Trigonometria

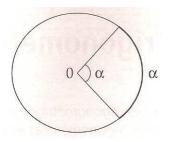
A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos.

Historicamente, a Trigonometria liga-se à Astronomia, tendo em vista a dificuldade natural que esta apresenta com relação ao cálculo de distâncias impossíveis de serem medidas diretamente. Atribuem-se os primeiros métodos de cálculo dessas distâncias a Hiparco, astrônomo grego que viveu no século II a. C, e é considerado o "pai da Trigonometria".

Foi somente no século XVIII que o matemático suíço Leonhard Euler conseguiu desvincular a Trigonometria da Astronomia, dando àquela o caráter de ramo independente na Matemática.

1. Arcos e ângulos

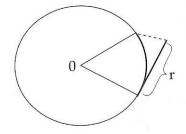
A medida de cada arco equivale à do ângulo central correspondente, independentemente da medida do raio da circunferência. Assim, verificamos que a circunferência toda mede 360°.



Medidas de arcos e ângulos:

Medir um arco ou ângulo é compará-lo com outro, unitário.

- 1. Grau (°): é um arco unitário igual a 1/360 da circunferência que contém o arco a ser medido.
- 2. Radiano (rad) é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido, isto é, corresponde a $1/2\pi$ da circunferência.



Um ângulo pode ser medido em graus ou radianos. Temos as seguintes relações:

 $2\pi = 360^{\circ}$; $\pi = 180^{\circ}$; $\pi/2 = 90^{\circ}$ e assim successivamente.

OBS: π é um número irracional cujo valor é 3,14159...

Podemos através de uma simples regra de três, exprimir qualquer ângulo em radianos e vice-versa.

Exemplos:

1) Exprimir 160° em radianos

2) Exprimir $5\pi/6$ rad em graus

180° ----- π rad x -----
$$5\pi/6$$
 rad

Daí,
$$x = 150^{\circ}$$

Vejamos algumas correspondências importantes:

ARCO	GRAU	RADIANO
	90°	$\frac{\pi}{2}$ rad
	180°	π rad
	270°	$\frac{3\pi}{2}$ rad
$\overline{}$	360°	2π rad

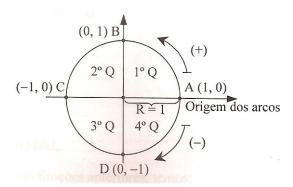
2. O ciclo trigonométrico

O conceito expresso pela palavra ciclo foi introduzido pelo matemático francês Laguerre. Significa uma circunferência com uma direção predefinida, isto é, orientada. Pode-se trabalhar nos sentidos horário ou anti-horário.

Chama-se ciclo trigonométrico a circunferência de raio 1 (R=1), associada a um sistema de eixos cartesianos ortogonais, para a qual valem as seguintes convenções:

- I) A origem do sistema coincide com o centro da circunferência.
- II) O ponto A de coordenadas (1,0) é a origem de todos os arcos a serem medidos na circunferência.

- III) O sentido positivo do percurso é o anti-horário e o negativo é o horário.
- IV) Os pontos A(1,0), B(0,1), C(-1,0) e D(0,-1) dividem a circunferência em quatro partes denominadas quadrantes que são contados a partir de A no sentido anti-horário.



3. Funções periódicas

Definição: Uma função f: $A \subset IR \to B \subset IR$ é dita periódica se existir um número real p>0 tal que f(x+p)=f(x), $\forall x \in A$. O menor valor de p que satisfaz a igualdade é chamado período de f.

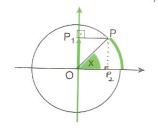
De maneira simples, podemos dizer que uma função periódica é aquela cujo gráfico, a partir de certo instante, se repete.

4. Funções trigonométricas ou circulares

4.1 Função seno

Seja x um ângulo agudo, de tal forma que o arco correspondente a ele possua extremidade P. Unindo O a P, obtemos o raio unitário OP.

O ponto P_1 é a projeção ortogonal de P sobre o eixo vertical e P_2 é a projeção ortogonal de P sobre o eixo horizontal.



Observando a figura ao lado, podemos escrever sen x=PP₂/OP e, por conseqüência, senx=OP₁ pois OP é unitário.

