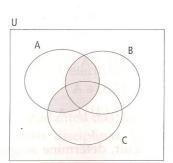
Exercícios:

- 1) Dados os conjuntos $A = \{1,2,3,4\}$ e $B = \{2,4,5\}$, pede-se para escre simbolicamente as sentenças a seguir, classificando-as em verdade (V) ou falsas (F):
- a) 2 é elemento de A.
- b) 4 pertence a B.
- c) B é parte de A.
- d) 1 não é elemento de B.
- e) A é igual a B.
- 2) Classifique em verdadeiras (V) ou falsas (F) as sentenças a seguir:
- a) $\{1\} \in \{1\}$
- e) Ø ⊂ Ø
- i) $\varnothing \subset \{1,2,\{1\}\}$

- c) $1 \in \{1\}$
- g) $\{1\} \subset \{1,\{1\}\}$ k) $\emptyset \in \{\emptyset,1,\{1\}\}$
- d) $\{1\} \in \{\{1\}, \{2\}\}$ h) $\emptyset \in \{1,2,\{1\}\}$ l) $\emptyset \subset \{\emptyset,1,\{1\}\}$
- Dados A = $\{1,2,3\}$, B = $\{1,2,3,4,5\}$ e C = $\{2,3\}$.

Determinar:

- a) C_B^A b) C_B^C c) C_A^C
- 4) A parte hachurada no diagrama representa:
- a) $A \cap (B \cup C)$
- d) $A \cup (B \cap C)$
- b) (A∩B)∪C
- e) $A \cap B \cap C$
- c) $(A \cup B) \cap C$



Dados os conjuntos $A = \{x \in \mathbb{N} \mid x \in \text{impar}\}, B = \{x \in \mathbb{N} \mid x \in \text{par}\} e$ $C = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 3}\}$, determine se as afirmativas a seguir são verdadeiras, justificando:

a) $3 \in A$

d) $15 \notin C$ g) $B \cap C = \emptyset$

b) $-3 \in B$

e) $A \not\subset B$. h) $(A \cap C) \cap B = \emptyset$

c) -12 ∈ C

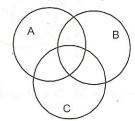
f) $A \not\subset C$ i) $A \cup B = \mathbb{N}$

6 Um conjunto A tem 16 subconjuntos. Determine o número de elementos de A.

- 7 Sejam os conjuntos $A = \{0,2\}, B = \{-1,4,5\}, C = \{0,3,6\} \in D = \{2,3,4,5,6\},$ determine $(A-B) \cap (C-D)$.
- 8 Se A e B são dois conjuntos não vazios, tais que $A B = \{1,3,6,7\}$ $B - A = \{4,8\}_{e} A \cup B = \{1,2,3,4,5,6,7,8\}, determine o conjunto A \cap B.$
- 9 Dados os conjuntos $A = \{2,3\}$ e $B = \{3,4,5\}$, determine o conjunto C, tal que $A \cap C = \{2\}$, $B \cap C = \{4\}$ e $A \cup B \cup C = \{2,3,4,5,6\}$.
- 10 Sejam A, B e C conjuntos finitos. O número de elementos de A \cap B é 45; o número de elementos de A \cap C é 40 e o número de elementos de A \cap B \cap C é 25. Determinar o número de elementos de $A \cap (B \cup C)$.

Exercícios propostos

- 1 Assinale a afirmação verdadeira com relação aos conjuntos A e B:
 - $(A) A \subset B \Rightarrow A \cup B = A$
 - (B) $A \cap B = \emptyset \Rightarrow A \cup B = \emptyset$
 - (C) $A \cap B = \emptyset \Rightarrow A = \emptyset$ ou $B = \emptyset$
 - (D) $A \cup B = B \Rightarrow A = \emptyset$
 - (E) $A \cap B = B \Rightarrow B \subset A$
- 2 Represente no diagrama abaixo a região que corresponde a: $(A \cap B) \cup (C B)$

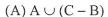


- Sendo $A = \{1, 2, 3\}, B = \{2, 3, 4\} e C = \{1, 3, 4, 5\},$ o conjunto que melhor representa $(A C) \cup (C B) \cup (A \cap B \cap C)$ é:
 - $(A) \{1, 3, 5\}$
 - (B) A
 - (C) $\{2, 4, 5\}$
 - (D) $\{1, 2, 3, 5\}$
 - $(E) \{2, 3, 4, 5\}$
 - 4 (UFF) Dados três conjuntos M, N e P não vazios tais que M N = P, considere as afirmativas:
 - I) $P \cap N = \emptyset$
 - II) $M \cap P = P$
 - III) P \cup (M \cap N) = M

Com relação a estas afirmativas conclui-se que:

- (A) Todas são verdadeiras.
- (B) Somente a II e a III são verdadeiras.
- (C) Somente a I e a II são verdadeiras.
- (D) Somente a I e a III são verdadeiras.
- (E) Nenhuma é verdadeira.

