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Notations

A curve is a projective connected, reduced, Gorenstein variety of
dimension 1 over an algebraically closed field k of characteristic zero.

We will assume that a curve has genus g ≥ 3.

A semistable (resp. stable) curve is a nodal curve such that every
smooth rational component intersects the rest of the curve in at least
2 (resp. 3) points.

Let B = SpecR , R a DVR. Let C be a stable curve. A general

smoothing f : C → B of C is a proper and flat morphism f ,
C = f −1(0), C∗ → B∗ := B − 0 smooth, and C smooth.
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Goals

Denote by S∗
f → B∗ the moduli scheme that parameterizes theta

characteristics on the fibers of C∗ → B∗.

S∗
f is étale over B∗.

We want to:
(1) describe a distinguished B-model of S∗

f , étale over B , via
combinatorial invariants of C .
(2) give a modular interpretation of such a model.
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Motivations

One can see that the maximal étale B-model of S∗
f (w.r.t. inclusion)

is the Néron model N(S∗
f ) of S∗

f .
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f (w.r.t. inclusion)

is the Néron model N(S∗
f ) of S∗

f .

More generally: let K=field of fractions of the DVR R . Consider a
smooth, separated, finite type K -scheme XK .

A Néron model N(XK ) of XK is a smooth, separated, finite type
B-scheme, N(XK )/K = XK and satisfying the Néron mapping
property.
NMP: For every smooth B-scheme Y and morphism φK : YK → XK ,
there exists a unique extension φ : Y → N(XK ) of φK .
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Motivations

One can see that the maximal étale B-model of S∗
f (w.r.t. inclusion)

is the Néron model N(S∗
f ) of S∗

f .

More generally: let K=field of fractions of the DVR R . Consider a
smooth, separated, finite type K -scheme XK .

A Néron model N(XK ) of XK is a smooth, separated, finite type
B-scheme, N(XK )/K = XK and satisfying the Néron mapping
property.
NMP: For every smooth B-scheme Y and morphism φK : YK → XK ,
there exists a unique extension φ : Y → N(XK ) of φK .

If N(XK ) exists, it is unique up to a unique isomorphism.
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The dual graph of a stable curve C is the the graph whose edges are
the nodes of C and whose vertices are the irreducible components of
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Combinatorial description

The dual graph of a stable curve C is the the graph whose edges are
the nodes of C and whose vertices are the irreducible components of
C .

Let f : C → B a general smoothing of a stable curve C and S∗
f be the

moduli scheme of theta characteristics on the smooth fibers of f .

Theorem

(Chiodo (’08)). N(S∗
f ) is finite over B if and only if the dual graph of C

has cycles that always share an even number of edges.
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The moduli space of spin curves

Let C be a stable curve. Let X be a blow-up of C .

C1
C2

C1

C2

P
1

P
1

−→

X C

In general, X is the union of a partial desingularization of C and
smooth rational curves, called exceptional components.

A spin curve of C is ξ = (Xξ,L, α), where Xξ is a blow-up of C ,
L ∈ Pic(Xξ) and α : L⊗2 → ωXξ

is a homomorphism, such that:
(1) L|E ≃ OE (1) for each E exceptional.
(2) α is an isomorphism away from the exceptional components.
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(char(k) = 0).
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The moduli space of spin curves

Let f : C → B be a family of a stable curves.

Caporaso-Casagrande-Cornalba (’07): construction of the moduli
space Sf of (the isomorphism classes of) spin curves on the fibers of f
(char(k) = 0).

Let f : C → B be a general smoothing of a stable curve C and S∗
f be

the moduli scheme of theta characteristics on the smooth fibers of f .

Sf compactifies S∗
f over B . Sf → B is finite and the fiber over 0

parameterizes the set of (the isomorphism classes of) spin curves of C .
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Combinatorial description via spin curves

Let ξ = (Xξ,L, α) be a spin curve of a stable curve C . Let E be the
union of the exceptional components of Xξ.

The graph ΣXξ
is the graph whose edges are the exceptional

component of Xξ and whose vertices are the connected components
of the complement of E in Xξ.
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Combinatorial description via spin curves

Let ξ = (Xξ,L, α) be a spin curve of a stable curve C . Let E be the
union of the exceptional components of Xξ.

The graph ΣXξ
is the graph whose edges are the exceptional

component of Xξ and whose vertices are the connected components
of the complement of E in Xξ.