Assim, para encontrarmos o seno de um ângulo, basta projetar ortogonalmente suas extremidades sobre o eixo vertical e medir a distância entre essa projeção e o centro O do ciclo, sempre levando em conta a orientação do eixo (para cima). O eixo vertical será denominado de eixo dos senos.

A partir da noção de seno de um ângulo x, podemos estabelecer o conceito de função seno. De fato, dado um número real x, podemos associar a ele, como vimos, o valor do seno de um ângulo de x rad, ou de um arco de x rad.

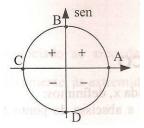
Chama-se função seno a toda função f:IR \rightarrow IR definida por $y=f(x)=\sin x$

- O domínio e contradomínio dessa função são iguais a IR.
- Como a projeção do ponto P está no ciclo trigonométrico, e este tem raio igual a 1, a imagem da função seno é o intervalo [-1,1], isto é, -1 ≤ sen(α) ≤ 1 (significa que essa função é limitada).

4.1.1 Valores notáveis

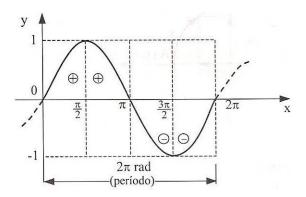
X	0	π/6	π/4	π/3	π/2	π	$3\pi/2$	2π
sen x	0	1/2	$\sqrt{2/2}$	$\sqrt{3/2}$	1	0	-1	0

4.1.2 Sinais



- Considerando a orientação do eixo dos senos, percebemos que a arcos dos 1°
 e 2° quadrantes associam-se valores positivos de senos, e a arcos do 3° e 4°
 quadrantes associam-se valores negativos de senos.
- No 1° e 4° quadrantes, à medida que o ângulo cresce, o seno também cresce; logo a função é crescente nesses quadrantes. Equivalentemente, nos 2° e 3° quadrantes, o seno é decrescente.
- Como, a partir de 2π (uma volta inteira no ciclo), o seno se repete, a função é periódica de período 2π .

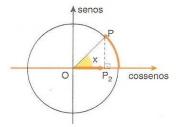
4.1.3 Gráfico (senóide)



• Podemos notar que a função seno é uma função ímpar, isto é, sen(-x)=-sen(x) (seu gráfico é simétrico em relação à origem).

4.2 Cosseno

Na figura a seguir, utilizando o triângulo retângulo OPP₂, podemos escrever cosx=OP₂/OP. Como OP é raio unitário, temos cos x= OP₂.

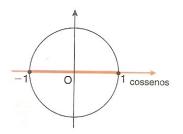


Assim, para encontrarmos o cosseno de um ângulo, basta projetar ortogonalmente a extremidade do arco correspondente sobre o eixo horizontal e medir a distância entre essa projeção e o centro O do ciclo, sempre levando em conta a orientação do eixo (para direita).

A partir da noção de cosseno de um ângulo x, podemos estabelecer o conceito de função cosseno. De fato, dado um número real x, podemos associar a ele, como vimos, o valor do cosseno de um ângulo de x rad ou de um arco de x rad.

Chama-se função cosseno a toda função f:IR \rightarrow IR definida por $y=f(x)=\cos{(x)}$

O domínio e contradomínio da função cosseno são iguais a IR.

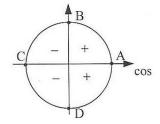


• O intervalo [-1,1] reflete o segmento que é o conjunto de todas as projeções ortogonais de pontos do ciclo trigonométrico. Assim, o conjunto imagem da função cosseno é o intervalo [-1,1], isto é, -1≤ cos x ≤ 1 (significa que essa função é limitada).

4.2.1 Valores notáveis

X	0	π/6	π/4	π/3	π/2	π	$3\pi/2$	2π
cos x	1	$\sqrt{3/2}$	$\sqrt{2/2}$	1/2	0	-1	0	1

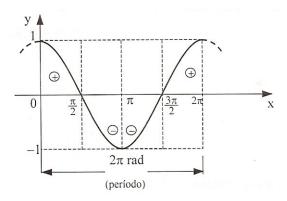
4.2.2 Sinais



• Considerando a orientação do eixo dos cossenos, percebemos que a ângulos do 1° e do 4° quadrantes associam-se cossenos positivos, e a ângulos do 2° e 3° quadrantes associam-se cossenos negativos.

