DEGREE-2 ABEL MAPS FOR NODAL CURVES

M. Pacini

Universidade Federal Fluminense-Brazil

MCA - August 2013

Notations

Notations

• A **curve** is a projective, connected, reduced variety of dimension 1 with nodal singularities over an algebraically closed field *k*.

Notations

 A curve is a projective, connected, reduced variety of dimension 1 with nodal singularities over an algebraically closed field k.

• A **regular local smoothing** of a curve C is a proper and flat morphism $f: C \to B = Spec(k[[t]])$ whose fibers are curves, where f is generically smooth, $f^{-1}(0) \simeq C$ and C is smooth.

• Let C be a smooth curve. Consider:

 $J_{\textit{C}} = \{\text{invertible sheaves of degree 0 on } \textit{C}\}/\{\textit{iso}\}.$

• Let C be a smooth curve. Consider:

 $J_C = \{\text{invertible sheaves of degree 0 on } C\}/\{\text{iso}\}.$

• Fix $d \ge 1$ and $P \in C$. The **degree**-d **Abel map** is:

• Let C be a smooth curve. Consider:

 $J_C = \{\text{invertible sheaves of degree 0 on } C\}/\{\text{iso}\}.$

• Fix $d \ge 1$ and $P \in C$. The **degree**-d **Abel map** is:

$$\alpha^d \colon C^d \longrightarrow J_C$$

sending (Q_1, \ldots, Q_d) to $\mathcal{O}_C(dP - \sum Q_i)$.

• Let C be a smooth curve. Consider:

 $J_C = \{\text{invertible sheaves of degree 0 on } C\}/\{\text{iso}\}.$

• Fix $d \ge 1$ and $P \in C$. The **degree-**d **Abel map** is:

$$\alpha^d \colon C^d \longrightarrow J_C$$

sending
$$(Q_1, \ldots, Q_d)$$
 to $\mathcal{O}_C(dP - \sum Q_i)$.

• **Goal**: construction of Abel maps when *C* is singular.

Degree-d Abel maps have been constructed for

Degree-*d* Abel maps have been constructed for

• irreducible curves and any d (Altman–Kleiman, 1980);

Degree-d Abel maps have been constructed for

- irreducible curves and any d (Altman–Kleiman, 1980);
- Gorenstein curves and d = 1 (Caporaso–Esteves, 2007 and Caporaso–Coelho–Esteves, 2008);

Degree-d Abel maps have been constructed for

- irreducible curves and any d (Altman–Kleiman, 1980);
- Gorenstein curves and d = 1 (Caporaso–Esteves, 2007 and Caporaso–Coelho–Esteves, 2008);

Goal: construction of a degree-2 Abel map for any nodal curve (with **Coelho** and **Esteves**).

Degree-d Abel maps have been constructed for

- irreducible curves and any d (Altman–Kleiman, 1980);
- Gorenstein curves and d = 1 (Caporaso–Esteves, 2007 and Caporaso–Coelho–Esteves, 2008);

Goal: construction of a degree-2 Abel map for any nodal curve (with **Coelho** and **Esteves**).

The fibers of an Abel map are complete linear systems.

Degree-d Abel maps have been constructed for

- irreducible curves and any d (Altman-Kleiman, 1980);
- Gorenstein curves and d = 1 (Caporaso–Esteves, 2007 and Caporaso–Coelho–Esteves, 2008);

Goal: construction of a degree-2 Abel map for any nodal curve (with **Coelho** and **Esteves**).

The fibers of an Abel map are complete linear systems.

Fibers of Abel maps and limit linear series.

• Let C be a nodal curve.

- Let C be a nodal curve.
- There exists a Jacobian:

 $J_C = \{\text{invertible sheaves of degree 0 on } C\}/\{\sim\}$

- Let C be a nodal curve.
- There exists a Jacobian:

$$\textit{J}_{\textit{C}} = \{\text{invertible sheaves of degree 0 on } \textit{C}\}/\{\sim\}$$

ullet In general, J_C is neither compact nor of finite type.

