Abel maps and powers of line bundles on stable curves

Marco Pacini Joint work with E. Esteves and P. Nogueira

Ouro Preto, 12-18 of August 2007

Introduction

A curve is a projective connected, reduced, Gorenstein variety of dimension 1 over $\mathbb{C}.$

C smooth curve.

 $\operatorname{Pic}^{d} C = \{ \text{degree } d \text{ line bundle on } C \} / \text{iso}$

There is the Abel map:

$$A_d \colon C^d \to \operatorname{Pic}^d C$$

defined as:

$$(p_1,\ldots,p_d) \to \mathcal{O}_C(p_1+\cdots+p_d)$$

Let $p \in C$. If C is not \mathbb{P}^1 , we have the Abel-Jacobi embedding:

$$A_1 \colon C \to \mathsf{Pic}^1 C \simeq J_C$$

 $q \to \mathcal{O}_C(q) \to \mathcal{O}_C(q-p)$

Stable curves

Extend the setting to singular curves.

Let *C* be a **stable curve**, i.e. a nodal curve such that any smooth rational component meets the rest of the curve in at least three points.

Let J_C be the **generalized Jacobian** of C and $p \in C^{sm}$. We can consider:

 $C^{sm} \longrightarrow J_C$ $q \to \mathcal{O}_C(q-p)$

If q is a nodal point, then q is not a Cartier divisor.

We can consider different compactifications of ${\cal J}_{\cal C}$

Compactifications of the Picard variety

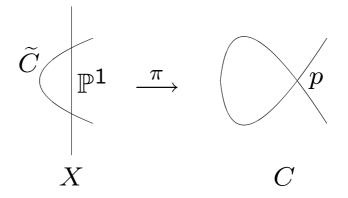
 ${\cal C}$ irreducible stable curve

Altman-Kleiman's compactification:

 $\overline{J}_C^d = \{ \text{rank one torsion free sheaves} \}$

of degree d of C}/iso

Blow-up of C and exceptional component



Caporaso's compactification: if *C* irreducible $\overline{P}_{C}^{d} = \{\text{degree } d \text{ line bundles on blow-ups of } C$ with degree 1 on exceptional components $\}/\text{iso}$

Relative versions: if $f: \mathcal{C} \to B$ is a family of curves, we have Pic_f^d , \overline{J}_f^d and \overline{P}_f^d .

Give a completion of the Abel map with values in \overline{J}_f^d or \overline{P}_f^d .

Caporaso-Esteves: values in \overline{P}_{f}^{d}

Caporaso-Coelho-Esteves: values in \overline{J}_{f}^{d}

The power map

Define the **power map**:

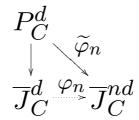
$$\varphi_n$$
 : $\overline{J}_C^d - -- > \overline{J}_C^{nd}$

by the rule:

$$I \longrightarrow I^{\otimes n}.$$

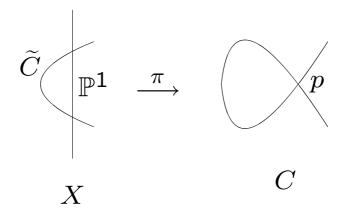
The map is not a morphism: if $I = m_p$, p node, then $I^{\otimes n}$ is not torsion free.

We want to describe a resolution of φ_n :



The idea of the technique used

Let C be a curve with only one node. Let $X = \tilde{C} \cup \mathbb{P}^1$ be the **blow-up** in p:



We fix $I \in \overline{J}_C^d$. There exists $L \in \operatorname{Pic} X$ such that:

$$\pi_*(L) = I \quad \deg_{\mathbb{P}^1} L = \begin{cases} 0 & I \text{ invertible} \\ 1 & I \text{ not invertible} \end{cases}$$

If I is not invertible, one can try to define the power by taking $\pi_*(L^{\otimes n})$, but

$$\pi_*(L^{\otimes n}) = I^{\otimes n}$$

has torsion.

Modifications via twisters

To solve the problem we work in families.

Let $f : \mathcal{C} \to B$ be a smoothing of C, i.e. Bis a smooth curve and $f^{-1}(0) = C$ for a point $0 \in B$ and C_b smooth for $b \neq 0$.

Take a degree 2 covering $B' \to B$ which is totally ramified over $0 \in B$ and the family $\mathcal{C}' \to B'$, where $\mathcal{C}' = \mathcal{C} \times_B B'$.