- Nos 3° e 4° quadrantes, o cosseno é crescente e nos 1° e 2° quadrantes, ele é decrescente.
- Como, a partir de 2π (uma volta inteira), o cosseno se repete, a função é periódica de período 2π .

4.2.3 Gráfico (cossenóide)



• Podemos notar que a função cosseno é par, isto é, cos(-x)=cos(x) (seu gráfico é simétrico em relação ao eixo das ordenadas).

Observação

O período e a imagem de funções da forma

$$y = a + b \operatorname{sen} (mx + n)$$
 ou

$$y = a + b \cos(mx + n)$$

com $b \neq 0$ e m $\neq 0$ são dados por:

$$P = \frac{2\pi}{|m|}$$
 rad e Im = $[a - |b|, a + |b|]$

Relação entre senos e cossenos

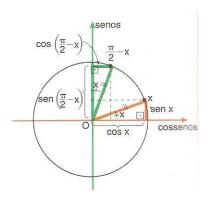
1° arcos complementares

sen
$$x = \cos\left(\frac{\pi}{2} - x\right)$$
, válida para $\forall x \in \mathbb{R}$, ou

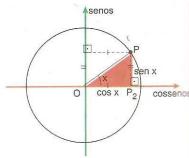
$$\cos x = \sin \left(\frac{\pi}{2} - x\right)$$
, válida para $\forall x \in \mathbb{R}$

Essa relação significa "o seno de um ângulo é igual ao cosseno do seu complemento", ou "o cosseno de um ângulo é igual ao seno do seu complemento".

Essa verificação também é imediata no ciclo trigonométrico: basta observarmos que os dois triângulos retângulos da figura são congruentes, por possuírem, além das hipotenusas (raios unitários), ângulos agudos congruentes.



2º Relação fundamental I



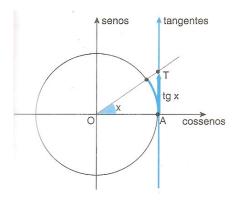
Seja x um arco do 1º quadrante. Aplicando o teorema de Pitágoras no triângulo OPP_2 , temos: $(sen x)^2 + (cos x)^2 = (OP)^2$, ou seja,

$$sen^2x + cos^2x = 1$$
 , válida para $\forall x \in \mathbb{R}$

Mesmo que x não seja do 1° quadrante, vale a relação fundamental I. Assim, dado o seno de um arco qualquer, é possível, por meio da relação fundamental I, obter o cosseno desse mesmo arco, e vice-versa.

4.3 Função tangente

Para definirmos a tangente de um arco x, é necessário acoplar um 3° eixo ao ciclo trigonométrico. Na figura, o eixo (vertical) das tangentes é obtido quando se tangencia, por uma reta, o ciclo no ponto A de origem dos arcos.



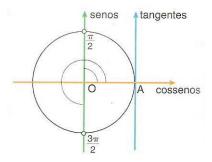
Unindo-se o centro O à extremidade do arco x e prolongando-se esse raio, ele interceptará o eixo das tangentes – no caso, no ponto T.

Por definição, a medida algébrica do segmento AT é a tangente do arco de x rad. a orientação do eixo das tangentes é para cima, sendo A sua origem, e, no caso, sendo x do 1° quadrante, temos: tg x= AT > 0 Vamos associar a cada número real x o valor de tg x, introduzindo a função y=tg x.

Chama-se função tangente a toda função

f:
$$\{x \in IR / x \neq \frac{\pi}{2} + k\pi\} \rightarrow IR$$
 definida por
$$y = f(x) = tg x$$

Domínio



Inicialmente poderíamos pensar no conjunto IR como possível domínio da função y= tg x. Ocorre porém que, no caso de termos, por exemplo, $x=\pi/2$, deixa de existir o ponto T, visto que a reta que une o centro O à extremidade do arco x torna-se paralela ao eixo das tangentes, não o interceptando, portanto.

O mesmo ocorre quando $x = 3\pi/2$. Assim, podemos dizer que não existem tg $(\pi/2)$, tg $(3\pi/2)$, etc. De maneira geral,

escrevemos "não existe tg $(\pi/2 + k\pi)$, $k \in Z$ ".