- Let C be a nodal curve.
- There exists a Jacobian:

```
J_C = \{ \text{invertible sheaves of degree 0 on } C \} / \{ \sim \}
```

- ullet In general, J_C is neither compact nor of finite type.
- Let P be a smooth point of C

- Let C be a nodal curve.
- There exists a Jacobian:

$$J_C = \{\text{invertible sheaves of degree 0 on } C\}/\{\sim\}$$

- In general, J_C is neither compact nor of finite type.
- Let P be a smooth point of C and I be a torsion free rank-1 sheaf on C of deg $I := \chi(I) \chi(\mathcal{O}_C) = 0$.

- Let C be a nodal curve.
- There exists a Jacobian:

$$J_C = \{ \text{invertible sheaves of degree 0 on } C \} / \{ \sim \}$$

- In general, J_C is neither compact nor of finite type.
- Let P be a smooth point of C and I be a torsion free rank-1 sheaf on C of deg $I := \chi(I) \chi(\mathcal{O}_C) = 0$.

Then *I* is *P*-quasistable, if for every subcurve $\emptyset \neq Y \subsetneq C$:

- Let C be a nodal curve.
- There exists a Jacobian:

$$J_C = \{ \text{invertible sheaves of degree 0 on } C \} / \{ \sim \}$$

- In general, J_C is neither compact nor of finite type.
- Let P be a smooth point of C and I be a torsion free rank-1 sheaf on C of deg $I := \chi(I) \chi(\mathcal{O}_C) = 0$.

Then *I* is *P*-quasistable, if for every subcurve $\emptyset \neq Y \subsetneq C$:

$$\deg(I\otimes \mathcal{O}_Y)/\mathit{Tors} \geq -\frac{\#(Y\cap \overline{C-Y})}{2}$$

and it is strict if $P \in Y$.

4 D > 4 P > 4 B > 4 B > 9 Q P

• Let $f: \mathcal{C} \to B$ be a regular local smoothing of a nodal curve, with a section $\sigma: B \to \mathcal{C}$ through the smooth locus of f.

- Let $f: \mathcal{C} \to B$ be a regular local smoothing of a nodal curve, with a section $\sigma: B \to \mathcal{C}$ through the smooth locus of f.
- (**Esteves**) there exists a proper *B*-scheme:

$$J_f^{\sigma}:=\{\sigma(b)\text{-quasistable torsion free rank-1 sheaves}$$
 of degree 0 on $f^{-1}(b), b \in B\}/\{\sim\}$.

- Let $f: \mathcal{C} \to B$ be a regular local smoothing of a nodal curve, with a section $\sigma: B \to \mathcal{C}$ through the smooth locus of f.
- (**Esteves**) there exists a proper *B*-scheme:

$$J_f^{\sigma}:=\{\sigma(b)\text{-quasistable torsion free rank-1 sheaves}$$
 of degree 0 on $f^{-1}(b), b\in B\}/\{\sim\}.$

• J_f^{σ} is a fine moduli scheme.

• a nodal curve C;

- a nodal curve C;
- $f: C \to B = Spec(\mathbb{C}[[t]])$ regular local smoothing of C;

- a nodal curve C;
- $f: C \to B = Spec(\mathbb{C}[[t]])$ regular local smoothing of C;
- a section $\sigma \colon B \to \mathcal{C}$ of f through its smooth locus;

- a nodal curve C;
- $f: C \to B = Spec(\mathbb{C}[[t]])$ regular local smoothing of C;
- a section $\sigma \colon B \to \mathcal{C}$ of f through its smooth locus;
- $\mathcal{C}^2 := \mathcal{C} \times_B \mathcal{C}$

- a nodal curve C;
- $f: C \to B = Spec(\mathbb{C}[[t]])$ regular local smoothing of C;
- a section $\sigma \colon B \to \mathcal{C}$ of f through its smooth locus;
- ullet $\mathcal{C}^2:=\mathcal{C} imes_{\mathcal{B}}\mathcal{C}$ and

$$\dot{\mathcal{C}}^2 := \{ (Q_1, Q_2) : Q_1, Q_2 \in f^{-1}(b)^{sm}, b \in B \}$$