P
1

P
1

−→

Xξ C

• •ΣXξ
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Combinatorial description via spin curves

Theorem

(char(k) = 0). Let f : C → B a general smoothing of a stable curve C
with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν

f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
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(char(k) = 0). Let f : C → B a general smoothing of a stable curve C
with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν

f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
(1) there exists ξ′ ∈ ν−1(ξ) such that ξ′ is in the étale locus of Sν
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with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν

f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
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Combinatorial description via spin curves

Theorem

(char(k) = 0). Let f : C → B a general smoothing of a stable curve C
with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν

f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
(1) there exists ξ′ ∈ ν−1(ξ) such that ξ′ is in the étale locus of Sν

f → B.
(2) for each ξ′ ∈ ν−1(ξ), ξ′ is in the étale locus of Sν

f → B.
(3) the graph ΣXξ

is bipartite.
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with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
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f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
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The Néron model N(S∗
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(char(k) = 0). Let f : C → B a general smoothing of a stable curve C
with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν
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for any ξ = (Xξ,L, α) ∈ Sf :
(1) there exists ξ′ ∈ ν−1(ξ) such that ξ′ is in the étale locus of Sν

f → B.
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is bipartite.

The Néron model N(S∗
f ) is isomorphic to the étale locus of Sν

f → B.

It is possible to recover the combinatorial result of Chiodo (’08).
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Combinatorial description via spin curves

Theorem

(char(k) = 0). Let f : C → B a general smoothing of a stable curve C
with Aut(C ) = {id}. Consider the moduli space Sf of spin curves. Let
ν : Sν

f → Sf be its normalization. The following properties are equivalent
for any ξ = (Xξ,L, α) ∈ Sf :
(1) there exists ξ′ ∈ ν−1(ξ) such that ξ′ is in the étale locus of Sν

f → B.
(2) for each ξ′ ∈ ν−1(ξ), ξ′ is in the étale locus of Sν

f → B.
(3) the graph ΣXξ

is bipartite.

The Néron model N(S∗
f ) is isomorphic to the étale locus of Sν

f → B.

It is possible to recover the combinatorial result of Chiodo (’08).

For example, if C has 2 components and 2 nodes, then N(S∗
f ) is finite

over B .

Marco Pacini (U.F.F.) Buenos Aires – July 2008 9 / 20



Modular description

Marco Pacini (U.F.F.) Buenos Aires – July 2008 10 / 20



Modular description

Let C → B a general smoothing of a stable curve C of genus g and
PicdC∗ the degree d relative Picard variety.

Marco Pacini (U.F.F.) Buenos Aires – July 2008 10 / 20



Modular description

Let C → B a general smoothing of a stable curve C of genus g and
PicdC∗ the degree d relative Picard variety.

Theorem

(Caporaso (’06)). Assume that (d − g + 1, 2g − 2) = 1. Let Mg be the
stack of stable curves. Then there exists a smooth DM-stack Pd,g , with a
natural strongly representable morphism to Mg , such that:

N(PicdC∗) ≃ B ×Mg
Pd,g .
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Modular description

Let C → B a general smoothing of a stable curve C of genus g and
PicdC∗ the degree d relative Picard variety.

Theorem

(Caporaso (’06)). Assume that (d − g + 1, 2g − 2) = 1. Let Mg be the
stack of stable curves. Then there exists a smooth DM-stack Pd,g , with a
natural strongly representable morphism to Mg , such that:

N(PicdC∗) ≃ B ×Mg
Pd,g .

Let Pd,g → Mg be Caporaso’s compactification of the universal
Picard variety.
Pd,g parameterizes (equivalence classes of) balanced line bundles of
degree d over semistable curves of genus g .
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Modular description

Let C → B a general smoothing of a stable curve C of genus g and
PicdC∗ the degree d relative Picard variety.

Theorem

(Caporaso (’06)). Assume that (d − g + 1, 2g − 2) = 1. Let Mg be the
stack of stable curves. Then there exists a smooth DM-stack Pd,g , with a
natural strongly representable morphism to Mg , such that:

N(PicdC∗) ≃ B ×Mg
Pd,g .

Let Pd,g → Mg be Caporaso’s compactification of the universal
Picard variety.
Pd,g parameterizes (equivalence classes of) balanced line bundles of
degree d over semistable curves of genus g .
Pd,g is the stack version of the open subset of Pd,g parameterizing
balanced line bundles of degree d on stable curves of genus g .
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If C has genus g , then the degree of a theta characteristic is
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We look for different compactified Jacobians to describe N(S∗
f ).

If d = g − 1, the compactified Jacobians constructed by Caporaso,
Oda-Seshadri, Simpson, are all isomorphic.
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Modular description

If C has genus g , then the degree of a theta characteristic is
d = g − 1.

We look for different compactified Jacobians to describe N(S∗
f ).

If d = g − 1, the compactified Jacobians constructed by Caporaso,
Oda-Seshadri, Simpson, are all isomorphic.

Esteves constructed a different compactified Jacobian.
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Let f : C → B be a family of curves. Fix an integer d .
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Esteves’ compactified Jacobian

Let f : C → B be a family of curves. Fix an integer d .