Pick the blow-up

$$\pi\colon \mathcal{X} \longrightarrow \mathcal{C}'$$

at the node p of C. Then we get the smoothing $\mathcal{X} \to B'$ of X, the blow-up of C at p.

Assume that $I \in \overline{J}_C^d$ is not invertible.

We take a smoothing of I: let \mathcal{I} a coherent sheaf of \mathcal{C}' , flat over B', such that $\mathcal{I}|_C = I$ and $\mathcal{I}|_{C_b}$ is a rank one torsion free sheaf for $b \in B$.

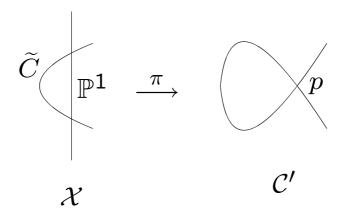
If p is the node of C, then $\pi^{-1}(p) \simeq \mathbb{P}^1$ is a Cartier divisor of \mathcal{X} . We can consider the invertible sheaf \mathcal{M} of \mathcal{X} given by:

$$\mathcal{M} = \mathcal{O}_{\mathcal{X}}(\mathbb{P}^1).$$

There exists a $\mathcal{L} \in Pic(\mathcal{X})$ such that:

 $\pi_*\mathcal{L}=\mathcal{I}.$

We have $deg_{\mathbb{P}^1}\mathcal{L} = 1$.



The construction of a square of I

Up to restrict the base of the family $g: \mathcal{X} \to B'$ we have:

$$X = \mathbb{P}^1 + \tilde{C} = g^*(0) \sim 0$$

so that:

$$\mathcal{M} = \mathcal{O}_{\mathcal{X}}(\mathbb{P}^1) \simeq \mathcal{O}_{\mathcal{X}}(\mathbb{P}^1 - X) \simeq \mathcal{O}_{\mathcal{X}}(-\tilde{C}).$$

If $\mathbb{P}^1 \cap \tilde{C} = \{p_1, p_2\}$, then: $\mathcal{M}|_{\tilde{C}} = \mathcal{O}_{\mathcal{X}}(\mathbb{P}^1)|_{\tilde{C}} = \mathcal{O}_{\tilde{C}}(p_1 + p_2)$ $\mathcal{M}|_{\mathbb{P}^1} = \mathcal{O}_{\mathcal{X}}(-\tilde{C})|_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(-p_1 - p_2)$

Now:

$$\deg_{\mathbb{P}^1}(\mathcal{L}^{\otimes 2}\otimes\mathcal{M})=0.$$

Thus $I^{(2)} := \pi_*((\mathcal{L}^{\otimes 2} \otimes \mathcal{M})|_X)$ is torsion free.

We see $I^{(2)}$ as a square power of I, as it is a limit of a family degenerating also to $I^{\otimes 2}$.

Simplifications

Let C be a nodal curve with only one node.

Let $\mathcal{C} \to B$ be a family having C as a special fiber over $0 \in B$. Consider the power map:

$$\varphi_n \colon \overline{J}^d_{\mathcal{C}/B} - -- > \overline{J}^{nd}_{\mathcal{C}/B}$$

There exists a morphism:

$$A\colon \mathcal{C}\times_B J^{d+1}_{\mathcal{C}/B} \to \overline{J}^d_{\mathcal{C}/B}$$

given by $A(p,L) = [m_p \otimes L]$, where m_p is the maximal ideal of p.

It is known that A is a smooth morphism.

Using the theory of flat descend, to solve the map φ_n it suffices to solve the map ψ_n in the commutative diagram:

where:

$$\psi_n(p,L) = (m_p^{\otimes n}, L^{\otimes n}).$$

The second component of ψ_n is a morphism, then it suffices to solve the map:

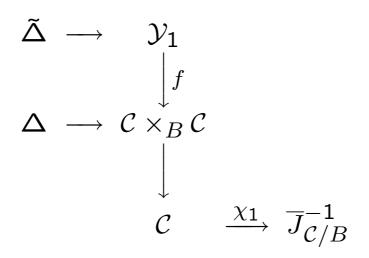
$$\chi_n: \mathcal{C} - -- > \overline{J}_{\mathcal{C}/B}^{-n}$$

given by: $\chi_n(p) = m_p^{\otimes n}$.

