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@ A curve is a projective connected, reduced variety of dimension 1
over an algebraically closed field of characteristic zero.
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@ A curve is a projective connected, reduced variety of dimension 1
over an algebraically closed field of characteristic zero.
o Let C be a smooth curve

J2 = {degree d line bundle on C} /iso.
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Introduction

@ A curve is a projective connected, reduced variety of dimension 1
over an algebraically closed field of characteristic zero.

@ Let C be a smooth curve

J2 = {degree d line bundle on C} /iso.

e Consider the Abel map:
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Introduction

@ A curve is a projective connected, reduced variety of dimension 1
over an algebraically closed field of characteristic zero.

@ Let C be a smooth curve

J2 = {degree d line bundle on C} /iso.

e Consider the Abel map:

Ag: C4— JiC
(pla‘”vpd)_)OC(pl—’_"'—i_pd)
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o Extend the setting to singular curves.
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o Extend the setting to singular curves.
o Consider a family f: C — B of irreducible nodal curve.
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o Extend the setting to singular curves.
o Consider a family f: C — B of irreducible nodal curve.
o Pick the compactified Jacobian:

—d .
J¢ c J7 = {rank one torsion free sheaves

of degree d on fibers of f}/iso
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o Extend the setting to singular curves.
o Consider a family f: C — B of irreducible nodal curve.
o Pick the compactified Jacobian:

—d .
J¢ c J7 = {rank one torsion free sheaves

of degree d on fibers of f}/iso
@ We can consider the n-power map:
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Singular curves

Extend the setting to singular curves.

Consider a family f: C — B of irreducible nodal curve.

Pick the compactified Jacobian:
—d .
J¢ c J; = {rank one torsion free sheaves

of degree d on fibers of f}/iso

e We can consider the n-power map:

C:_) Csm i}j;n

Xn

p— mj
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Singular curves

Extend the setting to singular curves.

Consider a family f: C — B of irreducible nodal curve.

Pick the compactified Jacobian:
—d .
J¢ c J; = {rank one torsion free sheaves

of degree d on fibers of f}/iso

e We can consider the n-power map:

C:_) Csm i}j;n

Xn

p— mj

mp is the maximal ideal of p in f=1(f(p)).
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Singular curves

Extend the setting to singular curves.

Consider a family f: C — B of irreducible nodal curve.

Pick the compactified Jacobian:
—d .
J¢ c J; = {rank one torsion free sheaves

of degree d on fibers of f}/iso

e We can consider the n-power map:

C:_) Csm i}j;n

Xn

p— mj

mp is the maximal ideal of p in f=1(f(p)).
e If n>2 and p is a node, then mff” is not torsion free sheaf. Thus in

general u, does not extend to C.
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@ We can also consider the n-power map for line bundles:
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@ We can also consider the n-power map for line bundles:

J4 > g B, g0
| —
which in general does not extend to J¢
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@ We can also consider the n-power map for line bundles:

J4 > g B, g0
| — %"
which in general does not extend to J¢

@ Indeed, if n > 2 and / is not locally free, then /®" has torsion
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Singular curves
@ We can also consider the n-power map for line bundles:

—d b, —nd
JioJd = Jt
| — I®"
. . —d
which in general does not extend to J¢.

e Indeed, if n > 2 and / is not locally free, then /®" has torsion.
e Problem: how to describe a resolution of the n-power map?
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Singular curves
@ We can also consider the n-power map for line bundles:

Jp o g I
| — %"

which in general does not extend to j,ccl.
e Indeed, if n > 2 and / is not locally free, then /®" has torsion.
e Problem: how to describe a resolution of the n-power map?
@ A resolution of u, gives rise to a resolution of &I, applying the theory
of flat descent to the smooth map:
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Singular curves
@ We can also consider the n-power map for line bundles:

J¢ 5 yd o, e
| — 1®"
which in general does not extend to j,ccl.
e Indeed, if n > 2 and / is not locally free, then /®" has torsion.
o Problem: how to describe a resolution of the n-power map?

@ A resolution of u, gives rise to a resolution of &I, applying the theory
of flat descent to the smooth map:

—d
A: C' xg JETh = Jesa,
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Singular curves
@ We can also consider the n-power map for line bundles:

—d b, —nd
JioJd = Jt
| — I®"
. . —d
which in general does not extend to J¢.

e Indeed, if n > 2 and / is not locally free, then /®" has torsion.

e Problem: how to describe a resolution of the n-power map?

@ A resolution of u, gives rise to a resolution of &I, applying the theory
of flat descent to the smooth map:

—d
A: C' xg JETh = Jesa,
4 is the maximum number of nodes of a fiber of f and

A(pl)"'apévL):[mpl®'.'®mP5®L]
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Let C — B be a family of irreducible curves. Consider the (rational)
n-power map u,: C — 7;" for n > 2. There exists a sequence of blowups:




Let C — B be a family of irreducible curves. Consider the (rational)
n-power map u,: C — 7;" for n > 2. There exists a sequence of blowups:

~C,'I>C,'_1—>'-'C13>C02=C
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The main theorem

THEOREM
Let C — B be a family of irreducible curves. Consider the (rational)
n-power map up: C — j;n for n > 2. There exists a sequence of blowups:

-C,-lC,-_l—>~~C13>Co::C

a positive integer i, and a unique morphism v,: C; — j;n such that

v
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The main theorem

THEOREM
Let C — B be a family of irreducible curves. Consider the (rational)
n-power map up: C — j;n for n > 2. There exists a sequence of blowups:

-C,-lC,-_l—>~~C13>Co::C

a positive integer i, and a unique morphism v,: C; — j;n such that

Vi, « - - Y2Y1Un = v over CM.

v
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The main theorem

THEOREM

Let C — B be a family of irreducible curves. Consider the (rational)
n-power map up: C — j;n for n > 2. There exists a sequence of blowups:
'C,'lc,'_l—>'~C12>C0 =C

a positive integer i, and a unique morphism v,: C; — j;n such that

Vi, « - - Y2Y1Un = v over CM.