Conclusão:

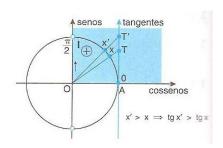
 $D = \{ x \in IR / x \neq \pi/2 + k\pi, k \in Z \}.$

Conjunto imagem

Vamos analisar o que ocorre em cada quadrante, em relação ao valores assumidos por y= tg x, enquanto x completa a 1ª volta no ciclo.

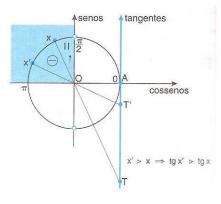
• 1°quadrante

Podemos verificar que tg 0 = 0 (pois T coincidiria com A); além disso, a medida que x aumenta dentro do 1° quadrante, o ponto T afasta-se gradativamente do ponto A, no sentido do eixo. Assim, o valor da tangente vai crescendo indefinidamente e assumindo todos os valores reais positivos, até que a tangente deixa de existir quando $x = \pi/2$. Logo, no 1° quadrante, y = tg x é crescente e assume valores positivos.



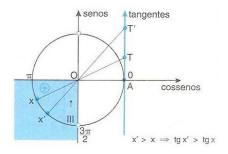
• 2° quadrante

Quando x passa para o 2° quadrante, o ponto T reaparece (na parte negativa do eixo das tangentes) e, à medida que x aumenta dentro do quadrante, o ponto T se aproxima de A, embora ainda na parte negativa do eixo. O ponto T volta a coincidir com A quando x assume o valor π : $tg\pi$ =0. Desse modo, podemos escrever que, no 2° quadrante, y= tg x é crescente e assume valores negativos.



• 3° quadrante

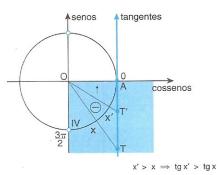
O ponto T volta a ocupar a parte positiva do eixo das tangentes, afastando-se de A à medida que x aumenta dentro do 3° quadrante. Nele, a função y=tg x é crescente e assume valores positivos, até que tg x deixa novamente de existir para $x=3\pi/2$.



• 4° quadrante

Como ocorre no segundo quadrante, o ponto T reaparece na parte negativa do eixo das tangentes e, à medida que x aumenta, o valor de tg x também aumenta, até anular-se novamente ao final do quadrante (tg 2π =0), quando T volta a coincidir com A.

No 4° quadrante, a função y=tg x é crescente e assume valores negativos.

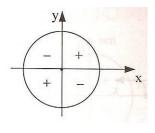


Conclusão: conjunto imagem da função y= tg x é IR.

4.3.1 Valores notáveis

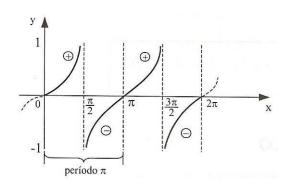
X	0	π/6	π/4	π/3	π/2	π	$3\pi/2$	2π
tg x	0	$\sqrt{3/3}$	1	$\sqrt{3}$	白	0	₹	0

4.3.2 Sinais



- Nos 1° e 3° quadrantes, como o ponto T está acima do ponto A, a tangente é positiva; equivalentemente, nos 2° e 4° quadrantes, a tangente é negativa.
- A função é monótona crescente, isto é, cresce em todo o seu domínio.
- Como, a partir de π, a tangente se repete, a função é periódica de período π.

4.3.3 Gráfico (tangentóide)



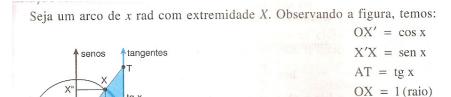
• Podemos notar que a função tangente é uma função ímpar, isto é tg(-x)=-tg(x) (seu gráfico é simétrico em relação à origem).

Observação

O período de funções da forma y = a + b tg (mx + n) $com b \neq 0 \text{ e m} \neq 0 \text{ é dado por:}$

$$P = \frac{\pi}{|m|}$$

Relação fundamental II:



Os triângulos retângulos OX'X e OAT são semelhantes, pois possuem um ângulo agudo comum. Assim, podemos escrever:

$$\frac{OX'}{OA} = \frac{XX'}{AT} \implies \frac{\cos x}{1} = \frac{\sin x}{\lg x} \implies \frac{\log x}{1} = \frac{\sin x}{\log x}$$

10

válida para $\forall x \in R \mid x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

A cossenos

cos x X

Essa relação, de grande importância, será utilizada para obtenção de alguns valores de tangentes de arcos que aparecem com freqüência.