The square power

Let C be an irreducible curve with one node p and $\mathcal{C} \to B$ a smoothing of C with C smooth.

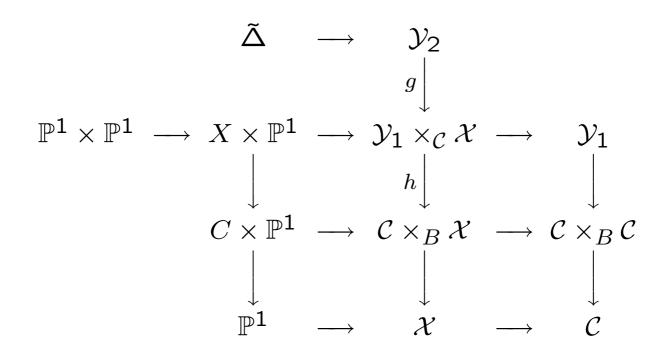
The threefold $\mathcal{C} \times_B \mathcal{C}$ is singular on (p, p). Let Δ be the diagonal of $\mathcal{C} \times_B \mathcal{C}$.



The blow-up \mathcal{Y}_1 of $\mathcal{C} \times_B \mathcal{C}$ along Δ is a smooth variety. Let $\tilde{\Delta} \subset \mathcal{Y}_1$ be the strict transform of Δ . The morphism $\chi_1 \colon \mathcal{C} \to \overline{J}_{\mathcal{C}/B}^{-1}$ is induced by $f_*\left(\mathcal{O}_{\mathcal{Y}_1}(-\tilde{\Delta})\right)$

To get a resolution of $\chi_2 \colon \mathcal{C} \to \overline{J}_{\mathcal{C}/B}^{-2}$, we need other divisors.

Pick the blow-up $\mathcal{X} \to \mathcal{C}$ at p and change the base. Let X be the blow-up of C at p.



Now, $\mathcal{Y}_1 \times_{\mathcal{C}} \mathcal{X}$ is singular. There are different ways to choose a desingularization. The blowup \mathcal{Y}_2 of $\mathcal{Y}_1 \times_B \mathcal{X}$ at $\mathbb{P}^1 \times \mathbb{P}^1$ is smooth. We find in \mathcal{Y}_2 the right modification, but the combinatoric is hard.

For example consider:

$$\mathcal{L}_1 = \mathcal{O}_{\mathcal{Y}_2}(-2\tilde{\Delta} + g^*(\mathbb{P}^1 \times \mathbb{P}^1))$$
$$\mathcal{L}_2 = \mathcal{O}_{\mathcal{Y}_2}(-2\tilde{\Delta} + g^*(C^{\nu} \times \mathbb{P}^1))$$

 $h_*(g_*(\mathcal{L}_1))$ is torsion free on the fibers and gives a resolution of χ_2 :

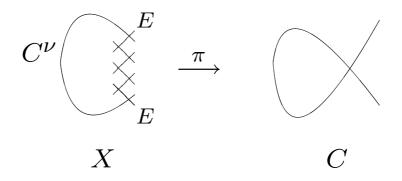
$$\mathcal{X} \longrightarrow \overline{J}_{\mathcal{C}/B}^{-2}$$

 $h_*(g_*(\mathcal{L}_2))$ is not torsion free on the fibers.

There exists a way to describe a resolution of χ_n , combining base changes and blow-ups.

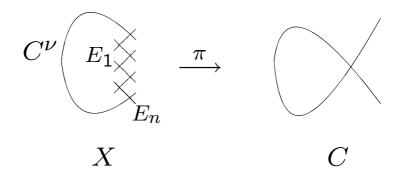
A difference between \overline{J}_C^d and \overline{P}_C^d

Let C be an irreducible curve and pick a semistable curve X over C.



A point of \overline{P}_C^d is a line bundle on X whose degrees on the exceptional components is positive and sum-up to 1.

To get a point on \overline{J}_C^d , i.e. a torsion free sheaf on C, we have:



Lemma. Let $L \in \text{Pic}X$. Then π_*L is a torsion free sheaf on C with deg $\pi_*L = \text{deg }L$ if and only if:

- (a) $\deg_E L \in \{-1, 0, 1\}$, *E* exceptional;
- (b) if E_1, \ldots, E_n chain of exceptional curves, then:

$$\left|\sum_{1\leq i\leq n} \deg_{E_i} L\right|\leq 1.$$