Disregarding the minimality of the resolution, the blowup ~; can be chosen
as the blowup along the codimension 2 center ¥; given by:

v
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The main theorem

THEOREM

Let C — B be a family of irreducible curves. Consider the (rational)
n-power map up: C — j;n for n > 2. There exists a sequence of blowups:
'C,'lc,'_l—>'~C12>C0 =C

a positive integer i, and a unique morphism v,: C; — j;n such that

Vi, « - - Y2Y1Un = v over CM.

Disregarding the minimality of the resolution, the blowup ~; can be chosen
as the blowup along the codimension 2 center ¥; given by:

g o= Fittl(Qlci/B),

the subscheme defined by the first Fitting ideal of Qlc,— /B

v
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e Let C — B a smoothing of an irreducible curve with one node p and
C, B smooth.
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e Let C — B a smoothing of an irreducible curve with one node p and
C, B smooth.

@ Pick the threefold C xg C and the diagonal A of C xg C.
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A ——

e Let C — B a smoothing of an irreducible curve with one node p and
C, B smooth.

@ Pick the threefold C xg C and the diagonal A of C xg C.

X
K
A —— CxgC

i
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THE RESOLUTION OF THE SQUARE MAP

@ Let C — B a smoothing of an irreducible curve with one node p and
C, B smooth.

@ Pick the threefold C xg C and the diagonal A of C xg C.
A — X

lf

A —— C XB C

l

C

e Generically, O¢x,c(—2A) induce the square map u: C — j;2
C xp C is singular at (p, p).
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THE RESOLUTION OF THE SQUARE MAP

o Let C — B a smoothing of an irreducible curve with one node p and
C, B smooth.

@ Pick the threefold C xg C and the diagonal A of C xg C.
A — X

lf

A —— C XB C

l

C

e Generically, O¢x,c(—2A) induce the square map u: C — 7;2
C xp C is singular at (p, p).

@ The blow-up X of C xg C along A is a smooth variety. Let A ¢ X
be the strict transform of A.
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o Pick the blow-up (; — C at p and change the base.
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o Pick the blow-up (; — C at p and change the base.
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THE RESOLUTION OF THE SQUARE MAP

@ Pick the blow-up (3 — C at p and change the base.

il

o

[=—=s]e e

Y1 = (1 X¢ X is singular. There are different ways to choose a
desingularization. We choose to blow-up Y; at P! x P!, obtaining the
smooth threefold Xj.
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Set g: X1 — Y1 and choose:
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Set g: X1 — Y1 and choose:

L =0x(-2A +g*(P' x P!))
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Set g: X1 — Y1 and choose:

L =0x(-2A +g*(P' x P!))
Then g, (L) is torsion free on the fibers of Y1/C; and gives a morphism

122 C1 E— jE?B
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Set g: X1 — Y1 and choose:

L =0x(-2A +g*(P' x P!))
Then g, (L) is torsion free on the fibers of Y1/C; and gives a morphism

. —-2
resolving up: C — Jg

122 C1 E— jE?B
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THE RESOLUTION OF THE SQUARE MAP

Set g: X1 — Y1 and choose:

L = Ox,(—2A + g*(P! x P))
Then gi(L) is torsion free on the fibers of Y;/C; and gives a morphism
—=2
vy: G4 — JC/B
. —-2
resolving up: C — J; ™.

There exists a way to describe a resolution of u,, combining base changes
and blow-ups.
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Alpr,

CQCSmi)__

Jf and Jf DJd o Jf
r —d
A: 0 JC/B . JC/B
S Ps L) =[mp, @ ...mp; @ L]
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n

CoCsm G " and J¢ > g Lo 37
—d
A:C% xp J(‘gl/"'B‘,s — JC/B
A(p1,...,ps, L) =[mp, @...mp, ® L].
C6 XBJd+6

A
c/B
)

—d
Je/s

——nd

:
—nd+né
Jejg xsJcg —=
where: ¢n(p1,...ps, L) = (m3",...,m

—nd
Jc/s
Xn | Xn
. mEn 1),
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n —d fy —nd
CoCcmJ"and Jf D J¢ =5 J7

—d
A:C% xp J(‘gl/"'B‘,s — JC/B

A(p1,...,ps, L) =[mp, @...mp, ® L].

5 d+s A —d
¢ xpJeijg——=Jcsg

. o

——nd —nd-+nd —nd
JeypxsJdep —JcyB

where: ¢n(p1,...ps, L) = (m5",...,m3", LON).

To get a resolution of v, it suffices to get a resolution of u,.
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