

Aula 15 – Integral de Linha de Campo Vetorial

Objetivo

- Definir integrais de linha.
- Estudar algumas propriedades.

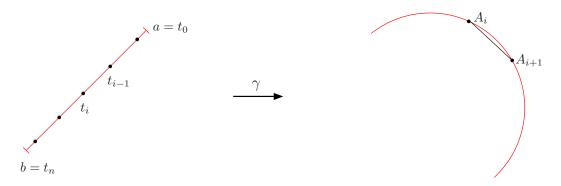
Integral de Linha de Campo Vetorial

Motivação

Considere uma partícula que se move ao longo de uma curva $C: \gamma(t) = (x(t), y(t))$, $t \in [a, b]$, sob a ação de um campo de forças $\overrightarrow{F}(x,y) = P(x,y) \overrightarrow{\mathbf{i}} + Q(x,y) \overrightarrow{\mathbf{j}}$. Queremos calcular o trabalho realizado pela força \overrightarrow{F} , quando a partícula se desloca de $A = \gamma(a)$ até $B = \gamma(b)$.

Da física, temos, no caso em que \overrightarrow{F} é constante e C é um segmento de reta, o trabalho dado pelo produto escalar $W = \overrightarrow{F} \cdot \overrightarrow{AB}$.

No caso geral, dividimos o intervalo [a,b] em n subintervalos $[t_{i-1},t_i]$, $i=1,\ldots,n$, de mesmo comprimento $\Delta_t=t_i-t_{i-1}$. Temos n subarcos $\gamma\big([t_{i-1},t_i]\big)=C_i$ e n segmentos $[A_{i-1},A_i]$, $A_i=\gamma(t_i)=\big(x(t_i),y(t_i)\big)$, com $i=1,\ldots,n$.



Supondo que \overrightarrow{F} constante ao longo do segmento $[A_{i-1},A_i]$, o trabalho ao longo de C_i é aproximadamente igual ao produto escalar

$$W_i \cong \overrightarrow{F}\left(\gamma(t_i)\right) \cdot \overrightarrow{A_{i-1}A_i} = \overrightarrow{F}\left(\gamma(t_i)\right) \cdot (A_i - A_{i-1}) = P\left(x(t_i), y(t_i)\right) \Delta x + Q\left(x(t_i), y(t_i)\right) \Delta y,$$
 onde $\Delta x = x(t_i) - x(t_{i-1})$ e $\Delta y = y(t_i) - y(t_{i-1}).$

Pelo Teorema do Valor Médio, temos $\Delta x = x'(t_i^*) \Delta t$, com $t_i^* \in]t_{i-1}, t_i[$ e $\Delta y = y'(t_i^{**}) \Delta t$, com $t_i^{**} \in]t_{i-1}, t_i[$. Logo,

$$W_i \cong \left[P(x(t_i), y(t_i)) x'(t_i^*) + Q(x(t_i), y(t_i)) y'(t_i^{**}) \right] \Delta t$$

portanto

$$W \cong \sum_{i=1}^{n} \left[P(x(t_i), y(t_i)) x'(t_i^*) + Q(x(t_i), y(t_i)) y'(t_i^{**}) \right] \Delta t = S_n.$$

Assim, definimos $W=\lim_{\Delta t \to 0} S_n$. Então

$$W = \int_a^b \left[P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right] dt.$$

Esta motivação sugere a definição que se segue.

Definição:

Seja $C\subset\mathbb{R}^3$ uma curva regular dada por uma parametrização $\gamma:[a,b]\to\mathbb{R}^3$ de classe C^1 , tal que $\gamma'(t)\neq 0$, para todo $t\in \left]a,b\right[$. Seja $\overrightarrow{F}=(P,Q,R)$ um campo vetorial contínuo sobre C. Então a integral de linha do campo \overrightarrow{F} ao longo de C, denotado por $\int\limits_C\overrightarrow{F}\cdot d\overrightarrow{r}$, é definida por

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r'} = \int_{a}^{b} \overrightarrow{F} (\gamma(t)) \cdot \gamma'(t) dt$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

OBS.:

1. Seja C uma curva regular por partes: $C = C_1 \cup C_2 \cup \ldots \cup C_n$. Então

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C_{1}} \overrightarrow{F} \cdot d\overrightarrow{r} + \dots + \int_{C_{n}} \overrightarrow{F} \cdot d\overrightarrow{r}$$

