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Self Evaluation Exercises

Problems

13.1 An axle of diameter d turns inside a fixed concentric bearing of diameter
D. The length of the device is L. The space between the axle and the bearing
is filled with an oil of viscosity µ. The axle turns at an angular velocity ω
so that in the steady state the fluid velocity has only a tangential direction
eθ and it is a quadratic function of the radius, with a minimum where the
velocity is zero.

(a) How much is the heat per unit time Q̇ to be eliminated from the device so
the fluid is maintained at constant temperature?

(b) If the device is isolated so Q̇ = 0, assuming the equation of state de =
cvdT , what is the rate of variation of the temperature ?

13.2 Given the two-dimensional velocity field

v =
{

5y2

3y − 3

}

(a) Calculate the divergence ∇ · v.
(b) Is the flow compressible or incompressible? Why?
(c) Determine the viscous dissipation function φv.

13.3 An approximate method to scale cylindrical stirring tanks for liquids
consists of maintaining the power per unit volume pv = P/V constant. It is
considered that the agitation power P is a function of the diameter of the
agitator D, its angular velocity ω and the liquid density ρ.

(a) Determine the dimensionless relation of P with respect to the other di-
mensionless variables.

(b) It is desired to increase the tank volume by 3. What is the scale factor of
the diameter and the agitator?
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(c) What is the power and the angular velocity for the new tank?

Note. Assume that the tanks are geometrically similar and the flow is turbu-
lent.

13.4 Determine the horizontal and vertical forces to fix the elbow of the
Figure.
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Problem 13.4. Force to hold a 180◦ elbow.

13.5 The Figure shows the velocity vx and temperature T profiles around a
cylinder. The ambient pressure far from the cylinder can be taken constant and
equal to 0. If the flow is steady and incompressible, determine the following
variables.

(a) The mass flow ṁ across the horizontal surfaces of the control volume.
(b) The force FD necessary to keep the cylinder (of length L) fixed. Calculate

the dimensionless friction coefficient, Cf = τ̄0/(1
2ρU2

0 ), where the mean
stress is defined as τ̄0 = FD/(2πDL).

(c) If de = cvdT and the cylinder is heated at a rate of Q̇ calculate Ts for the
temperature profiles shown in the Figure. Assume that cv is constant.
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Problem 13.5. Non-isothermal incompressible flow about a cylinder.

13.6 Calculate the vertical F1 and horizontal F2 net forces and the point of
application y2 to hold the wall of the tank.
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Problem 13.6. Force to hold a tank wall.

13.7 Let a non-Newtonian fluid have the constitutive equation

τ ′ = µ

∣∣∣∣du

dy

∣∣∣∣
n

n > 1

(a) To what kind of non-Newtonian fluid does it correspond?
(b) If the velocity profile near a solid wall can be expressed as

u(y) = a1y + a2y
2

where y is the coordinate orthogonal to the wall, determine τ ′
0, the viscous

stress at the wall.

13.8 A circular container of 230 mm diameter filled with water at ambient
temperature loses mass at a rate of 1.5 × 10−5 kg/s when the ambient is dry
and at 22 ◦C.

(a) Determine the mass transfer coefficient.
(b) Calculate the total heat (by convection and evaporation) which is lost when

the ambient air has a relative humidity of 50% and the water temperature
is 37 ◦C.
Gas constant: R = 8.314 kJ/(kmol K). Water properties: DAB = 2.3 ×
10−5m2/s; latent heat of vaporization L = 2 257 kJ/kg. Air properties:
ρ = 1.2 kg/m3; µ = 1.82 × 10−5 kg/(m s); κ = 0.026 W/(m K); Pr = 0.7.

13.9 The Figure of the problem shows a common technique to disperse fluid
B into fluid A to form the solution AB. The technique consists of mixing both
substances through concentric pipes.

(a) Calculate uAB
2 and the pressure loss assuming negligible friction forces and

equal densities for all the fluids. Characterize the result for D = 10 cm,
d = 2 cm, ρA = ρB = ρAB = 1 gr/cm3, uA

1 = 1.5 m/s, uB
1 = 4.0 m/s.