5 (UNIRIO) Considerando os conjuntos A, B e C, a região hachurada diagrama abaixo representa:

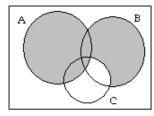


(B)
$$A \cap (C - B)$$

$$(C) A \cap (B - C)$$

(D) A
$$\cup$$
 (B – C)

 $(E)(A \cup B) - C$



6 (Conc. Prof. RJ) Sobre os conjuntos A, B, C e D afirma-se:

$$(A \cap B) \cup (C \cap D) = \emptyset$$

Então pode-se concluir que:

- (A) o conjunto A ∪ B é vazio
- (B) os conjuntos A e C são vazios
- (C) os conjuntos $A \cap B \in C \cap D$ são vazios
- (D) dos quatro conjuntos, dois são vazios
- (E) os quatro elementos são disjuntos dois a dois.

7 São dados os conjuntos $A = \{x \in N \mid x \text{ \'e par}\}, B = \{x \in Z \mid -1 \le x < 6\} \text{ e}$ $C = \{x \in N \mid x \le 4\}.$ O conjunto X, tal que $X \subset B \text{ e } B - X = A \cap C$, \acute{e} :

- $(A) \{0; 3; 5\}$
- (B) {1; 3; 5}
- (C) {0; 1; 3; 5}
- (D) {-1; 1; 3; 5}
- (E) {-1; 1; 3; 5; 6}

8 (UFRJ) Em 11 caixas, 5 contém lápis, 4 contém borrachas e 2 contém lápis e borrachas. Em quantas caixas não há nem lápis nem borrachas?

9 Dois clubes A e B têm juntos 141 sócios. O clube B possui 72 sócios e os clubes possuem em comum 39 sócios. O número de sócios do clube A é:

- (A) 30
- (B) 47
- (C)78
- (D) 108
- (E) 101

10 (PUC) A e B são conjuntos. O número de elementos de A é 7 e o de A ∪ B é 9. Os valores mínimo e máximo possíveis para o número de elementos do conjunto B são, respectivamente:

- (A) 0 e 2
- (B) 0 e 9
- (C) 2 e 2
- D) 2 e 9
- (E) 2 e 16

11 (UNIRIO-ENCE) Considere três conjuntos A, B e C, tais que: n(A) = 28, n(B) = 21, n(C) = 20, $n(A \cap B) = 8$, $n(B \cap C) = 9$, $n(A \cap C) = 4$ e $n(A \cap B \cap C) = 3$. Assim sendo, o valor de $n((A \cup B) \cap C)$ é:

- (A)3
- (B) 10
- (C) 20
- (D) 21
- (E) 24

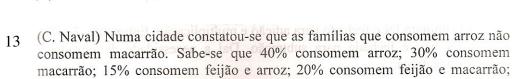
- (ITA) Um certo número de carros saem dos pontos A e B do diagrama abaixo 12 e, sem passarem duas vezes por um mesmo ponto, chegam a C. Sabendo-se que:
 - 17 carros passaram por M, N e P;
 - 25 carros passaram por M e P;
 - 28 carros passaram por N e P,

60% consomem feijão.

pode-se afirmar que o número total de carros é:

(B) 45 (C) 42

(D) 36 (E) 53



Determine a porcentagem correspondente às famílias que não consomem estes três produtos.

(PUC) Os conjuntos A, B e A U B possuem 5, 7 e 11 elementos, 14 respectivamente. O número do conjunto A \cap B \'earlies :

(A) 0

- (B) 1
- (C) 2 (D) 4

В

Gabarito:

8)4 1) E 3)D 4)A 5)D 6)C 7)D

9)D 10)D 11)B 12)D 13)5% 14)B