ÉTALE MODELS OF MODULI SPACES OF THETA CHARACTERISTICS

Marco Pacini

U.F.F.

Buenos Aires - July 2008

MARCO PACINI (U.F.F.)

BUENOS AIRES - JULY 2008 1 / 20

▲目▶▲目▶ 目 釣ん(?)

• A **curve** is a projective connected, reduced, Gorenstein variety of dimension 1 over an algebraically closed field *k* of characteristic zero.

-

200

イヨトイヨト

- A **curve** is a projective connected, reduced, Gorenstein variety of dimension 1 over an algebraically closed field *k* of characteristic zero.
- We will assume that a curve has genus $g \ge 3$.

= 990

• • = • • = •

- A **curve** is a projective connected, reduced, Gorenstein variety of dimension 1 over an algebraically closed field *k* of characteristic zero.
- We will assume that a curve has genus $g \ge 3$.
- A semistable (resp. stable) curve is a nodal curve such that every smooth rational component intersects the rest of the curve in at least 2 (resp. 3) points.

- A **curve** is a projective connected, reduced, Gorenstein variety of dimension 1 over an algebraically closed field *k* of characteristic zero.
- We will assume that a curve has genus $g \ge 3$.
- A semistable (resp. stable) curve is a nodal curve such that every smooth rational component intersects the rest of the curve in at least 2 (resp. 3) points.

2/20

BUENOS AIRES - JULY 2008

• Let $B = \operatorname{Spec} R$, R a DVR. Let C be a stable curve. A general smoothing $f : C \to B$ of C is a proper and flat morphism f, $C = f^{-1}(0), C^* \to B^* := B - 0$ smooth, and C smooth.

Goals

MARCO PACINI (U.F.F.)

• Denote by $S_f^* \to B^*$ the moduli scheme that parameterizes theta characteristics on the fibers of $\mathcal{C}^* \to B^*$.

- Denote by S^{*}_f → B^{*} the moduli scheme that parameterizes theta characteristics on the fibers of C^{*} → B^{*}.
- S_f^* is étale over B^* .

- Denote by S^{*}_f → B^{*} the moduli scheme that parameterizes theta characteristics on the fibers of C^{*} → B^{*}.
- S_f^* is étale over B^* .
- We want to:

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 − つへつ

- Denote by S^{*}_f → B^{*} the moduli scheme that parameterizes theta characteristics on the fibers of C^{*} → B^{*}.
- S_f^* is étale over B^* .
- We want to:
 (1) describe a distinguished B-model of S^{*}_f, étale over B, via combinatorial invariants of C.

- Denote by $S_f^* \to B^*$ the moduli scheme that parameterizes theta characteristics on the fibers of $\mathcal{C}^* \to B^*$.
- S_f^* is étale over B^* .
- We want to:

(1) describe a distinguished *B*-model of S_f^* , étale over *B*, via combinatorial invariants of *C*.

(2) give a modular interpretation of such a model.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 − つへつ

One can see that the maximal étale B-model of S^{*}_f (w.r.t. inclusion) is the Néron model N(S^{*}_f) of S^{*}_f.

- One can see that the maximal étale B-model of S_f^* (w.r.t. inclusion) is the **Néron model** $N(S_f^*)$ of S_f^* .
- More generally: let K=field of fractions of the DVR R. Consider a smooth, separated, finite type K-scheme X_K .

SQ Q

- One can see that the maximal étale B-model of S^{*}_f (w.r.t. inclusion) is the Néron model N(S^{*}_f) of S^{*}_f.
- More generally: let K=field of fractions of the DVR R. Consider a smooth, separated, finite type K-scheme X_K.
- A Néron model $N(X_K)$ of X_K is a smooth, separated, finite type *B*-scheme, $N(X_K)/K = X_K$ and satisfying the *Néron mapping property*.

NMP: For every smooth B-scheme Y and morphism $\phi_K \colon Y_K \to X_K$, there exists a unique extension $\phi \colon Y \to N(X_K)$ of ϕ_K .