2. A integral de linha de um campo vetorial \overrightarrow{F} , $\int\limits_C \overrightarrow{F} \cdot d\overrightarrow{r}$ não depende da parametrização de C, desde que não se inverta sua orientação. Isto é, denotando por C^- a curva C percorrida em outro sentido, então

$$\int_{C^{-}} \overrightarrow{F} \cdot d\overrightarrow{r} = -\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$$

OBS.:

3. Se C é uma curva fechada $(\gamma(a)=\gamma(b))$ e está orientada no sentido anti-horário, denotamos a integral de linha por $\oint\limits_{C^+}\overrightarrow{F}\cdot d\overrightarrow{r}$. Caso contrário, denotamos por $\oint\limits_{C}\overrightarrow{F}\cdot d\overrightarrow{r}$.

Exemplo 1

Seja $\overrightarrow{F}(x,y,z) = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$. Temos a integral de linha \overrightarrow{F} ao longo da hélice $C:\gamma(t)=(\cos t, \sin t, t)$, com $0\leq t\leq 2\pi$ dada por

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{a}^{b} \overrightarrow{F} (\gamma(t)) \cdot (\gamma'(t)) dt = \int_{0}^{2\pi} (\cos t, \sin t, t) \cdot (-\sin t, \cos t, 1) dt$$

$$= \int_{0}^{2\pi} (-\cos t \sin t + \sin t \cos t + t) dt$$

$$= \int_{0}^{2\pi} t dt$$

$$= \left[\frac{t^{2}}{2}\right]_{0}^{2\pi}$$

$$= 2\pi^{2}.$$

Uma outra notação

Sabemos que dx = x'(t) dt, dy = y'(t) dt e dz = z'(t) dt. Se usarmos a convenção $d\overrightarrow{r} = dx \overrightarrow{i} + dy \overrightarrow{j} + dz \overrightarrow{k} = (dx, dy, dz)$, temos

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C} (P, Q, R) \cdot (dx, dy, dz)$$

$$= \int_{C} P dx + Q dy + R dz$$

$$= \int_{c}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt .$$

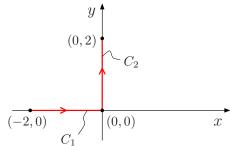
Logo, uma outra notação é $\int\limits_{C} P\,dx + Q\,dy + R\,dz.$

Exemplo 2

Calcule $\int\limits_C y \; dx + (x^2 + y^2) \; dy$, onde C é formado pelos segmentos que ligam (-2,0) a (0,0) e (0,0) a (0,2).

Solução:

O esboço de $C=C_1\cup C_2$ está representado na figura ao lado.



 C_1 e C_2 podem ser parametrizadas por

$$C_1: \left\{ \begin{array}{l} x=t \\ y=0 \, , \end{array} \right. \, , -2 \leq t \leq 0, \quad \text{portanto} \ dx=dt \ \text{e} \ dy=0 \, .$$

$$C_2: \left\{ \begin{array}{l} x=0 \\ y=t \, , \end{array} \right., 0 \leq t \leq 2, \qquad \text{portanto} \ dx=0 \ \text{e} \ dy=dt \, .$$

Temos

$$\int_{C_1} y \, dx + (x^2 + y^2) \, dy = \int_{-2}^{0} 0 \, dt + (t^2 + 0^2) \cdot 0 = 0$$

$$\int_{C_{t}} y \ dx + (x^{2} + y^{2}) \ dy = \int_{0}^{2} t \cdot 0 + (0^{2} + t^{2}) \ dt = \int_{0}^{2} t^{2} \ dt = \left[\frac{t^{3}}{3}\right]_{0}^{2} = \frac{8}{3}.$$

Logo,

$$\int_C y \ dx + (x^2 + y^2) \ dy = 0 + \frac{8}{3} = \frac{8}{3}.$$

Aula 16 - Campos Conservativos

Objetivo

- Estudar uma classe de campos vetoriais que tem a propriedade de que a integral de linha não depende do caminho.
- Cálculo de funções potenciais.

Campos Conservativos

Dizemos que $\overrightarrow{F}:D\subset\mathbb{R}^n\to\mathbb{R}^n$, $(n=2\,,\,3)$ é um **campo conservativo** ou um **campo gradiente** se existir um campo escalar diferenciável $\varphi:D\subset\mathbb{R}^n\to\mathbb{R}$, tal que $\nabla\varphi=\overrightarrow{F}$ em D.