- a nodal curve C;
- $f: C \rightarrow B = Spec(\mathbb{C}[[t]])$ regular local smoothing of C;
- a section $\sigma \colon B \to \mathcal{C}$ of f through its smooth locus;
- $\mathcal{C}^2 := \mathcal{C} \times_B \mathcal{C}$ and

$$\dot{\mathcal{C}}^2 := \{ (Q_1, Q_2) : Q_1, Q_2 \in f^{-1}(b)^{sm}, b \in B \}$$

the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

sending (Q_1,Q_2) on the generic fiber \mathcal{C}_η of f to

$$\mathcal{O}_{C_n}(2\sigma(\eta)-Q_1-Q_2)$$

Abel-Néron map

Abel-Néron map

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Pick the *Néron model* $N(J_{\eta})$ of J_{η} .

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Pick the Néron model $N(J_{\eta})$ of J_{η} .

 $N(J_{\eta})$ is a *B*-scheme smooth and separated over *B*, with generic fiber isomorphic to J_{η} and determined by the *Néron mapping property*:

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Pick the *Néron model* $N(J_{\eta})$ of J_{η} .

 $N(J_{\eta})$ is a B-scheme smooth and separated over B, with generic fiber isomorphic to J_{η} and determined by the *Néron mapping property*:

For every B-smooth scheme W and for every $\{\eta\}$ -morphism $u_n \colon W_n \to J_n$,

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Pick the *Néron model* $N(J_{\eta})$ of J_{η} .

 $N(J_{\eta})$ is a B-scheme smooth and separated over B, with generic fiber isomorphic to J_{η} and determined by the $N\acute{e}ron$ mapping property:

For every B-smooth scheme W and for every $\{\eta\}$ -morphism $u_{\eta} \colon W_{\eta} \to J_{\eta}$, there is a unique extension of u_{η} to a morphism $u \colon W \to N(J_{\eta})$.

Let J_{η} be the Jacobian of the generic fiber of f (the generic fiber of J_f^{σ}).

Pick the *Néron model* $N(J_{\eta})$ of J_{η} .

 $N(J_{\eta})$ is a B-scheme smooth and separated over B, with generic fiber isomorphic to J_{η} and determined by the $N\acute{e}ron$ mapping property:

For every B-smooth scheme W and for every $\{\eta\}$ -morphism $u_{\eta} \colon W_{\eta} \to J_{\eta}$, there is a unique extension of u_{η} to a morphism $u \colon W \to N(J_{\eta})$.

THEOREM (BUSONERO, KASS, MELO-VIVIANI)

The B-smooth locus of J_f^{σ} is the locus of J_f^{σ} parametrizing invertible sheaves and it is isomorphic to $N(J_{\eta})$.

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over $\dot{\mathcal{C}}^2$.

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over $\dot{\mathcal{C}}^2$. The morphism $\alpha_f^2|_{\dot{\mathcal{C}}^2}$ is called **Abel–Néron** map.

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over \dot{C}^2 . The morphism $\alpha_f^2|_{\dot{C}^2}$ is called **Abel–Néron** map.

Form the Cartesian diagram

$$\begin{array}{ccc} \dot{\mathcal{C}}^2 \times_B \mathcal{C} & \longrightarrow & J_f^{\sigma} \times_B \mathcal{C} \\ \downarrow & & \downarrow \\ \dot{\mathcal{C}}^2 & \xrightarrow{\alpha_f^2|_{\dot{\mathcal{C}}^2}} & J_f^{\sigma} \end{array}$$

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over \dot{C}^2 . The morphism $\alpha_f^2|_{\dot{C}^2}$ is called **Abel–Néron** map.

Form the Cartesian diagram

$$\begin{array}{ccc} \dot{\mathcal{C}}^2 \times_B \mathcal{C} & \longrightarrow & J_f^{\sigma} \times_B \mathcal{C} \\ & \downarrow & & \downarrow \\ \dot{\mathcal{C}}^2 & & \frac{\alpha_f^2|_{\dot{\mathcal{C}}^2}}{2} \rightarrow & J_f^{\sigma} \end{array}$$

 J_f^{σ} is a fine moduli space \Rightarrow

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over \dot{C}^2 . The morphism $\alpha_f^2|_{\dot{C}^2}$ is called **Abel–Néron** map.

