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Notations

A curve is a projective, connected variety of dimension 1 with nodal
singularities over an algebraically closed field k .

We will assume that a curve C has genus g = h0(C , ωC ) ≥ 2.

A curve is stable if every smooth rational component intersects the
rest of the curve in at least 3 points.

A curve C is of compact type if C − p is not connected, for every
node p ∈ C .

Let B = SpecR, R a DVR and C be a curve. A smoothing of C
f : C → B of C is a proper and flat morphism f , such that
C = f −1(0), f −1(b) smooth if 0 6= b ∈ B, and C smooth.
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History, Goal and Motivation

Let C be a smooth curve. Consider:

Picd C = {line bundles of degree d on C}/{iso}.

Fix d ≥ 1. The degree-d Abel map is:

αd : Cd → Picd C

(p1, . . . , pd)→ OC (
∑

pi )

What does it happen if C is singular?
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History, Goal and Motivation

This problem has been studied in the last 3 decades by:

Altman-Kleiman: Abel maps for irreducible curves

Caporaso-Esteves: Abel maps of degree 1 for stable curves

Coelho: Abel maps of degree 2 for curves with two components.

Goal: construction of Abel maps of degree 2

Motivation: the fibers of the degree-d Abel map are projectivized
linear systems (up to the Symd -action).

Abel maps for a family of curves: limit linear systems on a singular
curve (Eisenbud-Harris, Osserman).
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The choice of the target

Let f : C → B be a smoothing of a stable curve of compact type C .

Consider the relative generalized Jacobian:

Jd
f = {line bundles of degree d on the fibers of f }/{∼}

The fiber of Jd
f → B over 0 is:

Jd
C := {line bundles of degree d on C}/{iso}

L ∈ PicdC is semistable if for every ∅ 6= Y ( C :

| deg L|Y −
d

2g − 2
degωC |Y | ≤

#(Y ∩ C − Y )

2
.
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The choice of the target

Caporaso-Pandharipande: a separate space is given by:

Pd
C := {semistable line bundles of deg.d on C}/{∼}

where ∼ is a suitable equivalence relation.

L ∈ PicdC is X -quasistable, X an irreducible component of C , if for
every ∅ 6= Y ( C :

| deg LY −
d

2g − 2
degωC |Y | ≤

#(Y ∩ C − Y )

2

and it is strict if X ⊆ Y .

Altman-Kleiman-Esteves: a separate space is given by:

Jd ,X
C := {X -quasistable line bundles of deg.d on C}/{iso}.
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The Abel map of degree 1

Let C be a stable curve of compact type and f : C → B a smoothing
of C .

Let Cd be the produt of d copies of C over B. Pick:

αd
f : Cd 99K Jd

f

(p1, . . . , pd)→ Of −1(f (p1))(
∑

pi )

X ⊆ C is central (semicentral) if gZ ≤ g/2 (gZ < g/2) for every
connected component Z of C − X .

If g is even, let ∆g/2 be the set of the stable curves C of compact
type such that C = C1 ∪ C2 and gC1 = gC2 = g/2.
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The Abel map of degree 1

Lemma (Central component)

Let C be a stable curve of compact type of genus g ≥ 2.

(1) If [C ] /∈ ∆g/2, then there exists a unique central component.

(2) If [C ] ∈ ∆g/2, then there are exactly two semicentral components.

The principal component X pr of C will be either the central component
of C or one of the two semicentral components (keep this choice).

Theorem

Let f : C → B be a smoothing of a stable curve of compact type C .
Then there exists an extension α1

f : C → J1
f of the first Abel map such that

α1
f |C factors via J1,X pr

C ↪→ J1
C . Furthermore:

J1,X pr

C = J
e1
C := {L ∈ Pic1 C : degX pr L = 1 , degX L = 0 for X 6= X pr}
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of C or one of the two semicentral components (keep this choice).

Theorem

Let f : C → B be a smoothing of a stable curve of compact type C .
Then there exists an extension α1

f : C → J1
f of the first Abel map such that

α1
f |C factors via J1,X pr

C ↪→ J1
C . Furthermore:

J1,X pr

C = J
e1
C := {L ∈ Pic1 C : degX pr L = 1 , degX L = 0 for X 6= X pr}
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The main construction

Let f : C → B a smoothing of a stable curve of compact type C .

Pick the first Abel map:
α1
f : C → J1

C

For every d > 1, we could define inductively:

Cd := C ×B C · · · ×B C
(αd−1

f ,α1
f )−→ Jd−1
C × J1

C
⊗→ Jd
C

(p1, . . . , pd)
αd
f−→ αd−1

f (p1, . . . , pd−1)⊗ α1
f (pd)

Goal: we want that Image(αd
f |Cd ) ⊆ Jd ,X pr

C .
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The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d .