- One can see that the maximal étale B-model of S^{*}_f (w.r.t. inclusion) is the Néron model N(S^{*}_f) of S^{*}_f.
- More generally: let K=field of fractions of the DVR R. Consider a smooth, separated, finite type K-scheme X_K.
- A Néron model N(X_K) of X_K is a smooth, separated, finite type B-scheme, N(X_K)/K = X_K and satisfying the Néron mapping property.
 NMP: For every smooth B-scheme Y and morphism φ_K: Y_K → X_K,

there exists a unique extension $\phi: Y \to N(X_K)$ of ϕ_K .

• If $N(X_K)$ exists, it is unique up to a unique isomorphism.

Combinatorial description

MARCO PACINI (U.F.F.)

• The **dual graph** of a stable curve *C* is the the graph whose edges are the nodes of C and whose vertices are the irreducible components of С.

Sac

- The **dual graph** of a stable curve *C* is the the graph whose edges are the nodes of *C* and whose vertices are the irreducible components of *C*.
- Let $f: \mathcal{C} \to B$ a general smoothing of a stable curve C and S_f^* be the moduli scheme of theta characteristics on the smooth fibers of f.

SOG

- The dual graph of a stable curve C is the the graph whose edges are the nodes of C and whose vertices are the irreducible components of С.
- Let $f: \mathcal{C} \to B$ a general smoothing of a stable curve \mathcal{C} and S_{f}^{*} be the moduli scheme of theta characteristics on the smooth fibers of f.

Theorem

(Chiodo ('08)). $N(S_{f}^{*})$ is finite over B if and only if the dual graph of C has cycles that always share an even number of edges.

SOG

MARCO PACINI (U.F.F.)

• Let *C* be a stable curve. Let *X* be a **blow-up** of *C*.

• Let *C* be a stable curve. Let *X* be a **blow-up** of *C*.

BUENOS AIRES - JULY 2008 6 / 20

SQC

• Let *C* be a stable curve. Let *X* be a **blow-up** of *C*.

In general, X is the union of a partial desingularization of C and smooth rational curves, called **exceptional components**.

• Let *C* be a stable curve. Let *X* be a **blow-up** of *C*.

In general, X is the union of a partial desingularization of C and smooth rational curves, called **exceptional components**.

A spin curve of C is ξ = (X_ξ, L, α), where X_ξ is a blow-up of C, L ∈ Pic(X_ξ) and α: L^{⊗2} → ω_{X_ξ} is a homomorphism, such that:
(1) L|_E ≃ O_E(1) for each E exceptional.
(2) α is an isomorphism away from the exceptional components.

200

イロト イポト イヨト イヨト 二連

MARCO PACINI (U.F.F.)

• Let $f: \mathcal{C} \to B$ be a family of a stable curves.

- Let $f: \mathcal{C} \to B$ be a family of a stable curves.
- Caporaso-Casagrande-Cornalba ('07): construction of the moduli space $\overline{S_f}$ of (the isomorphism classes of) spin curves on the fibers of f (char(k) = 0).

▲目▶▲目▶ 目 のQ@

- Let $f: \mathcal{C} \to B$ be a family of a stable curves.
- Caporaso-Casagrande-Cornalba ('07): construction of the moduli space $\overline{S_f}$ of (the isomorphism classes of) spin curves on the fibers of f (char(k) = 0).
- Let $f: \mathcal{C} \to B$ be a general smoothing of a stable curve C and S_f^* be the moduli scheme of theta characteristics on the smooth fibers of f.

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ● � Q Q @

- Let $f: \mathcal{C} \to B$ be a family of a stable curves.
- Caporaso-Casagrande-Cornalba ('07): construction of the moduli space $\overline{S_f}$ of (the isomorphism classes of) spin curves on the fibers of f (char(k) = 0).
- Let $f: \mathcal{C} \to B$ be a general smoothing of a stable curve C and S_f^* be the moduli scheme of theta characteristics on the smooth fibers of f.
- $\overline{S_f}$ compactifies S_f^* over B. $\overline{S_f} \to B$ is finite and the fiber over 0 parameterizes the set of (the isomorphism classes of) spin curves of C.

