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Notations

A curve is a projective, connected, reduced variety of dimension 1
with nodal singularities over an algebraically closed field k .

A regular local smoothing of a curve C is a proper and flat
morphism f : C → B = Spec(k[[t]]) whose fibers are curves,
where f is generically smooth, f −1(0) ' C and C is smooth.
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Goal and Motivation

Let C be a smooth curve. Consider:

JC = {invertible sheaves of degree 0 on C}/{iso}.

Fix d ≥ 1 and P ∈ C . The degree-d Abel map is:

αd : Cd −→ JC

sending (Q1, . . . ,Qd) to OC (dP −
∑

Qi ).

Goal: construction of Abel maps when C is singular.
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Goal and Motivation

Degree-d Abel maps have been constructed for

irreducible curves and any d (Altman–Kleiman, 1980);

Gorenstein curves and d = 1 (Caporaso–Esteves, 2007 and
Caporaso–Coelho–Esteves, 2008);

Goal: construction of a degree-2 Abel map for any nodal curve
(with Coelho and Esteves).

The fibers of an Abel map are complete linear systems.

Fibers of Abel maps and limit linear series.
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The choice of the target

Let C be a nodal curve.

There exists a Jacobian:

JC = {invertible sheaves of degree 0 on C}/{∼}

In general, JC is neither compact nor of finite type.

Let P be a smooth point of C

and I be a torsion free rank-1
sheaf on C of deg I := χ(I )− χ(OC ) = 0.

Then I is P-quasistable, if for every subcurve ∅ 6= Y ( C :

deg(I ⊗OY )/Tors ≥ −#(Y ∩ C − Y )

2

and it is strict if P ∈ Y .
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The choice of the target

Let f : C → B be a regular local smoothing of a nodal curve,
with a section σ : B → C through the smooth locus of f .

(Esteves) there exists a proper B-scheme:

Jσf := {σ(b)-quasistable torsion free rank-1 sheaves
of degree 0 on f −1(b), b ∈ B}/{∼}.

Jσf is a fine moduli scheme.

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 6 / 14



The choice of the target

Let f : C → B be a regular local smoothing of a nodal curve,
with a section σ : B → C through the smooth locus of f .

(Esteves) there exists a proper B-scheme:

Jσf := {σ(b)-quasistable torsion free rank-1 sheaves
of degree 0 on f −1(b), b ∈ B}/{∼}.

Jσf is a fine moduli scheme.

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 6 / 14



The choice of the target

Let f : C → B be a regular local smoothing of a nodal curve,
with a section σ : B → C through the smooth locus of f .

(Esteves) there exists a proper B-scheme:

Jσf := {σ(b)-quasistable torsion free rank-1 sheaves
of degree 0 on f −1(b), b ∈ B}/{∼}.

Jσf is a fine moduli scheme.

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 6 / 14



The choice of the target

Let f : C → B be a regular local smoothing of a nodal curve,
with a section σ : B → C through the smooth locus of f .

(Esteves) there exists a proper B-scheme:

Jσf := {σ(b)-quasistable torsion free rank-1 sheaves
of degree 0 on f −1(b), b ∈ B}/{∼}.

Jσf is a fine moduli scheme.

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 6 / 14



Degree-2 Abel map for nodal curves: setup

a nodal curve C ;

f : C → B = Spec(C[[t]]) regular local smoothing of C ;

a section σ : B → C of f through its smooth locus;

C2 := C ×B C

and

Ċ2 := {(Q1,Q2) : Q1,Q2 ∈ f −1(b)sm, b ∈ B}

the degree-2 Abel map

α2
f : C2 −− > Jσf

sending (Q1,Q2) on the generic fiber Cη of f to

OCη(2σ(η)− Q1 − Q2)
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Abel–Néron map

Let Jη be the Jacobian of the generic fiber of f (the generic fiber of Jσf ).

Pick the Néron model N(Jη) of Jη.

N(Jη) is a B-scheme smooth and separated over B, with generic fiber
isomorphic to Jη and determined by the Néron mapping property:

For every B-smooth scheme W and for every {η}-morphism
uη : Wη → Jη, there is a unique extension of uη to a morphism
u : W → N(Jη).

Theorem (Busonero, Kass, Melo–Viviani)

The B-smooth locus of Jσf is the locus of Jσf parametrizing invertible
sheaves and it is isomorphic to N(Jη).
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Abel–Néron map

Let Jη be the Jacobian of the generic fiber of f (the generic fiber of Jσf ).
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For every B-smooth scheme W and for every {η}-morphism
uη : Wη → Jη, there is a unique extension of uη to a morphism
u : W → N(Jη).

Theorem (Busonero, Kass, Melo–Viviani)

The B-smooth locus of Jσf is the locus of Jσf parametrizing invertible
sheaves and it is isomorphic to N(Jη).

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 8 / 14



Abel–Néron map

Combining the previous Theorem with the Néron mapping property,
we see that the degree-2 Abel map

α2
f : C2 −− > Jσf

is defined over Ċ2. The morphism α2
f |Ċ2 is called Abel–Néron map.