I over a curve C is simple if End(I ) = k.

The compactified Jacobian J
d

f → B is:

J
d

f = {torsion free, rank-one, simple sheaves

of degree d on f −1(b), b ∈ B}/ ∼
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Esteves’ compactified Jacobian

Let σ : B → C be a section of f : C → B through the B-smooth locus
of C.
Let E be a vector bundle on C of rank r > 0 and degree r(g − 1− d),
i.e. E is a polarization on C.
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Esteves’ compactified Jacobian

Let σ : B → C be a section of f : C → B through the B-smooth locus
of C.
Let E be a vector bundle on C of rank r > 0 and degree r(g − 1− d),
i.e. E is a polarization on C.

Let f : C → {pt} be the trivial family, C a curve. Let p be a smooth
point of C . Then I over C is p-quasi-stable w.r.t. E if for every
subcurve ∅ 6= Y ( C :

χ(IY ) ≥ −
deg E|Y

r

and > holds for every p ∈ Y , where IY = (I |Y )/Tors.
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Esteves’ compactified Jacobian

Let σ : B → C be a section of f : C → B through the B-smooth locus
of C.
Let E be a vector bundle on C of rank r > 0 and degree r(g − 1− d),
i.e. E is a polarization on C.

Let f : C → {pt} be the trivial family, C a curve. Let p be a smooth
point of C . Then I over C is p-quasi-stable w.r.t. E if for every
subcurve ∅ 6= Y ( C :

χ(IY ) ≥ −
deg E|Y

r

and > holds for every p ∈ Y , where IY = (I |Y )/Tors.

We have a distinguished subset J
σ
E of J

d

f :

J
σ
E = {torsion free, rank-one, simple sheaves of degree d on

f −1(b), σ(b)-quasi-stable w.r.t. E|f −1(b), b ∈ B}/ ∼
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Esteves’ compactified Jacobian

Let σ : B → C be a section of f : C → B through the B-smooth locus
of C.
Let E be a vector bundle on C of rank r > 0 and degree r(g − 1− d),
i.e. E is a polarization on C.

Let f : C → {pt} be the trivial family, C a curve. Let p be a smooth
point of C . Then I over C is p-quasi-stable w.r.t. E if for every
subcurve ∅ 6= Y ( C :

χ(IY ) ≥ −
deg E|Y

r

and > holds for every p ∈ Y , where IY = (I |Y )/Tors.

We have a distinguished subset J
σ
E of J

d

f :

J
σ
E = {torsion free, rank-one, simple sheaves of degree d on

f −1(b), σ(b)-quasi-stable w.r.t. E|f −1(b), b ∈ B}/ ∼

J
σ
E is a proper B-scheme.
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Admissible twisters

Let f : C → B be a smoothing of a stable curve C with irreducible
components C1, . . . ,Cγ .
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Admissible twisters

Let f : C → B be a smoothing of a stable curve C with irreducible
components C1, . . . ,Cγ .

T ∈ Pic(C ) is a f -twister of C if T ≃ OC(D)|C , where D =
∑

aiCi

is a Cartier divisor of C.
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Admissible twisters

Let f : C → B be a smoothing of a stable curve C with irreducible
components C1, . . . ,Cγ .

T ∈ Pic(C ) is a f -twister of C if T ≃ OC(D)|C , where D =
∑

aiCi

is a Cartier divisor of C.

Let p ∈ C sm. A f -twister T of C is p-admissible if for every
L ∈ Pic(C ) such that L⊗2 ≃ ωC ⊗ T , then L is p-quasi-stable with
respect to E = OC .
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Admissible twisters

Let p ∈ C sm. Set:

Adr
f (p) = {T ≃ OC(

∑
aiCi)|C p-admissible f -twister s.t.

min{ai} = 0 , max{ai} ≤ r , }
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Admissible twisters

Let p ∈ C sm. Set:

Adr
f (p) = {T ≃ OC(

∑
aiCi)|C p-admissible f -twister s.t.

min{ai} = 0 , max{ai} ≤ r , }

Lemma

Let f : C → B be a general smoothing of a stable curve C and p ∈ C sm.
Let T be a f -twister of C . Then the following properties are equivalent:
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Let p ∈ C sm. Set:

Adr
f (p) = {T ≃ OC(

∑
aiCi)|C p-admissible f -twister s.t.

min{ai} = 0 , max{ai} ≤ r , }

Lemma

Let f : C → B be a general smoothing of a stable curve C and p ∈ C sm.
Let T be a f -twister of C . Then the following properties are equivalent:
(1) T is p-admissible.
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∑
aiCi)|C p-admissible f -twister s.t.
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Lemma

Let f : C → B be a general smoothing of a stable curve C and p ∈ C sm.
Let T be a f -twister of C . Then the following properties are equivalent:
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Let p ∈ C sm. Set:

Adr
f (p) = {T ≃ OC(

∑
aiCi)|C p-admissible f -twister s.t.

min{ai} = 0 , max{ai} ≤ r , }

Lemma

Let f : C → B be a general smoothing of a stable curve C and p ∈ C sm.
Let T be a f -twister of C . Then the following properties are equivalent:
(1) T is p-admissible.
(2) One of the following properties holds:
(i) there are no roots of ωC ⊗ T
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Admissible twisters

Let p ∈ C sm. Set:

Adr
f (p) = {T ≃ OC(

∑
aiCi)|C p-admissible f -twister s.t.

min{ai} = 0 , max{ai} ≤ r , }

Lemma

Let f : C → B be a general smoothing of a stable curve C and p ∈ C sm.
Let T be a f -twister of C . Then the following properties are equivalent:
(1) T is p-admissible.
(2) One of the following properties holds:
(i) there are no roots of ωC ⊗ T
(ii) there is a unique partition of C into non-empty subcurves Z0, . . . ,ZrT ,
Zh ∩ Zh′ 6= ∅ if and only if |h − h′| ≤ 1 and p ∈ Z0, such that, if we set
D =

∑
0≤i≤rT

i · Zi , then T ≃ OC(D)|C .
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Geometric description

Let f : C → B be a general smoothing of a stable curve C of genus g .

For every f -twister T of C , set:

Picg−1
C/B

⊃ Sf (T ) := {square roots of ωf ⊗ T on fibers of f }/ ∼

Theorem

Assume that Aut(C ) = {id}. Let p ∈ C sm.
(1) Then:

N(S∗
f ) ≃

∪T∈Ad1
f (p)Sf (T )

∼
,

where ∼ denotes the gluing along the generic fiber of Sf (T ) → B .
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Geometric description

Theorem

(2) Let σ be a section of f through the B-smooth locus of C and set
E = OC . If (Jσ

E )free is the open subscheme of Jσ
E parameterizing locally

free sheaves, then there exists an immersion:

ψf : N(S∗
f ) →֒ (Jσ

E )free ⊂ J
g−1
f .
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Geometric description

Theorem

(2) Let σ be a section of f through the B-smooth locus of C and set
E = OC . If (Jσ

E )free is the open subscheme of Jσ
E parameterizing locally

free sheaves, then there exists an immersion:

ψf : N(S∗
f ) →֒ (Jσ

E )free ⊂ J
g−1
f .

Remark

The choice of an element of Ad1
f (p) corresponds to the choice of an

equivalence class of multidegrees in Caporaso (’06).
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Geometric description

Theorem

(2) Let σ be a section of f through the B-smooth locus of C and set
E = OC . If (Jσ

E )free is the open subscheme of Jσ
E parameterizing locally

free sheaves, then there exists an immersion:

ψf : N(S∗
f ) →֒ (Jσ

E )free ⊂ J
g−1
f .

Remark

The choice of an element of Ad1
f (p) corresponds to the choice of an

equivalence class of multidegrees in Caporaso (’06).

Remark

In Busonero (’07) it is shown that N(Picd(C∗)) ≃ (Jσ
E )free .

Marco Pacini (U.F.F.) Buenos Aires – July 2008 17 / 20



Example

Marco Pacini (U.F.F.) Buenos Aires – July 2008 18 / 20



Example

For example, if C is the stable curve:

C1

C2

Marco Pacini (U.F.F.) Buenos Aires – July 2008 18 / 20



Example

For example, if C is the stable curve:

C1

C2

Let p ∈ C1 − C2. Then:

Marco Pacini (U.F.F.) Buenos Aires – July 2008 18 / 20



Example

For example, if C is the stable curve:

C1

C2

Let p ∈ C1 − C2. Then:

Ad0
f (p) = {OC}

Marco Pacini (U.F.F.) Buenos Aires – July 2008 18 / 20



Example

For example, if C is the stable curve:

C1

C2

Let p ∈ C1 − C2. Then:

Ad0
f (p) = {OC}

Ad1
f (p) = {OC ,

Marco Pacini (U.F.F.) Buenos Aires – July 2008 18 / 20



Example

For example, if C is the stable curve:

C1
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Ad0
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Example

For example, if C is the stable curve:

C1

C2

Let p ∈ C1 − C2. Then:

Ad0
f (p) = {OC}

Ad1
f (p) = {OC ,OC(C2)|C}

Adi
f (p) = Ad1

f (C1) if i ≥ 1
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Example

Thus:

N(S∗
f ) ≃

Sf (OC ) ∪ Sf (OC(C2)|C )

∼
.
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Example

Thus:

N(S∗
f ) ≃

Sf (OC ) ∪ Sf (OC(C2)|C )

∼
.

It is easy to check that N(S∗
f ) is finite over B .
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