MARCO PACINI (U.F.F.)

Let ξ = (X_ξ, L, α) be a spin curve of a stable curve C. Let E be the union of the exceptional components of X_ξ.

- Let ξ = (X_ξ, L, α) be a spin curve of a stable curve C. Let E be the union of the exceptional components of X_ξ.
- The graph Σ_{Xξ} is the graph whose edges are the exceptional component of X_ξ and whose vertices are the connected components of the complement of E in X_ξ.

- Let ξ = (X_ξ, L, α) be a spin curve of a stable curve C. Let E be the union of the exceptional components of X_ξ.
- The graph Σ_{Xξ} is the graph whose edges are the exceptional component of X_ξ and whose vertices are the connected components of the complement of E in X_ξ.

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve C with $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu \colon \overline{S_{f}^{\nu}} \to \overline{S_{f}}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$:

San

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve C with $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$.

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve C with $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (2) for each $\xi' \in \nu^{-1}(\xi)$, ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$.
THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve C with $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (2) for each $\xi' \in \nu^{-1}(\xi)$, ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (3) the graph $\Sigma_{X_{\xi}}$ is bipartite.

San

不得下 イモト イモト・モ

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve C with $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (2) for each $\xi' \in \nu^{-1}(\xi)$, ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (3) the graph $\Sigma_{X_{\xi}}$ is bipartite. The Néron model $N(S_f^*)$ is isomorphic to the étale locus of $\overline{S_f^{\nu}} \to B$.

San

化间面 化压制 化压制 一座

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve Cwith $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (2) for each $\xi' \in \nu^{-1}(\xi)$, ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (3) the graph $\Sigma_{X_{\xi}}$ is bipartite. The Néron model $N(S_f^*)$ is isomorphic to the étale locus of $\overline{S_f^{\nu}} \to B$.

• It is possible to recover the combinatorial result of Chiodo ('08).

BUENOS AIRES - JULY 2008

San

9 / 20

THEOREM

(char(k) = 0). Let $f: C \to B$ a general smoothing of a stable curve Cwith $Aut(C) = \{id\}$. Consider the moduli space $\overline{S_f}$ of spin curves. Let $\nu: \overline{S_f^{\nu}} \to \overline{S_f}$ be its normalization. The following properties are equivalent for any $\xi = (X_{\xi}, L, \alpha) \in \overline{S_f}$: (1) there exists $\xi' \in \nu^{-1}(\xi)$ such that ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (2) for each $\xi' \in \nu^{-1}(\xi)$, ξ' is in the étale locus of $\overline{S_f^{\nu}} \to B$. (3) the graph $\Sigma_{X_{\xi}}$ is bipartite. The Néron model $N(S_f^*)$ is isomorphic to the étale locus of $\overline{S_f^{\nu}} \to B$.

- It is possible to recover the combinatorial result of Chiodo ('08).
- For example, if C has 2 components and 2 nodes, then N(S^{*}_f) is finite over B.

San

<ロト < 同ト < 三ト < 三ト - 三・

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 10 / 20

• Let $\mathcal{C} \to B$ a general smoothing of a stable curve C of genus g and $\operatorname{Pic}^{d} \mathcal{C}^{*}$ the degree d relative Picard variety.

• Let $\mathcal{C} \to B$ a general smoothing of a stable curve C of genus g and $\operatorname{Pic}^{d} \mathcal{C}^{*}$ the degree d relative Picard variety.