For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d .

For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d .

For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d .

For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d . For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d . For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Let C be a stable curve of compact type with γ irreducible
components X1, . . . ,Xγ .

A tail Z of C is a subcurve Z ( C such that

#(Z − C − Z ) = 1.

Fix d = (d1, . . . , dγ) ∈ Zγ with
∑

di = d . For Y ( C , set
dY :=

∑
Xi⊆Y di .

We say that a tail Z of C is a d-big tail if:

dZ · deg(ωC )− d · deg(ωC |Z ) < 2gZ − gC .

For an irreducible component X of C and d ∈ Zd , define:

Td(X ) := {Z ⊂ C : Z is a d-big tail of C and Z + X}.

Marco Pacini joint with Juliana Coelho ( Universidade Federal Fluminense (Brazil))
MEGA 09 – Barcelona – June 2009 10

/ 17



The main construction

Theorem

Let f : C → B be a smoothing of a stable curve of compact type C with
components X1, . . . ,Xγ (Cartier divisors of C). For every d > 1, there
exists ed = (ed ,1, . . . , ed ,γ) ∈ Zγ such that, if we define:

αd
f : Cd

(αd−1
f ,α1

f )−→ Jd−1
C × J1

C → Jd
C → Jd

C

(p1, . . . , pd)→ αd−1
f (p1, . . . , pd−1)⊗ α1

f (pd)⊗OC(
∑

Z∈Ted−1
(X pr )

Z )|C

then αd
f |Cd : Cd → J

ed
C ⊆ Jd ,X pr

C , where

J
ed
C := {L ∈ PicdC : degXj

= ed ,j , for j = 1, . . . , γ}.
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Computational aspects and examples

The determination of the component X pr and the X pr -quasistable
multidegree ed is effective.

Let C be a genus g stable curve of compact type with [C ] /∈ ∆g/2.
Recall that X pr ⊆ C satisfies gZ < g/2 for every connected
component Z of C − X pr .

Algorithm to find X pr .

First Step.
For every irreducible non-principal component X of C let Z (X ) be
the unique subcurve Z (X ) ⊆ C − X such that gZ(X ) ≥ g/2 (if
gX = 0, use that C is stable).
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Computational aspects and examples

Second Step.
For every irreducible component X of C define Y (X ) as follows.

If X is principal, then Y (X ) = X .
If X is not principal, let Y (X ) be the irreducible component of C such
that Y (X ) ⊆ Z (X ) and Y (X ) ∩ X 6= ∅ (use that C is of compact type).

Third Step.
Prove that if X and Y (X ) are non-principal, then

Z (Y (X )) ⊆ Z (X )− Y (X ).

Fourth Step.
Start with an irreducible component X1 of C . Define inductively
Xj+1 := Y (Xj) ∀j . If Xj is principal for some j , we are done.
Otherwise by Third Step, we get the contradiction:

· · · ( Z (Xj) · · · ( Z (X2) ( Z (X1)
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Computational aspects and examples

Determination of ed .

We know that e1 = (0, . . . , 1
X pr
, . . . , 0). Calculate:

Te1(X pr ) := {Z ⊂ C : Z is a e1-big tail of C and Z + X pr}.

Mount:

α2
f : C2

(α1
f ,α

1
f )−→ J1
C × J1

C → J2
C → J2

C

(p1, . . . , pd)→ αd−1
f (p1, . . . , pd−1)⊗ α1

f (pd)⊗OC(
∑

Z∈Te1 (X pr )

Z )|C .

Evaluating in a specific tuple, we find e2 ∈ Zγ such that
α2
f |C2 : C 2 → J

e2
C . Iterating, we find e3, e4, . . . , ed , . . .
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Other targets

The case [C ] ∈ ∆g/2.

In this case, C admits two principal components, X pr
1 and X pr

2 . Then
we construct two Abel maps:

αd ,1
f : Cd → Jd

C and αd ,2
f : Cd → Jd

C .

Consider the compactification of Caporaso-Pandharipande:

Pd
C := {semistable line bundles of deg.d on C}/{∼}.

There exists a morphism:

ψd : Jd
C −→ Pd

C .
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Other targets

Proposition

Let g be an even number. Let f : C → B be a smoothing of a genus g
curve of compact type C such that C ∈ ∆g/2. Then the two maps:

ψd ◦ αd ,1
f , ψd ◦ αd ,2

f : Cd −→ Pd
C

have the same set-theoretic fibers.
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