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Formulation of the problem

Let C ⊂ P2
C be a complex plane quartic.

If C is smooth, then it has 28 bitangents and 24 flex lines
(counted with multiplicity).

Which linear data (the 28 bitangents, the 24 flex lines)
determine C ?

Theorem (Caporaso-Sernesi, 2003)

Let C be a general smooth plane quartic defined over C. Then C is
determined by its bitangents.
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Formulation of the problem

Theorem (Lehavi, 2005)

Let C be a smooth plane quartic defined over C. Then C is determined by
its bitangents.

Question: is it possible to reconstruct a degree d smooth complex
plane curve from its flex lines?

Theorem (P.-Testa, 2011)

Let C be a smooth plane curve of degree d defined over C.

(i) If d = 3, then C is determined by its 9 flex lines.
(ii) If d = 4 and C is general, then C is determined by its 24 flex lines and
one flex point.
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Formulation of the problem

Question: is it possible to reconstruct the general smooth
plane quartic only from its flex lines?

Consider the rational map

F : P14 99K Sym24(P2∨)

sending a smooth plane quartic C to its configuration of flex lines
F l(C ). Is F generically injective?

Our strategy follows a degenerative argument.
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Recovering the Fermat quartic

Let F be the Fermat quartic F : x4 + y4 + z4 = 0.

Proposition

If F l(C ) = F l(F ), for some smooth plane quartic C , then C = F .

Idea of the proof: If P2∨
[α,β,γ], one proves that

F l(F ) = V (αβγ, α4 + β4 + γ4).

Up to scalars, αβγ is the unique polynomial of degree 3 vanishing on
F l(F ). Thus

Aut(F l(F )) < {σ ∈ PGL3(C) : σ has a non-zero entry

in each row and column}.
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Recovering the Fermat quartic

Up to scalars, α4 + β4 + γ4 is the unique polynomial of degree 4 vanishing
on F l(F ).

Thus Aut(F l(F )) ⊆ Aut(F ) and hence

Aut(F ) = Aut(F l(F )).

Assume that F l(F ) = F l(C ), with C smooth and C 6= F .

Kuribayashi and Komiya proved that if a plane quartic has 12 hyperflex
lines, then it is isomorphic either to F , or to

K : x4 + y4 + z4 = −3(x2y2 + x2z2 + y2z2).

If C = F σ, with σ ∈ PGL3(C), then we get the contradiction

σ ∈ Aut(F l(F )) \ Aut(F ).
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Recovering the Fermat quartic

If C = Kσ, with σ ∈ PGL3(C), then

F l(F ) = F l(C ) = F l(K )σ

and hence

Aut(K ) ↪→ Aut(F l(K )) ' Aut(F l(F )) ' Aut(F )

and one can prove that it is not possible.
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From the Fermat quartic to the general quartic

Consider F : P14 99K Sym24(P2∨)

and its resolution

F̃ : P̃14 −→ Sym24(P2∨)

where P̃14 is the closure of the graph of F inside P14 × Sym24(P2∨).

To recover the general plane quartic, it is enough to show that

(1) the fiber of F̃ over F̃([F ]) consists of {[F ]};

(2) F̃ is étale at the point [F ] representing Fermat quartic.

We do not know if any one of (1) and (2) is true !
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Recovering a quartic with 8 hyperflexes

Vermeulen classified the quartics with a given number of hyperflexes.

If a smooth plane quartics has exactly 8 hyperflexes, then it is
isomorphic either to

V : 4(x4 + y4) + 24
√
−7x2y2 + 12(1−

√
−7)xyz2− 7− 3

√
−7

2
z4 = 0

or to a smooth curve of the one parameter family

Vt : (t2 + 1)(x2 − yz)2 = yz(2x − y − z)(2tx − y − t2z)

Proposition

If F l(C ) = F l(V ), for some smooth plane quartic C , then C = V .
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Vermeulen classified the quartics with a given number of hyperflexes.

If a smooth plane quartics has exactly 8 hyperflexes, then it is
isomorphic either to

V : 4(x4 + y4) + 24
√
−7x2y2 + 12(1−

√
−7)xyz2− 7− 3

√
−7

2
z4 = 0

or to a smooth curve of the one parameter family
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Recovering the general plane quartic

(1) Claim: the fiber of F̃ over F̃([V ]) consists of {[V ]}.

For every Σ ∈ Sym24(P2∨), define

µ0(Σ) := max
p∈P2

∑
p∈L

multL(Σ)

µ1(Σ) := max
L⊂P2∨

multL(Σ)

µcon(Σ) := max
C conic

∑
L⊂P2∨

#(L∩C)=1

multL(Σ)

Lemma

We have µ0(F l(V )) = 4, µ1(F l(V )) = 2 and µcon(F l(V )) < 24.
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Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.

(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;

(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;

(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.

(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

We need to study degenerations of flex lines to singular quartics.

Lemma

Let (Σ,C ) ∈ P̃14, where C is a singular quartic.
(1) If C is reduced with at most double points, then µ1(Σ) ≥ 3;
(2) If C is reduced with a triple point, then µ0(Σ) ≥ 5;
(3) if C is an irreducible double conic, then µcon(Σ) = 24.
(4) if C is non-reduced and contains a linear component, then either
µ0(Σ) ≥ 5, or µ1(Σ) ≥ 3.

Proposition

The fiber of F̃ over F̃([V ]) consists of {[V ]}.

M. Pacini with A.Abreu and D.Testa ( Universidade Federal Fluminense (UFF) Brazil)
EGBI – Salvador – July 2012 11 /

15



Recovering the general plane quartic

(2) Claim: F̃ is étale at the point [V ].

If [C ] is contained in the fiber of F̃ over F̃([V ]) and C is smooth,
then

F l(C ) = F l(V ).

For a plane line L, define

Vflex
L := {[C ] ∈ P14 : C is smooth and L · C = 3p + q}

Vhflex
L := {[C ] ∈ P14 : C is smooth and L · C = 4p}
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Recovering the general plane quartic

Lemma

If L · C = 3p + q, with p 6= q, then

T[C ]Vflex
L ' H0(C ,OC (4)⊗OC (−2p)).

If L · C = 4p, then

T[C ]Vhflex
L = H0(C ,OC (4)⊗OC (−3p)).

Proposition

The morphism F̃ : P̃14 → Sym24(P2∨) is étale at [V ].
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Recovering the general plane quartic

Theorem

The morphism
F̃ : P̃14 −→ Sym24(P2∨)

sending a smooth plane quartic to its configuration of flex lines is
generically injective, i.e. the general smooth plane quartic is uniquely
determined by its configuration of flex lines.
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