O campo escalar $\varphi:D\subset\mathbb{R}^n\to\mathbb{R}$ é dito função potencial de \overrightarrow{F} em D.

Exemplo 1

O campo vetorial $\overrightarrow{F}(x,y,z) = (2x+3yz)\overrightarrow{\mathbf{i}} + 3xz\overrightarrow{\mathbf{j}} + 3xy\overrightarrow{\mathbf{k}}$ é um campo conservativo em \mathbb{R}^3 , pois existe $\varphi(x,y,z) = x^2 + 3xyz$ diferenciável em \mathbb{R}^3 , tal que $\nabla \varphi = \overrightarrow{F}$ em \mathbb{R}^3 .

A seguir, apresentaremos alguns resultados dos campos conservativos.

Teorema 1: Seja $\overrightarrow{F}:D\subset\mathbb{R}^n\to\mathbb{R}^n$, $(n=2\,,\,3)$ um campo vetorial de classe C^1 . Se \overrightarrow{F} é conservativo, então rot $\overrightarrow{F}=\overrightarrow{0}$.

Demonstração:

Suponhamos n=3. Então, $\overrightarrow{F}=(P,Q,R)$. Se \overrightarrow{F} é conservativo, existe $\varphi:D\subset\mathbb{R}^3\to\mathbb{R}$, tal que $\nabla\varphi=\overrightarrow{F}$. Logo, $\operatorname{rot}\overrightarrow{F}=\nabla\times\overrightarrow{F}=\nabla\times(\nabla\varphi)=\overrightarrow{0}$ por propriedade dos operadores diferenciais.

Mais adiante, veremos um exemplo de um campo vetorial não conservativo, com rotacional nulo.

OBS.: O Teorema 1 também pode ser enunciado da seguinte maneira: "Se rot \overrightarrow{F} \neq $\overrightarrow{0}$ em D, então \overrightarrow{F} não é conservativo em D" .

Exemplo 2

Temos que $\overrightarrow{F}(x,y) = \frac{2x}{x^2+y^2} \overrightarrow{\mathbf{i}} + \frac{2y}{x^2+y^2} \overrightarrow{\mathbf{j}}$ é um campo conservativo em $\mathbb{R}^2 - \{(0,0)\}$, pois existe $\varphi(x,y) = \ln{(x^2+y^2)}$, tal que $\nabla \varphi = \overrightarrow{F}$ em $\mathbb{R}^2 - \{(0,0)\}$.

Exemplo 3

Temos que $\overrightarrow{F}(x,y)=-2y\overrightarrow{\mathbf{i}}+2x\overrightarrow{\mathbf{j}}$ não é um campo conservativo. Ora, temos que

$$\operatorname{rot} \overrightarrow{F}(x,y) = \left(\tfrac{\partial Q}{\partial x} - \tfrac{\partial P}{\partial y} \right) \overrightarrow{\mathbf{k}} = \left(2 - (-2) \right) \overrightarrow{\mathbf{k}} = 4 \overrightarrow{\mathbf{k}} \neq \overrightarrow{0}.$$

Teorema 2: Seja $\overrightarrow{F}:D\subset\mathbb{R}^n\to\mathbb{R}^n$, $(n=2\,,\,3)$ de classe C^1 . Se \overrightarrow{F} é conservativo, isto é, $\overrightarrow{F}=\nabla\varphi$ em D, e se C é qualquer curva regular por partes com ponto inicial A e ponto final B, então

 $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C} \nabla \varphi \cdot d\overrightarrow{r} = \varphi(B) - \varphi(A).$

Demonstração:

A demonstração segue da definição de integral de linha e da regra da cadeia.

Este resultado é conhecido como Teorema Fundamental do Cálculo para Integrais de Linha. É dele que concluímos que a integral de linha de um campo conservativo só depende dos pontos A e B e não depende da trajetória que os une.

Teorema 3: Se $\overrightarrow{F}:D\subset\mathbb{R}^n\to\mathbb{R}^n$, $(n=2\,,\,3)$ é conservativo, de classe C^1 , então $\oint\limits_C\overrightarrow{F}\cdot d\overrightarrow{r'}=0$ qualquer que seja o caminho fechado.

Demonstração:

A demonstração segue do Teorema 2, pois C sendo um caminho fechado, o ponto final B coincide com o ponto inicial A, portanto $\varphi(B)-\varphi(A)=0$. Assim, a integral de linha é zero.