Ângulos notáveis

Razão Ângulo	30°	45°	60°
sen	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$
cos	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2
tg	$\sqrt{3}/3$	Ĩ	$\sqrt{3}$

Redução ao 1ºquadrante

Dado um arco com extremidade α no 1° quadrante, existem três outros, cada um com extremidade num dos outros quadrantes, que têm, com exceção do sinal, o mesmo

seno e o mesmo cosseno do arco α. Por exemplo, os arcos de 30°, 150°, 210° e 330° têm, com exceção do sinal, os mesmos senos e cossenos.

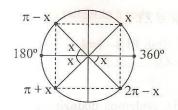
$$sen 150^{\circ} = sen 30^{\circ} = \frac{1}{2} \qquad cos 150^{\circ} = -cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$sen 210^{\circ} = -sen 30^{\circ} = -\frac{1}{2} \qquad cos 210^{\circ} = -cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$sen 330^{\circ} = -sen 30^{\circ} = -\frac{1}{2} \qquad cos 330^{\circ} = cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

Para reduzir um arco x qualquer pertencente ao 2°, 3° ou 4° quadrantes, a um correspondente arco no primeiro quadrante, com o mesmo valor da razão trigonométrica (em módulo), procede-se:

- 1) Localize o quadrante em que está o arco a ser reduzido.
- 2) Verifique o sinal da razão trigonométrica no referido quadrante.
- 3) Faça redução do arco conforme abaixo



$$2^{\circ} \Rightarrow$$
 quanto falta para 180°

$$3^{\circ} \Rightarrow$$
 quanto passa de 180°

$$4^{\circ} \Rightarrow$$
 quanto falta para 360°

Exemplos:

a)
$$\cos \frac{120^{\circ}}{\sqrt{}} = -\cos 60^{\circ} = -\frac{1}{2}$$

 $2^{\circ} Q$

b)
$$tg \frac{225^{\circ}}{\sqrt{}} = tg 45^{\circ} = 1$$

3° O

c)
$$\sin \frac{300^{\circ}}{\sqrt[4]{9}} = - \sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

d)
$$\operatorname{sen}(\underline{\pi + x}) = -\operatorname{sen} x$$

 $3^{\circ} O$

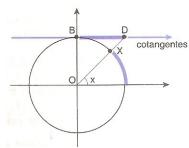
e)
$$\cos (\pi - x) = -\cos x$$

 $2^{\circ} Q$

Valores de sen θ e cos θ :

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$sen \theta$	0	1 2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0	-1	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

4.4 Função cotangente



Para definição dessa função será acoplado ao ciclo trigonométrico um 4° eixo orientado, tangenciando o ciclo no ponto B, que é extremidade do arco de $\pi/2$ rad.

Unindo o centro O à extremidade X do arco de x rad e prolongando-se esse raio, ele interceptará o eixo das cotangentes no ponto D.

Por definição, a medida algébrica do segmento \overline{BD} é a cotangente do arco de x rad.

A orientação do eixo das cotangentes é para direita, sendo B sua origem e, no caso, com x no 1º quadrante, temos cotg x=BD>0.

<u>Domínio:</u> Quando x é elemento do conjunto $\{0, \pm \pi, \pm 2\pi,...\}$, não existe o ponto D e não se define, então, cotg $k\pi$, $k\in \mathbb{Z}$. Portanto, o domínio da função y=cotgx é:

 $D(f) = \{ x \in IR/x \neq k\pi, k \in Z \}.$

Imagem: IR, o que significa que essa função não é limitada.

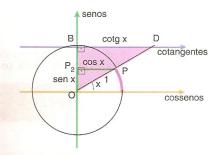
Relação fundamental:

Seja x um arco do 1º quadrante, com extremidade P, como mostra a figura ao lado. Unindo O a P e prolongando esse raio até que ele intercepte o eixo das cotangentes, obtemos o ponto D.