Form the Cartesian diagram

$$\begin{array}{cccc} \mathcal{L} & \longrightarrow & \dot{\mathcal{C}}^2 \times_B \mathcal{C} & \longrightarrow & J_f^{\sigma} \times_B \mathcal{C} \\ & & \downarrow & & \downarrow \\ & & \dot{\mathcal{C}}^2 & & \frac{\alpha_f^2|_{\dot{\mathcal{C}}^2}}{2} & J_f^{\sigma} \end{array}$$

 J_f^{σ} is a fine moduli space \Rightarrow

Combining the previous Theorem with the Néron mapping property, we see that the degree-2 Abel map

$$\alpha_f^2 \colon \mathcal{C}^2 --> J_f^{\sigma}$$

is defined over \dot{C}^2 . The morphism $\alpha_f^2|_{\dot{C}^2}$ is called **Abel–Néron** map.

Form the Cartesian diagram

$$\begin{array}{cccc} \mathcal{L} & \longrightarrow & \dot{\mathcal{C}}^2 \times_B \mathcal{C} & \longrightarrow & J_f^{\sigma} \times_B \mathcal{C} \\ & & \downarrow & & \downarrow \\ & \dot{\mathcal{C}}^2 & & \xrightarrow{\alpha_f^2|_{\dot{\mathcal{C}}^2}} & J_f^{\sigma} \end{array}$$

 J_f^{σ} is a fine moduli space $\Rightarrow \alpha_f^2|_{\dot{C}^2}$ is induced by an invertible sheaf \mathcal{L} on $\dot{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C}/\dot{\mathcal{C}}^2$, σ -quasistable on the fibers.

In general, the degree-2 Abel map α_f^2 is not defined on the whole \mathcal{C}^2 .

In general, the degree-2 Abel map α_f^2 is not defined on the whole \mathcal{C}^2 .

To get a resolution, we need to blowup the source C^2 .

In general, the degree-2 Abel map α_f^2 is not defined on the whole \mathcal{C}^2 .

To get a resolution, we need to blowup the source C^2 .

We blowup C^2 along its diagonal subscheme and products $Z_1 \times Z_2$, where Z_1 and Z_2 are subcurves of C

In general, the degree-2 Abel map α_f^2 is not defined on the whole C^2 . To get a resolution, we need to blowup the source C^2 .

We blowup C^2 along its diagonal subscheme and products $Z_1 \times Z_2$, where Z_1 and Z_2 are subcurves of C (Weil divisors of C^2).

In general, the degree-2 Abel map $lpha_{\it f}^2$ is not defined on the whole ${\cal C}^2.$

To get a resolution, we need to blowup the source \mathcal{C}^2 .

We blowup C^2 along its diagonal subscheme and products $Z_1 \times Z_2$, where Z_1 and Z_2 are subcurves of C (Weil divisors of C^2).

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C}$$

$$\downarrow$$

$$\mathcal{J}_f^{\sigma} \xleftarrow{\alpha_f^2|_{\dot{\mathcal{C}}^2}} \dot{\mathcal{C}}^2$$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{2} \times_{B} \mathcal{C} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$J_{f}^{\sigma} \stackrel{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}}{\longleftarrow} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \longleftarrow \widetilde{\mathcal{C}}^{2}$$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{2} \times_{B} \mathcal{C} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longleftarrow^{?} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \pi$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{C}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2} \xrightarrow{?} J_{f}^{\sigma}$$

Perform a chain of blowups

$$\phi \colon \widetilde{\mathcal{C}}^2 := \widetilde{\mathcal{C}}_M^2 \xrightarrow{\phi_M} \cdots \xrightarrow{\phi_2} \widetilde{\mathcal{C}}_1^2 \xrightarrow{\phi_1} \widetilde{\mathcal{C}}_0^2 \xrightarrow{\phi_0} \mathcal{C}^2$$