THEOREM

(Caporaso ('06)). Assume that (d - g + 1, 2g - 2) = 1. Let $\overline{\mathcal{M}}_g$ be the stack of stable curves. Then there exists a smooth DM-stack $\mathcal{P}_{d,g}$, with a natural strongly representable morphism to $\overline{\mathcal{M}}_g$, such that:

$$N(\operatorname{Pic}^{d}\mathcal{C}^{*}) \simeq B imes_{\overline{\mathcal{M}}_{g}} \mathcal{P}_{d,g}.$$

• Let $\mathcal{C} \to B$ a general smoothing of a stable curve C of genus g and $\operatorname{Pic}^{d} \mathcal{C}^{*}$ the degree d relative Picard variety.

THEOREM

(Caporaso ('06)). Assume that (d - g + 1, 2g - 2) = 1. Let $\overline{\mathcal{M}}_g$ be the stack of stable curves. Then there exists a smooth DM-stack $\mathcal{P}_{d,g}$, with a natural strongly representable morphism to $\overline{\mathcal{M}}_g$, such that:

$$N(\operatorname{Pic}^{d}\mathcal{C}^{*}) \simeq B imes_{\overline{\mathcal{M}}_{g}} \mathcal{P}_{d,g}.$$

• Let $\overline{P}_{d,g} \to \overline{M_g}$ be Caporaso's compactification of the universal Picard variety.

不得下 イモト イモト・モ

• Let $\mathcal{C} \to B$ a general smoothing of a stable curve C of genus g and $\operatorname{Pic}^{d} \mathcal{C}^{*}$ the degree d relative Picard variety.

THEOREM

(Caporaso ('06)). Assume that (d - g + 1, 2g - 2) = 1. Let $\overline{\mathcal{M}}_g$ be the stack of stable curves. Then there exists a smooth DM-stack $\mathcal{P}_{d,g}$, with a natural strongly representable morphism to $\overline{\mathcal{M}}_g$, such that:

$$N(\operatorname{Pic}^{d} \mathcal{C}^{*}) \simeq B imes_{\overline{\mathcal{M}}_{g}} \mathcal{P}_{d,g}.$$

- Let $\overline{P}_{d,g} \to \overline{M_g}$ be Caporaso's compactification of the universal Picard variety.
- $\overline{P}_{d,g}$ parameterizes (equivalence classes of) balanced line bundles of degree d over semistable curves of genus g.

• Let $\mathcal{C} \to B$ a general smoothing of a stable curve C of genus g and $\operatorname{Pic}^{d} \mathcal{C}^{*}$ the degree d relative Picard variety.

THEOREM

(Caporaso ('06)). Assume that (d - g + 1, 2g - 2) = 1. Let $\overline{\mathcal{M}}_g$ be the stack of stable curves. Then there exists a smooth DM-stack $\mathcal{P}_{d,g}$, with a natural strongly representable morphism to $\overline{\mathcal{M}}_g$, such that:

$$N(\operatorname{Pic}^{d} \mathcal{C}^{*}) \simeq B imes_{\overline{\mathcal{M}}_{g}} \mathcal{P}_{d,g}.$$

- Let $\overline{P}_{d,g} \to \overline{M_g}$ be Caporaso's compactification of the universal Picard variety.
- $\overline{P}_{d,g}$ parameterizes (equivalence classes of) balanced line bundles of degree d over semistable curves of genus g.
- \$\mathcal{P}_{d,g}\$ is the stack version of the open subset of \$\mathcal{P}_{d,g}\$ parameterizing balanced line bundles of degree \$d\$ on stable curves of genus \$g\$.

MARCO PACINI (U.F.F.)

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 11 / 20

• If C has genus g, then the degree of a theta characteristic is d = g - 1.

- If C has genus g, then the degree of a theta characteristic is d = g 1.
- We look for different compactified Jacobians to describe $N(S_f^*)$.

- If C has genus g, then the degree of a theta characteristic is d = g 1.
- We look for different compactified Jacobians to describe $N(S_f^*)$.
- If d = g 1, the compactified Jacobians constructed by Caporaso, Oda-Seshadri, Simpson, are all isomorphic.