Temos, então:

$$OP_2 = \operatorname{sen} x$$

 $P_2P = \operatorname{cos} x$
 $OB = 1 \text{ (raio)}$
 $BD = \operatorname{cotg} x$



Podemos observar que os triângulos OP₂P e OBD são semelhantes:

$$\triangle OP_2P \sim \triangle OBD \Rightarrow \frac{OP_2}{OB} = \frac{P_2P}{BD} \Rightarrow \frac{\sin x}{1} = \frac{\cos x}{\cot g \ x} \Rightarrow \cot g \ x = \frac{\cos x}{\sin x}$$

Generalizando essa expressão para os demais quadrantes, temos:

$$\cot g x = \frac{\cos x}{\sin x}, v \text{ a lida } \forall x \neq k\pi, k \in Z.$$

4.4.1 Tabela de valores:

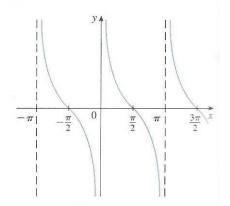
X	0	$\pi/6$ (30°)	π/4 (45°)	$\pi/3$ (60°)	π/2 (90°)	π	3π/2	2π
cotgx	¥	$\sqrt{3}$	1	$\sqrt{3}/3$	0	7	0	A

Repare que de $\pi/2$ a 0, a cotangente vai crescendo até ficar paralela ao eixo das cotangentes, o mesmo acontecendo de $3\pi/2$ a π (no sentido horário); $\pi/2$ a π , assim como de $3\pi/2$ a 2π , a cotangente é sempre negativa e vai ficando cada vez menor, até a reta ficar paralela ao eixo das cotangentes também.

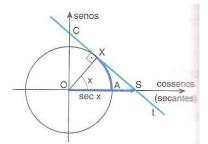
4.4.2 Propriedades:

- 1. Os sinais da cotangente são os mesmos da tangente, porém a função y=cotgx é decrescente nos quatro quadrantes.
- 2. como, a partir de π , a cotangente se repete, a função é periódica de período π .
- 3. a função cotangente é uma função ímpar, isto é, cotg(-x)=-cotgx (seu gráfico é simétrico em relação à origem).

4.4.3 Gráfico: chamado cotangentóide



4.5 Função secante



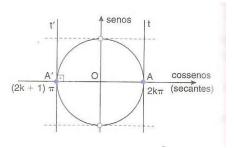
Seja x um arco do 1° quadrante e de extremidade X. A reta tangente ao ciclo, traçada pelo ponto X, intercepta o eixo dos cossenos no ponto S. Por definição, a medida algébrica do segmento \overline{OS} é a secante do arco x.

No caso, temos secx= OS>0, pois o eixo das secantes (e é claro, sua orientação) coincide com o eixo

dos cossenos; além disso, temos secx=OS>1, pois o ponto S é externo ao ciclo.

Quando $x=2k\pi$, os pontos S e A coincidem (t//eixo dos senos) e OA=sec $2k\pi$ =1, $k \in \mathbb{Z}$; se, por outro lado, x=(2k+1) π . Os pontos S e A'coincidem, e O A' = $\sec(2k+1)$ π =-1, $k \in \mathbb{Z}$.

No caso de x assumir um valor da forma $\frac{\pi}{2}$ +k π , k \in Z, não existe o ponto S e, consequentemente, não está definida $\sec(\frac{\pi}{2}$ +k π), k \in Z.



 $\underline{\text{Dom\'inio de }f(x)\text{=sec }x\text{:}}\ D(f)\text{=}\{\ x\in\text{IR}/\ x\neq\frac{\pi}{2}\text{+}k\pi,\ k\in\text{Z}\}.$

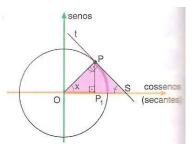
O conjunto imagem da função f(x)=sec x: Im(f)=IR-]-1,1[, pois o ponto S, quando existe, não pode ser, em hipótese alguma, interno ao ciclo.