 ϕ_0 blowup along the diagonal subscheme of \mathcal{C}^2 ϕ_i blowup of $\widetilde{\mathcal{C}}_{i-1}^2$ along the strict transform of some $Z_{i,1} \times Z_{i,2}$

We want a Cartesian diagram, where $\mathcal{I}|_{\dot{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C}} \simeq \mathcal{L}$

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{2} \times_{B} \mathcal{C} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longleftarrow^{?} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \pi$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2} \xrightarrow{?} J_{f}^{\sigma}$$

(□▶ ◀♬▶ ◀불▶ ◀불▶ = = ~♡٩♡

A subcurve Z of C is a k-tail if Z and $\overline{C \setminus Z}$ are connected, and if $\#Z \cap \overline{C \setminus Z} = k$.

A subcurve Z of C is a k-tail if Z and $\overline{C \setminus Z}$ are connected, and if $\#Z \cap \overline{C \setminus Z} = k$.

Let $C_1, \ldots C_p$ be the irreducible components of C.

A subcurve Z of C is a k-tail if Z and $\overline{C \setminus Z}$ are connected, and if $\#Z \cap \overline{C \setminus Z} = k$.

Let $C_1, \ldots C_p$ be the irreducible components of C.

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ blowup along Weil divisors.

A subcurve Z of C is a k-tail if Z and $\overline{C \setminus Z}$ are connected, and if $\#Z \cap \overline{C \setminus Z} = k$.

Let $C_1, \ldots C_p$ be the irreducible components of C.

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ blowup along Weil divisors.

Let A such that $\phi(A) = (R_1, R_2)$, for R_1, R_2 nodes of C.

$$\phi^{-1}(C_i \times C_l)$$

$$\phi^{-1}(C_i \times C_k)$$

$$\phi^{-1}(C_i \times C_k)$$

A subcurve Z of C is a k-tail if Z and $C \setminus Z$ are connected, and if $\#Z \cap C \setminus Z = k$.

Let $C_1, \ldots C_p$ be the irreducible components of C.

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ blowup along Weil divisors.

Let A such that $\phi(A) = (R_1, R_2)$, for R_1, R_2 nodes of C.

$$\phi^{-1}(C_i \times C_l)$$

$$\phi^{-1}(C_i \times C_k)$$

$$\phi^{-1}(C_i \times C_k)$$

We say that A is *quasistable* if either $R_1 = R_2$ or there are no 2-tails and 3-tails Z such that

$$\{R_1,R_2\}\subseteq Z\cap \overline{C\setminus Z}$$
 and $C_i\cup C_k\subseteq Z$

$$\mathcal{L} \xrightarrow{} \dot{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \xrightarrow{} \mathcal{C}^3 \xleftarrow{} \widetilde{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \xleftarrow{?} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$J_f^{\sigma} \xleftarrow{\alpha_f^2|_{\dot{\mathcal{C}}^2}} \dot{\mathcal{C}}^2 \xrightarrow{} \dot{\mathcal{C}}^2 \xrightarrow{} \mathcal{C}^2 \xrightarrow{?} J_f^{\sigma}$$

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{3} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longleftarrow^{?} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\mathcal{C}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2} \xrightarrow{?} J_{f}^{\sigma}$$

PROPOSITION

Fix $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$. Let $A \in \widetilde{\mathcal{C}}^2$ be a quasistable point of $\widetilde{\mathcal{C}}^2$.

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{3} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longleftarrow^{?} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \pi$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2} \xrightarrow{?} J_{f}^{\sigma}$$

Proposition

Fix $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$. Let $A \in \widetilde{\mathcal{C}}^2$ be a quasistable point of $\widetilde{\mathcal{C}}^2$.

Then there is an open subset $U \subset \widetilde{\mathcal{C}}^2$ with $A \in U$ and torsion-free rank-1 sheaf \mathcal{I}_U on $U \times_B \mathcal{C}/U$ which is σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2 \cap U$.

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^2 \times_B \mathcal{C} \longrightarrow \mathcal{C}^3$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_f^{\sigma} \stackrel{\alpha_f^2|_{\dot{\mathcal{C}}^2}}{\longleftarrow} \dot{\mathcal{C}}^2 \longrightarrow \mathcal{C}^2$$

THEOREM

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z \times Z$, where Z is a 2-tail or a 3-tail of C.