- If C has genus g, then the degree of a theta characteristic is d = g 1.
- We look for different compactified Jacobians to describe $N(S_f^*)$.
- If d = g 1, the compactified Jacobians constructed by Caporaso, Oda-Seshadri, Simpson, are all isomorphic.
- Esteves constructed a different compactified Jacobian.

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 12 / 20

• Let $f: \mathcal{C} \to B$ be a family of curves. Fix an integer d.

- Let $f: \mathcal{C} \to B$ be a family of curves. Fix an integer d.
- *I* over a curve *C* is simple if End(I) = k.

- Let $f: \mathcal{C} \to B$ be a family of curves. Fix an integer d.
- *I* over a curve *C* is simple if End(I) = k.
- The compactified Jacobian $\overline{J}_f^d \to B$ is:

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 13 / 20

Let σ: B → C be a section of f: C → B through the B-smooth locus of C.

Let \mathcal{E} be a vector bundle on \mathcal{C} of rank r > 0 and degree r(g - 1 - d), i.e. \mathcal{E} is a **polarization** on \mathcal{C} .

Let σ: B → C be a section of f: C → B through the B-smooth locus of C.

Let \mathcal{E} be a vector bundle on \mathcal{C} of rank r > 0 and degree r(g - 1 - d), i.e. \mathcal{E} is a **polarization** on \mathcal{C} .

Let f: C → {pt} be the trivial family, C a curve. Let p be a smooth point of C. Then I over C is p-quasi-stable w.r.t. E if for every subcurve Ø ≠ Y ⊊ C:

$$\chi(I_Y) \geq -\frac{\deg \mathcal{E}|_Y}{r}$$

and > holds for every $p \in Y$, where $I_Y = (I|_Y)/\text{Tors}$.

Let σ: B → C be a section of f: C → B through the B-smooth locus of C.

Let \mathcal{E} be a vector bundle on \mathcal{C} of rank r > 0 and degree r(g - 1 - d), i.e. \mathcal{E} is a **polarization** on \mathcal{C} .

Let f: C → {pt} be the trivial family, C a curve. Let p be a smooth point of C. Then I over C is p-quasi-stable w.r.t. E if for every subcurve Ø ≠ Y ⊊ C:

$$\chi(I_Y) \geq -\frac{\deg \mathcal{E}|_Y}{r}$$

and > holds for every $p \in Y$, where $I_Y = (I|_Y)/\text{Tors}$.

• We have a distinguished subset $\overline{J}_{\mathcal{E}}^{\sigma}$ of \overline{J}_{f}^{d} :

 $\overline{J}_{\mathcal{E}}^{\sigma} = \{ \text{torsion free, rank-one, simple sheaves of degree } d \text{ on}$ $f^{-1}(b), \ \sigma(b)\text{-quasi-stable w.r.t. } \mathcal{E}|_{f^{-1}(b)}, b \in B \} / \sim$

Let σ: B → C be a section of f: C → B through the B-smooth locus of C.

Let \mathcal{E} be a vector bundle on \mathcal{C} of rank r > 0 and degree r(g - 1 - d), i.e. \mathcal{E} is a **polarization** on \mathcal{C} .

Let f: C → {pt} be the trivial family, C a curve. Let p be a smooth point of C. Then I over C is p-quasi-stable w.r.t. E if for every subcurve Ø ≠ Y ⊊ C:

$$\chi(I_Y) \geq -\frac{\deg \mathcal{E}|_Y}{r}$$

and > holds for every $p \in Y$, where $I_Y = (I|_Y)/\text{Tors}$.

• We have a distinguished subset $\overline{J}_{\mathcal{E}}^{\sigma}$ of \overline{J}_{f}^{d} :

 $\overline{J}_{\mathcal{E}}^{\sigma} = \{ \text{torsion free, rank-one, simple sheaves of degree } d \text{ on}$ $f^{-1}(b), \ \sigma(b)\text{-quasi-stable w.r.t. } \mathcal{E}|_{f^{-1}(b)}, b \in B \} / \sim$

• $\overline{J}_{\mathcal{E}}^{\sigma}$ is a proper *B*-scheme.

