र्णी - Dep	artamento	de	Matemática	Aplicada	(GMA)
------------	-----------	----	------------	----------	-------

2013-1

Nome	08/07/2013	Nota:	
Matrícula			

VR de CÁLCULO III-A

Turma G1 - $\operatorname{Prof}^{\underline{a}}$ Marlene

ATENÇÃO, leia antes de começar a prova:

- Em qualquer questão não basta a resposta, é preciso escrever a resolução ou justificativa.
- As questões podem ser resolvidas em qualquer ordem e podem ser feitas a lápis ou caneta.
- Ninguém poderá sair da sala durante a prova.

BOA PROVA!

Questão 1 (valor: 3,0)

- (a) Seja D a região interior ao círculo de equação $x^2 + y^2 = 2x$, compreendida entre a retas y = x e y = -x. Indique $\iint_D f(x,y) dx dy$ como integral iterada nas duas possíveis ordens e como integral iterada em coordenadas polares.
- (b) Considere a curva $C = C_1 \cup C_2$, onde C_1 é o semicírculo $x^2 + y^2 = 2x$, percorrido no sentido anti-horário, de (1,-1) [o ponto foi corrigido durante a prova] para (1,1) e C_2 é o segmento de reta de (1,1) para (0,0). Calcule a integral de linha $\int_C (x^2 + y^2)^{3/2} dx + x dy.$

Questão 2 (valor: 2,0)

Calcule a massa do sólido W interior à superfície esférica $x^2 + y^2 + z^2 = 4$, compreendida entre o plano z = 0 e a superfície cônica $z = \sqrt{x^2 + y^2}$, se a densidade de massa em cada ponto P de W é diretamente proporcional a distância de P ao plano xy.

Questão 3 (valor: 1,5)

Considere a curva C interseção da superficíe cilíndrica $z=4-x^2$ com o plano x+y=1, no primeiro octante, percorrida no sentido decrescente da variável x. Calcule o trabalho realizado pela força $\vec{F}(x,y,z)=(-z,2x,3y)$ para deslocar uma partícula ao longo de C.

Questão 4 (valor: 2,0)

Sejam $\vec{F}(x,y,z)=(-2x,-2y,4z)$ e a superfície S de equação x+y+z=4 situada no interior de $x^2+y^2=4$.

- (a) Parametrize S e calcule $\iint_S \vec{F} \cdot \vec{n} \ dS$, \vec{n} com componente z positiva.
- (b) Sejam S_1 o plano z=0 no interior de $x^2+y^2=4$, com normal apontando para baixo e S_2 a superfície $x^2+y^2=4$ entre os planos z=0 e x+y+z=4, com normal exterior. Calcule $\iint_{S_1\cup S_2} \vec{F} \cdot \vec{n} \ dS$.

Questão 5 (valor: 1,5)

Considere a curva C formada pelos quatro lados do retângulo sobre o plano x+y=1, percorrida no sentido A,B,C,D,A, sendo $A=(1,0,0),\ B=(0,1,0),\ C=(0,1,1),\ D=(1,0,1).$ Calcule $\iint_C \vec{F} \cdot d\vec{r}$, sendo $F(x,y,z)=(2x,f(y),2y),\ f$ uma função de classe C_1 .