Relação fundamental:

Traçando por P — extremidade do arco x — a tangente ao ciclo, obtemos no eixo das secantes o ponto S. Projetando o ponto P sobre o mesmo eixo, obtemos o ponto P_1 . Temos, então:

$$OS = sec x$$

 $OP_1 = cos x$
 $OP = 1 (raio)$



Podemos observar que os triângulos OSP e OPP, são semelhantes:

$$\triangle OSP \sim \triangle OPP_1 \Rightarrow \frac{OS}{OP} = \frac{OP}{OP_1} \Rightarrow \frac{\sec x}{1} = \frac{1}{\cos x} \Rightarrow$$

$$\Rightarrow \sec x = \frac{1}{\cos x}$$

Generalizando essa expressão para os demais quadrantes, temos a relação fundamental IV:

$$\sec x = \frac{1}{\cos x}$$
, válida para $\forall x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$

4.5.1 Tabela de valores

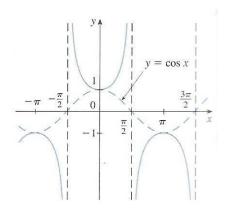
X	0	$\pi/6$ (30°)	$\pi/4$ (45°)	$\pi/3$ (60°)	$\pi/2$ (90°)	π	$3\pi/2$	2π
sec x	1	$2\sqrt{3}/3$	1	2	Ā	-1	∄	1

Repare que, de 0 a $\pi/2$, a secante vai crescendo até a reta ficar paralela ao eixo dos cossenos, o mesmo acontecendo de 0 a $-\pi/2$ (no sentido horário); de π a $\pi/2$ (no sentido horário); assim como de π a $3\pi/2$, a secante é sempre negativa e vai se tornando cada vez menor, até a reta ficar paralela ao eixo dos cossenos também.

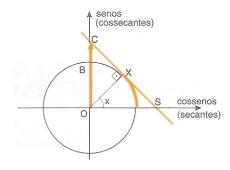
4.5.2 Propriedades:

- 1. Periodicidade: 2π
- 2. A função secante é uma função par, isto é, sec(-x)=sec(x) (seu gráfico é simétrico em relação ao eixo das ordenadas).

4.5.3 Gráfico: chamado secantóide

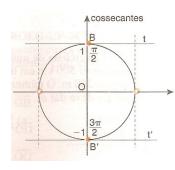


4.6 Função cossecante



Da mesma forma que a reta tangente ao ciclo, traçada pelo ponto X, intercepta o eixo dos cossenos no ponto S, ela intercepta também o eixo dos senos, feita no ponto C.

Por definição, a medida algébrica do segmento \overline{OC} é a cossecante do arco x. no caso, temos cossecx=OC>0, pois o eixo das cossecantes é o próprio eixo dos senos; além disso, cossecx=OC>1, pois C é externo ao ciclo.



Se x assume algum dos valores $\pi/2 + 2k\pi$, o ponto C coincide com B (t//eixo dos cossenos) e OB=cossec($\pi/2 + 2k\pi$) = 1, $k \in \mathbb{Z}$.

Por outro lado, se x assume algum dos valores $3\pi/2 + 2k\pi$, o ponto C coincide com B' (t' // eixo dos cossenos) e OB'=cossec $(3\pi/2 + 2k\pi)$ =-1, k \in Z.

Somente nos casos em que $x=k\pi,\ k\in Z$, não existe o ponto C e, consequentemente, não está definida cossec $k\pi,\ k\in Z$.

<u>Domínio da função f(x)=cossec x</u>: $D(f)=\{x \in IR/x \neq k\pi, k \in Z\}$

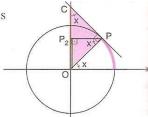
Conjunto imagem da função f(x)=cossec x: Im(f)=IR -]-1,1[, pois o ponto C, quando existe, não pode ser interno ao ciclo.

Relação fundamental:

A tangente ao ciclo, traçada por P, intercepta o eixo das cossecantes no ponto C, e a projeção de P sobre o mesmo eixo é P_2 . Temos, então:

$$OC = cossec x$$

 $OP_2 = sen x$
 $OP = 1 (raio)$



Podemos observar que os triângulos OCP e OPP, são semelhantes:

$$\triangle OCP \sim \triangle OPP_2 \Rightarrow \frac{OC}{OP} = \frac{OP}{OP_2} \Rightarrow \frac{\operatorname{cossec} x}{1} = \frac{1}{\operatorname{sen} x} \Rightarrow \\ \Rightarrow \operatorname{cossec} x = \frac{1}{\operatorname{sen} x}$$

Generalizando essa expressão para os demais quadrantes, temos a relação fundamental V:

cossec
$$x = \frac{1}{\text{sen } x}$$
, válida para $\forall x \neq k\pi, \ k \in \mathbb{Z}$

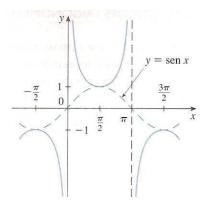
4.6.1 Tabela de valores

X	0	$\pi/6$ (30°)	π/4 (45°)	$\pi/3$ (60°)	π/2 (90°)	π	3π/2	2π
cossecx	∄	2	1	$2\sqrt{3}/3$	1	Æ	-1	3/

4.6.2 Propriedades:

- 1. Periodicidade: 2π
- 2. A função cossecante é uma função ímpar, isto é, cossec(-x)=-cossec(x) (seu gráfico é simétrico em relação à origem).