Este Teorema também pode ser enunciado da seguinte maneira:

"Se $\oint\limits_C \overrightarrow{F} \cdot d\overrightarrow{r'} \neq 0$ para alguma curva fechada C então \overrightarrow{F} não é conservativo" .

Exemplo 4

 $\mathsf{Calcule} \ \int\limits_{C} \overrightarrow{F} \cdot d \overrightarrow{r'} \text{, onde } \overrightarrow{F}(x,y) = x \overrightarrow{\mathbf{i}} + y \overrightarrow{\mathbf{j}} \text{ e } C \text{ \'e dada por } \gamma(t) = (\operatorname{arctg} t, \cos t^4) \ , \ 0 \leq t \leq 1.$

Solução:

Observemos que \overrightarrow{F} é um campo conservativo em \mathbb{R}^2 com função potencial $\varphi(x,y)=\frac{1}{2}\,(x^2+y^2)$.

Assim,

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r'} = \varphi(\gamma(1)) - \varphi(\gamma(0)) = \varphi(\arctan 1, \cos 1) - \varphi(\arctan 0, \cos 0)$$

$$= \varphi\left(\frac{\pi}{4}, \cos 1\right) - \varphi(0, 1)$$

$$= \frac{1}{2}\left(\frac{\pi^{2}}{16} + \cos^{2} 1\right) - \frac{1}{2}(0^{2} + 1^{2})$$

$$= \frac{1}{2}\left(\frac{\pi^{2}}{16} - 1 + \cos^{2} 1\right).$$

A seguir exibiremos um campo vetorial não conservativo com rotacional $\overrightarrow{0}$, o que mostra que a recíproca do Teorema 1 é falsa.

Exemplo 5

Seja $\overrightarrow{F}(x,y) = \frac{-y}{x^2+y^2} \overrightarrow{\mathbf{i}} + \frac{x}{x^2+y^2} \overrightarrow{\mathbf{j}}$, $(x,y) \in D = \mathbb{R}^2 - \{(0,0)\}$. Como $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ (verifique!), $\cot \overrightarrow{F} = \overrightarrow{0}$ em D. Calculemos $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$, onde C é a circunferência $\gamma(t) = (a\cos t, a\sin t)$, $0 \le t \le 2\pi$. Temos

$$\oint_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C} \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy = \int_{0}^{2\pi} \left[\left(\frac{-a \operatorname{sen} t}{a^{2}} \right) \left(-a \operatorname{sen} t \right) + \left(\frac{a \operatorname{cos} t}{a^{2}} \right) \left(a \operatorname{cos} t \right) \right] dt$$

$$= \int_{0}^{2\pi} \left(\operatorname{sen}^{2} t + \operatorname{cos}^{2} t \right) dt$$

$$= 2\pi \neq 0 \tag{1}$$

Se \overrightarrow{F} fosse conservativo, teríamos encontrado, pelo Teorema 3, que $\oint_{C^+} \overrightarrow{F} \cdot d\overrightarrow{r} = 0$, o que contradiz (1). Logo, \overrightarrow{F} não é conservativo.

Na aula 18, veremos, para o caso n=2, que, impondo certas condições ao domínio de \overrightarrow{F} , a recíproca do Teorema 1 é verdadeira.

Cálculo de Funções Potenciais

Exemplo 6

Sabe-se que $\overrightarrow{F}(x,y)=(2xy^2-y^3,2x^2y-3xy^2+2)$ é um campo gradiente. Determine uma função potencial.

Solução:

Para determinar uma função potencial $\varphi(x,y)$, devemos ter

$$\frac{\partial \varphi}{\partial x} = 2xy^2 - y^3 \tag{2}$$

$$\frac{\partial \varphi}{\partial y} = 2x^2y - 3xy^2 + 2\tag{3}$$

Integrando (2) em relação a x, temos

$$\varphi(x,y) = x^2y^2 - xy^3 + f(y) \tag{4}$$

Integrando (3) em relação a y, temos

$$\varphi(x,y) = x^2y^2 - xy^3 + 2y + g(x) \tag{5}$$

De (4) e (5), vemos que, tomando f(y)=2y e g(x)=0, segue que uma função potencial é

$$\varphi(x,y) = x^2y^2 - xy^3 + 2y.$$

Exemplo 7

Sabe-se que $\overrightarrow{F}(x,y,z) = 2xy\overrightarrow{\mathbf{i}} + (x^2 + z\cos(yz))\overrightarrow{\mathbf{j}} + y\cos(yz)\overrightarrow{\mathbf{k}}$ é um campo conservativo. Determine uma função potencial.

