Example 2.13 (Heat flux across a surface). The heat flow or heat flux across a surface can be calculated by setting $\boldsymbol{\Phi} = \boldsymbol{q}$, where \boldsymbol{q} is the vector of heat per unit surface per unit time [W/m²]. Thus, in direction \boldsymbol{n} ,

$$\dot{Q} = \int_{S} \boldsymbol{q} \cdot \boldsymbol{n} \, \mathrm{d}S \tag{2.31}$$

Flux	Symbol	Units	Expression
Volumetric flux	Q	m^3/s	$\int_{S} \boldsymbol{v} \cdot \boldsymbol{n} \mathrm{d}S$
Mass flux	\dot{m}, G	$\rm kg/s$	$\int_{S} \rho \boldsymbol{v} \cdot \boldsymbol{n} \; \mathrm{d}S$
Flux of a property, with $\phi = \text{prop./mass}$		[prop.]/s	$\int_{S} \rho \phi \cdot \boldsymbol{n} \; \mathrm{d}S$
Heat flux	\dot{Q}	W	$\int_{S} \boldsymbol{q} \cdot \boldsymbol{n} \mathrm{d}S$

Table 2.1. Examples of fluxes across a surface S.

Problems

2.1 Given the Eulerian fluid field

$$\boldsymbol{v}(x,y,z,t) = 3t\boldsymbol{i} + xz\boldsymbol{j} + ty^2\boldsymbol{k}$$

where i, j and k are the unit vectors along the coordinate axis, determine the flow acceleration.

2.2 A fluid field is described by

$$u = \frac{x}{1+t} \; ; \; v = \frac{y}{1+2t} \; ; \; w = 0$$

where t represents time. Calculate the streamlines and trajectories that pass by x_0 , y_0 at t = 0 and the streakline that passes by x_0 , $y_0 \forall t$.

2.3 Using polar coordinates, the fluid field in a tornado can be approximated as

$$oldsymbol{v} = -rac{a}{r}oldsymbol{e}_r + rac{b}{r}oldsymbol{e}_ heta$$

where e_r and e_{θ} are the unit vectors in the directions r and θ . Show that the streamlines obey the logarithmic spiral equation

$$r = C \exp(-\frac{a}{b}\theta)$$

2.4 A two-dimensional transient velocity field is given by

$$u = 5x(1+t)$$
 $v = 5y(-1+t)$

where u is the x velocity component and v, the y component. Find:

- (a) The trajectory x(t), y(t) if $x = x_0$, $y = y_0$ at t = 0. Is this a Lagrangian or Eulerian flow description?
- (b) The streamlines that pass by x_0, y_0 .
- (c) The streakline that goes by x_0, y_0 .

2.5 The ideal flow around a corner placed at the axis origin is given by

$$u_x = ax$$
$$u_y = -ay$$

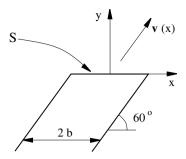
with a constant. Determine the streamlines and draw the streamline that goes by the point (1, 1) indicating the flow direction for a > 0. Calculate the substantial derivative.

2.6 The velocity field in an irrotational vortex, like the ones present in cyclones, is given by

$$u_x = -Ky/(x^2 + y^2)$$

$$u_y = Kx/(x^2 + y^2)$$

Determine the streamlines and draw a few of them.

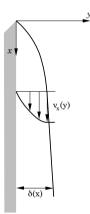

2.7 Check if the velocity field of the above exercise can be expressed in polar coordinates as

$$u_r = 0$$

 $u_ heta = K/r$

and calculate the streamlines in polar coordinates.

2.8 Calculate the volumetric and mass flow rate, Q and \dot{m} , respectively, across the slit S of width w shown in the Figure, where the velocity vector has an angle of 60° with the x axis and its magnitude is given by $v = v_0(b^2 - x^2)/b^2$. The fluid density is ρ .


2.9 In film condensation along a vertical plate in a vapor atmosphere (see the Figure), Nusselt found out that in laminar flow the velocity profile at a station x is

Problem 2.8. Slit geometry.

$$v_x(y) = \frac{(\rho_l - \rho_v)g\delta^2}{\mu} \left[\frac{y}{\delta} - \frac{1}{2}\left(\frac{y}{\delta}\right)^2\right] \qquad 0 \le y \le \delta(x)$$

where ρ_l and ρ_v are the density of the fluid in the liquid and vapor phase, respectively, and μ the liquid density. Find the volumetric flow rate per unit width at any value of x.

Problem 2.9. Film condensation on a vertical plate.

2.10 Write the expression of the kinetic energy flux across a surface *S*.