Moreover, any two extensions (f̃ , p) and (g̃, q) satisfying the above three conditions have isomorphic
fibers over 0.

Definition 8.2. The stable reduction of C0 with respect to f is the curve f̃−1(0) and denoted by
Rf (C0).

Note that the stable reduction depends on the family chosen. If the family f is not a general
smoothing of the curve C0, it is usually difficult to calculate the stable reduction.

We consider now the case of the union C0 of a conic T and a double line L.

Proposition 8.3. There exist infinitely many flat families f : C → ∆ of plane quartics whose
central fiber is f−1(0) = C0 and f−1(t) is a Deligne-Mumford stable quartic, such that Rf (C0) is
a quartic with one node and everywhere tangent to a suitable quintic Q with the node on Q.

Proof. Let Q be a smooth quintic curve Q everywhere tangent to T and satisfying the conditions
mentioned at the beginning of Section 7. The divisor 1

2 (T ·Q) gives an odd theta characteristic θ
on Q. Denote with X the corresponding cubic threefold and ℓ the line on it. Let V =| θ(1) |,Π,Λ
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as in Section 7. Note that C0 belongs to V . Let H2 be the divisor of quartics in V with a singular
point on Q.

From Proposition 7.11 follows that Λ(Ct) is a hyperplane not containing ℓ for t 6= 0 and

containing ℓ for t = 0. The family Λ(Ct), t ∈ ∆ gives a curve Σ in P4∗. Let Σ̃ be the strict

transform of Σ in P′. Let Σ0 be the intersection of Σ̃ with the exceptional divisor. Then by
Proposition 7.7, we obtain Π̃(Σ0) ∈ H2. Since Π̃Λ(Ct) = Ct, for t 6= 0, we obtain that if Π̃(Λ0) is

a Deligne-Mumford stable curve, then Rf (C0) = Π̃(Σ0).

If we vary Q and f enough then we can find families such that Π̃(Λ0) is a Deligne-Mumford

stable curve. If we vary even more, we obtain that Π̃(Λ0) is a generic element of the associated
H2, hence is a quartic curve with a node on Q. �
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