MARCO PACINI (U.F.F.)

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 14 / 20

• Let $f: \mathcal{C} \to B$ be a smoothing of a stable curve C with irreducible components C_1, \ldots, C_{γ} .

- Let $f: \mathcal{C} \to B$ be a smoothing of a stable curve C with irreducible components C_1, \ldots, C_{γ} .
- *T* ∈ Pic(*C*) is a *f*-twister of *C* if *T* ≃ O_C(*D*)|_C, where *D* = ∑ *a_iC_i* is a Cartier divisor of C.

- Let $f: \mathcal{C} \to B$ be a smoothing of a stable curve C with irreducible components C_1, \ldots, C_{γ} .
- *T* ∈ Pic(*C*) is a *f*-twister of *C* if *T* ≃ O_C(*D*)|_C, where *D* = ∑ *a_iC_i* is a Cartier divisor of C.
- Let $p \in C^{sm}$. A *f*-twister *T* of *C* is *p*-admissible if for every $L \in \text{Pic}(C)$ such that $L^{\otimes 2} \simeq \omega_C \otimes T$, then *L* is *p*-quasi-stable with respect to $\mathcal{E} = \mathcal{O}_C$.

MARCO PACINI (U.F.F.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □
 BUENOS AIRES - JULY 2008
 15 / 20

• Let $p \in C^{sm}$. Set:

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} p \text{-admissible } f \text{-twister s.t.} \}$

 $\min\{a_i\} = 0, \, \max\{a_i\} \le r, \, \}$

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} \text{ p-admissible } f\text{-twister s.t.} \}$

$$\min\{a_i\} = 0, \max\{a_i\} \le r, \}$$

LEMMA

Let $f: C \to B$ be a general smoothing of a stable curve C and $p \in C^{sm}$. Let T be a f-twister of C. Then the following properties are equivalent:

• Let
$$p \in C^{sm}$$
. Set:

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} \text{ p-admissible } f\text{-twister s.t.} \}$

$$\min\{a_i\} = 0, \max\{a_i\} \le r, \}$$

LEMMA

Let $f: C \to B$ be a general smoothing of a stable curve C and $p \in C^{sm}$. Let T be a f-twister of C. Then the following properties are equivalent: (1) T is p-admissible.

• Let $p \in C^{sm}$. Set:

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} \text{ p-admissible } f\text{-twister s.t.}$

$$\min\{a_i\} = 0, \max\{a_i\} \le r, \}$$

LEMMA

Let $f: C \to B$ be a general smoothing of a stable curve C and $p \in C^{sm}$. Let T be a f-twister of C. Then the following properties are equivalent: (1) T is p-admissible. (2) One of the following properties holds:

• Let $p \in C^{sm}$. Set:

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} p \text{-admissible } f \text{-twister s.t.} \}$

$$\min\{a_i\} = 0, \max\{a_i\} \le r, \}$$

LEMMA

Let $f: C \to B$ be a general smoothing of a stable curve C and $p \in C^{sm}$. Let T be a f-twister of C. Then the following properties are equivalent: (1) T is p-admissible. (2) One of the following properties holds: (i) there are no roots of $\omega_C \otimes T$

• Let $p \in C^{sm}$. Set:

 $\operatorname{Ad}_{f}^{r}(p) = \{T \simeq \mathcal{O}_{\mathcal{C}}(\sum a_{i}C_{i})|_{C} p \text{-admissible } f \text{-twister s.t.} \}$

$$\min\{a_i\} = 0, \max\{a_i\} \le r, \}$$

LEMMA

Let $f: C \to B$ be a general smoothing of a stable curve C and $p \in C^{sm}$. Let T be a f-twister of C. Then the following properties are equivalent: (1) T is p-admissible. (2) One of the following properties holds: (i) there are no roots of $\omega_C \otimes T$ (ii) there is a unique partition of C into non-empty subcurves Z_0, \ldots, Z_{r_T} , $Z_h \cap Z_{h'} \neq \emptyset$ if and only if $|h - h'| \leq 1$ and $p \in Z_0$, such that, if we set $D = \sum_{0 \leq i \leq r_T} i \cdot Z_i$, then $T \simeq \mathcal{O}_C(D)|_C$.