4.6.3 Gráfico: chamado cossecantóide



Resumo das relações fundamentais:

- 1) $\operatorname{sen}^2 x + \cos^2 x = 1$, válida $\forall x \in IR$
- 2) $\operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}, v \text{ \'alida } \forall x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
- 3) $\cot g = \frac{\cos x}{\sin x} = \frac{1}{tgx}, v\'{a}lida \ \forall x \neq k\pi, k \in Z.$
- 4) $\sec x = \frac{1}{\cos x}$, $v\'{a}lida \forall x \neq \frac{\pi}{2} + k\pi, k \in Z$.
- 5) cossec $x = \frac{1}{\text{sen } x}$, $v \text{álida} \forall x \neq k\pi, k \in Z$.
- 6) $\sec^2 x = 1 + tg^2 x$, $v\'{a}lida \ \forall x \neq \frac{\pi}{2} + k\pi, k \in Z$

7)
$$\operatorname{cossec}^2 x = 1 + \cot g^2 x, v \text{ a lida} \quad \forall x \neq k \pi, k \in \mathbb{Z}$$

8)
$$\operatorname{sen}(-x) = -\operatorname{sen}(x)$$

9)
$$\cos(-x) = \cos(x)$$

10)
$$tg(-x) = -tg(x)$$

11) sen
$$\left(\frac{\pi}{2} - x\right) = \cos x$$

$$12)\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

13)
$$\operatorname{tg}\left(\frac{\pi}{2} - x\right) = \cot gx$$

Operações com arcos

ADIÇÃO DE ARCOS

$$sen (a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$cos (a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg (a + b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

SUBTRAÇÃO DE ARCOS

$$sen (a - b) = sen a \cdot cos b - sen b \cdot cos a$$

$$cos (a - b) = cos a \cdot cos b + sen a \cdot sen b$$

$$tg (a - b) = \frac{tg a - tg b}{1 + tg a \cdot tg b}$$

DUPLICAÇÃO DE ARCOS

$$sen 2a = 2sen a \cdot cos a$$

$$cos 2a = cos^{2}a - sen^{2}a$$

$$tg 2a = \frac{2 tg a}{1 - tg^{2} a}$$

Observação

A partir da relação fundamental e do co-seno do arco duplo, obtém-se:

$$\cos 2a = 1 - 2 \operatorname{sen}^{2} a$$
ou
$$\cos 2a = 2 \cos^{2} a - 1$$

FÓRMULAS DE FATORAÇÃO

$$\operatorname{sen} p + \operatorname{sen} q = 2 \cdot \operatorname{sen} \left(\frac{p+q}{2} \right) \cdot \cos \left(\frac{p-q}{2} \right)$$

$$\operatorname{sen} p - \operatorname{sen} q = 2 \cdot \operatorname{sen} \left(\frac{p-q}{2} \right) \cdot \cos \left(\frac{p+q}{2} \right)$$

$$\operatorname{cos} p + \operatorname{cos} q = 2 \cdot \operatorname{cos} \left(\frac{p+q}{2} \right) \cdot \operatorname{cos} \left(\frac{p-q}{2} \right)$$

$$\operatorname{cos} p - \operatorname{cos} q = -2 \cdot \operatorname{sen} \left(\frac{p-q}{2} \right) \cdot \operatorname{sen} \left(\frac{p+q}{2} \right)$$

Fórmula do produto

sen x cos y =
$$\frac{1}{2}$$
[sen(x + y) + sen(x - y)]
cos x cos y = $\frac{1}{2}$ [cos(x + y) + cos(x - y)]
sen x sen y= $\frac{1}{2}$ [cos(x - y) - cos(x + y)]