Solução:

Devemos ter:

$$\frac{\partial \varphi}{\partial x} = 2xy \tag{6}$$

$$\frac{\partial \varphi}{\partial y} = x^2 + z \cos(yz) \tag{7}$$

$$\frac{\partial \varphi}{\partial z} = y \cos(yz) \tag{8}$$

Integrando (6), (7) e (8) em relação a x, y e z respectivamente, temos

$$\varphi(x, y, z) = x^2 y + f(y, z) \tag{9}$$

$$\varphi(x, y, z) = x^2 y + \operatorname{sen}(yz) + g(x, z) \tag{10}$$

$$\varphi(x, y, z) = \operatorname{sen}(yz) + h(x, y) \tag{11}$$

De (9), (10) e (11), devemos ter f(y,z) = sen(yz), g(x,z) = 0 e $h(x,y) = x^2y$. Logo,

$$\varphi(x, y, z) = x^2 y + \operatorname{sen}(yz)$$

é uma função potencial de \overrightarrow{F} .

Exercício 1: Calcule
$$\int_C x \ dx + x^2 \ dy$$
 de $(-1,0)$ a $(1,0)$

- a) ao longo do eixo x
- b) ao longo de $C: \overrightarrow{r}(t) = (-\cos t, \sin t)$, com $0 \le t \le \pi$.
- c) ao longo da poligonal de vértices (-1,0), (0,1), (1,1) e (1,0).

Exercício 2: Calcule os valores de $\int\limits_C -2xy\ dx + (x^2+y^2)\ dy$ ao longo do caminho C, onde C é a

- a) parte superior da circunferência $x^2 + y^2 = a^2$ de (a,0) a (-a,0);
- b) parte superior da elipse $x^2 + 4y^2 = 2x$, orientada no sentido anti-horário.

Exercício 3: Calcule o trabalho realizado pela força $\overrightarrow{F}(x,y)=(x,-y)$ para deslocar uma partícula ao longo da curva fechada $C=C_1\cup C_2\cup C_3$, onde C_1 : segmento de reta de O=(0,0) a A=(1,1); C_2 : parte da curva $4x^2-12x+4y^2-8y+12=0$, com $y\geq 1$, do ponto A=(1,1) a B=(2,1); C_3 : segmento de reta BO.

Exercício 4: Calcule $\int_C 2x \ dx - 3y \ dy + z^2 \ dz$, onde C é o segmento de reta que une (1,0,0) a $(0,1,\pi/2)$.

Exercício 5: Determine o trabalho realizado pela força $\overrightarrow{F}(x,y,z)=(3y+z)\overrightarrow{\mathbf{i}}+(y-3x)\overrightarrow{\mathbf{j}}+(e^z+x)\overrightarrow{\mathbf{k}}$ para deslocar uma partícula ao longo da curva C interseção do cilindro $x^2+y^2=1$ com o plano z=5, orientada no sentido anti-horário quando vista de cima.

Exercício 6: Calcule $\int\limits_C z \ dx + y \ dy - x \ dz$, onde C é a interseção das superfícies y+z=8 e $x^2+y^2+z^2-8z=0$, com $x\geq 0$, no sentido anti-horário quando vista de cima.

Exercício 7: Sabe-se que o campo $\overrightarrow{F} = (e^{x+y} + 1) \overrightarrow{\mathbf{i}} + e^{x+y} \overrightarrow{\mathbf{j}}$ é um campo conservativo em \mathbb{R}^2 .

- a) Encontre uma função potencial para \overrightarrow{F} .
- b) Calcule $\int\limits_C\overrightarrow{F}\cdot d\overrightarrow{r}$ onde C é o arco de circunferência $(x-1)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{4}$, com $x\geq 1$ que vai de (1,0) a (1,1).

Exercício 8: Determine uma função potencial para cada campo conservativo.

a)
$$\overrightarrow{F}(x,y) = (x^2 + y^2) \overrightarrow{i} + 2xy \overrightarrow{j}$$
.

b)
$$\overrightarrow{F}(x,y) = (\cos(xy) - xy \sin(xy)) \overrightarrow{\mathbf{i}} - (x^2 \sin(xy)) \overrightarrow{\mathbf{j}}$$
.

c)
$$\overrightarrow{F}(x, y, z) = (6xy^3 + 2z^2, 9x^2y^2, 4xz + 1).$$