Form the Cartesian diagram

L −−−−→ Ċ2 ×B C −−−−→ Jσf ×BCy y
Ċ2

α2
f |Ċ2−−−−→ Jσf

Jσf is a fine moduli space ⇒ α2
f |Ċ2 is induced by an invertible sheaf

L on Ċ2 ×B C/Ċ2, σ-quasistable on the fibers.
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we see that the degree-2 Abel map

α2
f : C2 −− > Jσf

is defined over Ċ2.
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we see that the degree-2 Abel map

α2
f : C2 −− > Jσf
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Blowups of the double product

In general, the degree-2 Abel map α2
f is not defined on the whole C2.

To get a resolution, we need to blowup the source C2.

We blowup C2 along its diagonal subscheme and products Z1 × Z2,
where Z1 and Z2 are subcurves of C (Weil divisors of C2).

•

•

•

•
P1

Z1 C \ Z1

C \ Z2

Z2

R1

R2

φ : C̃2 → C2

(R1,R2) pair of nodes of C

Ri ∈ Zi ∩ C \ Zi

φ−1(R1,R2) ' P1 ⊂ φ−1(Z1 × Z2)
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Blowups of the double product

Perform a chain of blowups

φ : C̃2 := C̃2M
φM−→ · · · φ2−→ C̃21

φ1−→ C̃20
φ0−→ C2

φ0 blowup along the diagonal subscheme of C2
φi blowup of C̃2i−1 along the strict transform of some Zi ,1 × Zi ,2

We want a Cartesian diagram, where I|Ċ2×BC ' L

L −−−−→ Ċ2 ×B C −−−−→ C2 ×B C ←−−−− C̃2 ×B C
?←−−−− Iy y yπ

Jσf
α2
f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2 ?−−−−→

αI
Jσf
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f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2 ?−−−−→

αI
Jσf

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 11 / 14



Blowups of the double product

Perform a chain of blowups

φ : C̃2 := C̃2M
φM−→ · · · φ2−→ C̃21

φ1−→ C̃20
φ0−→ C2

φ0 blowup along the diagonal subscheme of C2
φi blowup of C̃2i−1 along the strict transform of some Zi ,1 × Zi ,2

We want a Cartesian diagram

, where I|Ċ2×BC ' L
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f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2 ?−−−−→

αI
Jσf

M. Pacini (Universidade Federal Fluminense–Brazil)Degree-2 Abel maps for nodal curves MCA – August 2013 11 / 14



Blowups of the double product

Perform a chain of blowups

φ : C̃2 := C̃2M
φM−→ · · · φ2−→ C̃21

φ1−→ C̃20
φ0−→ C2

φ0 blowup along the diagonal subscheme of C2
φi blowup of C̃2i−1 along the strict transform of some Zi ,1 × Zi ,2

We want a Cartesian diagram

, where I|Ċ2×BC ' L
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L −−−−→ Ċ2 ×B C
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The local criterion

A subcurve Z of C is a k-tail if Z and C \ Z are connected, and if
#Z ∩ C \ Z = k .

Let C1, . . .Cp be the irreducible components of C .

Let φ : C̃2 → C2 blowup along Weil divisors.

Let A such that φ(A) = (R1,R2), for R1,R2 nodes of C .

•

φ−1(Ci × Ck)
φ−1(Cj × Ck)

φ−1(Ci × Cl)
A

We say that A is quasistable if either R1 = R2 or there are no 2-tails
and 3-tails Z such that

{R1,R2} ⊆ Z ∩ C \ Z and Ci ∪ Ck ⊆ Z
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The local criterion

L −−−−→ Ċ2 ×B C −−−−→ C3 ←−−−− C̃2 ×B C
?←−−−− Iy y yπ

Jσf
α2
f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2 ?−−−−→

αI
Jσf

Proposition

Fix φ : C̃2 → C2. Let A ∈ C̃2 be a quasistable point of C̃2.
Then there is an open subset U ⊂ C̃2 with A ∈ U and torsion-free rank-1
sheaf IU on U ×B C/U which is σ-quasistable on the fibers of π and
isomorphic to L over Ċ2 ∩ U.
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The global resolution

L −−−−→ Ċ2 ×B C −−−−→ C3 ←−−−− C̃2 ×B C ←−−−− Iy y yπ
Jσf

α2
f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2

α2
f−−−−→ Jσf

Theorem

Let φ : C̃2 → C2 be the blowup of C2 first along its diagonal subscheme
and then along products Z × Z, where Z is a 2-tail or a 3-tail of C .
Then there is a torsion-free rank-1 sheaf I on π : C̃2 ×B C → C̃2,
σ-quasistable on the fibers of π and isomorphic to L over Ċ2.

Jσf is a fine moduli scheme ⇒ there is a morphism α2
f : C̃2 → Jσf

restricting to α2
f |Ċ2 over Ċ2 (a resolution of the degree-2 Abel map α2

f ).
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f |Ċ2←−−−− Ċ2 −−−−→ C2 φ←−−−− C̃2

α2
f−−−−→ Jσf

Theorem

Let φ : C̃2 → C2 be the blowup of C2 first along its diagonal subscheme
and then along products Z × Z, where Z is a 2-tail or a 3-tail of C .
Then there is a torsion-free rank-1 sheaf I on π : C̃2 ×B C → C̃2,
σ-quasistable on the fibers of π and isomorphic to L over Ċ2.
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Jσf is a fine moduli scheme ⇒

there is a morphism α2
f : C̃2 → Jσf

restricting to α2
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Jσf is a fine moduli scheme ⇒ there is a morphism α2
f : C̃2 → Jσf

restricting to α2
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