Geometric description

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○

 BUENOS AIRES - JULY 2008
 16 / 20
• Let $f: \mathcal{C} \to B$ be a general smoothing of a stable curve C of genus g.

- Let $f: \mathcal{C} \to B$ be a general smoothing of a stable curve C of genus g.
- For every *f*-twister *T* of *C*, set:

 $\operatorname{Pic}_{\mathcal{C}/B}^{g-1} \supset S_f(T) := \{ \text{square roots of } \omega_f \otimes T \text{ on fibers of } f \} / \sim$

Let f: C → B be a general smoothing of a stable curve C of genus g.
For every f-twister T of C, set:

 $\operatorname{Pic}_{\mathcal{C}/B}^{g-1} \supset S_f(T) := \{ \text{square roots of } \omega_f \otimes T \text{ on fibers of } f \} / \sim$

THEOREM

Assume that $Aut(C) = \{id\}$. Let $p \in C^{sm}$.

Let f: C → B be a general smoothing of a stable curve C of genus g.
For every f-twister T of C, set:

$$\operatorname{Pic}_{\mathcal{C}/B}^{g-1} \supset S_f(T) := \{ \text{square roots of } \omega_f \otimes T \text{ on fibers of } f \} / \sim$$

THEOREM

Assume that
$$Aut(C) = \{id\}$$
. Let $p \in C^{sm}$.
(1) Then:
$$N(S_f^*) \simeq \frac{\bigcup_{T \in Ad_f^1(p)} S_f(T)}{\sim},$$

where \sim denotes the gluing along the generic fiber of $S_f(T) \rightarrow B$.

THEOREM

(2) Let σ be a section of f through the B-smooth locus of C and set $\mathcal{E} = \mathcal{O}_{\mathcal{C}}$. If $(J_{\mathcal{E}}^{\sigma})^{\text{free}}$ is the open subscheme of $J_{\mathcal{E}}^{\sigma}$ parameterizing locally free sheaves, then there exists an immersion:

$$\psi_f \colon \mathcal{N}(S_f^*) \hookrightarrow (J_{\mathcal{E}}^{\sigma})^{free} \subset \overline{J}_f^{g-1}.$$

San

Theorem

(2) Let σ be a section of f through the B-smooth locus of C and set $\mathcal{E} = \mathcal{O}_{\mathcal{C}}$. If $(J_{\mathcal{E}}^{\sigma})^{\text{free}}$ is the open subscheme of $J_{\mathcal{E}}^{\sigma}$ parameterizing locally free sheaves, then there exists an immersion:

$$\psi_f \colon \mathsf{N}(\mathsf{S}_f^*) \hookrightarrow (\mathsf{J}_{\mathcal{E}}^{\sigma})^{\mathsf{free}} \subset \overline{\mathsf{J}}_f^{g-1}.$$

REMARK

The choice of an element of $Ad_f^1(p)$ corresponds to the choice of an equivalence class of multidegrees in Caporaso ('06).

San

THEOREM

(2) Let σ be a section of f through the B-smooth locus of C and set $\mathcal{E} = \mathcal{O}_{\mathcal{C}}$. If $(J_{\mathcal{E}}^{\sigma})^{\text{free}}$ is the open subscheme of $J_{\mathcal{E}}^{\sigma}$ parameterizing locally free sheaves, then there exists an immersion:

$$\psi_f \colon \mathsf{N}(\mathsf{S}_f^*) \hookrightarrow (\mathsf{J}_{\mathcal{E}}^{\sigma})^{\mathsf{free}} \subset \overline{\mathsf{J}}_f^{g-1}.$$

REMARK

The choice of an element of $Ad_f^1(p)$ corresponds to the choice of an equivalence class of multidegrees in Caporaso ('06).