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{3} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2}$$

THEOREM

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z \times Z$, where Z is a 2-tail or a 3-tail of C.

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{3} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \pi$$

$$J_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2}$$

THEOREM

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z \times Z$, where Z is a 2-tail or a 3-tail of C. Then there is a torsion-free rank-1 sheaf \mathcal{I} on $\pi: \widetilde{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \to \widetilde{\mathcal{C}}^2$, σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2$.

THEOREM

Let $\phi\colon\widetilde{\mathcal{C}}^2\to\mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z\times Z$, where Z is a 2-tail or a 3-tail of C. Then there is a torsion-free rank-1 sheaf \mathcal{I} on $\pi\colon\widetilde{\mathcal{C}}^2\times_B\mathcal{C}\to\widetilde{\mathcal{C}}^2$, σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2$.

$$\mathcal{L} \longrightarrow \dot{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longrightarrow \mathcal{C}^{3} \longleftarrow \widetilde{\mathcal{C}}^{2} \times_{B} \mathcal{C} \longleftarrow \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$\mathcal{J}_{f}^{\sigma} \xleftarrow{\alpha_{f}^{2}|_{\dot{\mathcal{C}}^{2}}} \dot{\mathcal{C}}^{2} \longrightarrow \mathcal{C}^{2} \xleftarrow{\phi} \widetilde{\mathcal{C}}^{2}$$

THEOREM

Let $\phi \colon \widetilde{\mathcal{C}}^2 \to \mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z \times Z$, where Z is a 2-tail or a 3-tail of C. Then there is a torsion-free rank-1 sheaf \mathcal{I} on $\pi: \widetilde{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \to \widetilde{\mathcal{C}}^2$, σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2$.

 $J_{\mathfrak{c}}^{\sigma}$ is a fine moduli scheme \Rightarrow

$$\mathcal{L} \xrightarrow{} \dot{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \xrightarrow{} \mathcal{C}^3 \xleftarrow{} \widetilde{\mathcal{C}}^2 \times_{\mathcal{B}} \mathcal{C} \xleftarrow{} \mathcal{I}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\pi}$$

$$J_f^{\sigma} \xleftarrow{\alpha_f^2|_{\dot{\mathcal{C}}^2}} \dot{\mathcal{C}}^2 \xrightarrow{} \dot{\mathcal{C}}^2 \xrightarrow{} \mathcal{C}^2 \xrightarrow{} J_f^{\sigma}$$

THEOREM

Let $\phi\colon\widetilde{\mathcal{C}}^2\to\mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z\times Z$, where Z is a 2-tail or a 3-tail of C. Then there is a torsion-free rank-1 sheaf \mathcal{I} on $\pi\colon\widetilde{\mathcal{C}}^2\times_B\mathcal{C}\to\widetilde{\mathcal{C}}^2$, σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2$.

 J_f^{σ} is a fine moduli scheme \Rightarrow

THEOREM

Let $\phi\colon\widetilde{\mathcal{C}}^2\to\mathcal{C}^2$ be the blowup of \mathcal{C}^2 first along its diagonal subscheme and then along products $Z\times Z$, where Z is a 2-tail or a 3-tail of C. Then there is a torsion-free rank-1 sheaf \mathcal{I} on $\pi\colon\widetilde{\mathcal{C}}^2\times_B\mathcal{C}\to\widetilde{\mathcal{C}}^2$, σ -quasistable on the fibers of π and isomorphic to \mathcal{L} over $\dot{\mathcal{C}}^2$.

 J_f^{σ} is a fine moduli scheme \Rightarrow there is a morphism $\overline{\alpha_f^2} \colon \widetilde{\mathcal{C}}^2 \to J_f^{\sigma}$ restricting to $\alpha_f^2|_{\dot{\mathcal{C}}^2}$ over $\dot{\mathcal{C}}^2$ (a resolution of the degree-2 Abel map α_f^2).

4 D > 4 A > 4 B > 4 B > B 9 9 9 9