REMARK

In Busonero ('07) it is shown that $N(Pic^d(\mathcal{C}^*)) \simeq (J_{\mathcal{E}}^{\sigma})^{free}$.

MARCO PACINI (U.F.F.)

BUENOS AIRES - JULY 2008 17 / 20

イロト 不得 トイヨト イヨト 二三

MARCO PACINI (U.F.F.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □
 BUENOS AIRES - JULY 2008
 18 / 20

• For example, if C is the stable curve:

• For example, if C is the stable curve:

• Let $p \in C_1 - C_2$. Then:

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ シ ● ■ シ ● ○ ○ ○

 BUENOS AIRES - JULY 2008
 18 / 20

• For example, if C is the stable curve:

• Let $p \in C_1 - C_2$. Then:

 $\operatorname{Ad}_{f}^{0}(p) = \{\mathcal{O}_{C}\}$

MARCO PACINI (U.F.F.)

• For example, if C is the stable curve:

• Let $p \in C_1 - C_2$. Then:

$$\operatorname{Ad}_{f}^{0}(p) = \{\mathcal{O}_{C}\}$$

$$\mathsf{Ad}_f^1(p) = \{\mathcal{O}_C,$$

MARCO PACINI (U.F.F.)

• For example, if C is the stable curve:

• Let $p \in C_1 - C_2$. Then:

$$\operatorname{Ad}_{f}^{0}(p) = \{\mathcal{O}_{C}\}$$

$$\mathsf{Ad}_f^1(p) = \{\mathcal{O}_C, \mathcal{O}_C(C_2)|_C\}$$

MARCO PACINI (U.F.F.)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ シ ● ■ シ ● ○ ○ ○

 BUENOS AIRES - JULY 2008
 18 / 20

• For example, if C is the stable curve:

• Let $p \in C_1 - C_2$. Then:

$$\operatorname{Ad}_{f}^{0}(p) = \{\mathcal{O}_{C}\}$$

 $\mathrm{Ad}_{f}^{1}(p) = \{\mathcal{O}_{C}, \mathcal{O}_{C}(C_{2})|_{C}\}$

$$\operatorname{Ad}_{f}^{i}(p) = \operatorname{Ad}_{f}^{1}(C_{1}) \text{ if } i \geq 1$$

MARCO PACINI (U.F.F.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □
 BUENOS AIRES - JULY 2008
 19 / 20

• Thus:

$$N(S_f^*) \simeq rac{S_f(\mathcal{O}_C) \cup S_f(\mathcal{O}_C(C_2)|_C)}{\sim}.$$

MARCO PACINI (U.F.F.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □
 BUENOS AIRES - JULY 2008
 19 / 20

• It is easy to check that $N(S_f^*)$ is finite over B.

MARCO PACINI (U.F.F.)

Bibliography

- *Busonero ('07)*: Néron models and compactified Picard schemes of curves embedded in smooth surfaces, preprint 2007.
- Caporaso ('06): Néron models and compactified Picard schemes over the moduli stack of stable curves. Amer. Journ. of Math. **130** (2008) 1–47.
- Caporaso, Casagrande, Cornalba ('07). Moduli of roots of line bundles on curves. Trans. of the Amer. Math. Soc. **359** (2004) 3733–3768.
- *Chiodo ('08)*: Quantitative Néron model theory for torsion bundles. arXiv, math. 060368
- *Néron ('64)*: Modéles minimaux des variétés abéliennes sur les corps locaux et globaux. IHES Sci. Publ. Math. (1964) **21**.
- *Pacini ('08)*: On Néron models of moduli spaces of theta characteristics, submitted preprint 2008.