(b) Obtain the pressure loss for the case of different densities as a function of
d/D, ρA/ρB, uA

1 /uB
1 and ρAuA

1 /ρBuB
1 .
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Problem 13.9. Mixing process through concentric pipes.

(c) What can be concluded from the expression obtained in (b)?

13.10 The conic pivot of the Figure spins at an angular velocity ω and rests
over a thin layer of oil with thickness h. Determine the moment due to viscous
friction as a function of the angle α, the viscosity µ, the angular velocity, the
thickness h and the diameter of the axle D.
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Problem 13.10. Conic bearing to support axial and radial forces.

13.11 From a vertical tube of length L and radius R, a fluid of density ρ and
viscosity µ falls. Assuming that the velocity profile is steady, fully developed
and parabolic,

v(r) =
2Q

πR4
(R2 − r2)

and that the gravity acts downwards, determine the outgoing volumetric flux
Q.
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Problem 13.11. Fall of a fluid in a pipe due to gravity.

13.12 The evolution of small perturbations in a fluid can be modeled by the
Orr-Sommerfeld equation

ν
d4φ(y)

dy4
−
[
ω + 2νk2

] d2φ(y)
dy2

+ k2
[
ω + νk2

]
φ(y) = 0

where φ is the stream function [m2/s], ω the angular velocity of the wave [1/s],
k the wavenumber [1/m] and ν = µ/ρ, the kinematic viscosity. Using ρ, µ, h,
U , make the Orr-Sommerfeld equation dimensionless.

13.13 The time t to discharge a tank depends approximately on its diameter
D, the liquid level h, the diameter of the outlet orifice d, the acceleration of
the gravity g and the fluid density ρ.

(a) Determine the dimensionless relation for the discharge time.
(b) If a tank is made at a scale four times smaller, what is the discharge time?

How much should h be for dimensional analysis to apply?
(c) If the fluid is changed, what is the time of discharge? Justify the answer.
(d) In this section, the viscous effects µ are taken into account. What is the

new dimensionless number that appears in the nondimensional relation?
Is it possible to have complete similarity when both, the geometric scale
of the tank and the fluid are modified? Why?

13.14 A porous cylinder of unknown surface is saturated with water. Dry air
is blown perpendicularly to the cylinder at a pressure of 1 atm and velocity
10 m/s, so the air gets humid. The water evaporation rate is 1.684×10−5 kg/s
and the heat transport coefficient is given by

NuD = C Rem
D Pr1/3 where C = 0.193 and m = 0.618

Calculate the surface of the cylinder assuming that both the water and air
are at 310 K and that the cylinder diameter is 0.045 m.
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Problem 13.13. Draining of a tank through an orifice. Dimensional analysis.

Data for air: ρ = 1.2 kg/m3; µ = 1.82×10−5 kg/(m s); Da = 2.3×10−5 m2/s;
Pr = 0.7. Gas constant: R = 8.314 kJ/(kmol K). Water vapor properties:
Ma = 18 kg/kmol

13.15 Given the two-dimensional velocity field

v =
{
−2x2t
6yt

}

determine the equation of the streakline that passes by the point (x0, y0).

13.16 A planet in formation is made of a fluid of constant density ρ. If at
the free surface, located at r = R, there is atmospheric pressure patm and
the radial body forces are fm = − 4πK

3 r, determine the hydrostatic pressure
distribution p(r) inside the planet.

13.17 In a wind tunnel there is a uniform air flow of 7 m/s (kinematic
viscosity ν = µ/ρ = 1.5×10−5 m2/s) at 295 K. Aligned with the flow, there is
a 4 m long rectangular container, filled with water to a height of 1 cm. If the
vapor pressure at the ambient conditions is 2000 Pa and the water is at the
air temperature, calculate the time to evaporate the water in the container.
The global mass transfer coefficient can be approximated by

ShL = 0.664 Re1/2
L Sc1/3

Gas constant: R = 8 314. J/(kmol K). Mass diffusivity of water in air: DA =
2.5 × 10−5m2/s.

13.18 The impulsion power of a hydraulic pump is frequently expressed
as a function of energy head H [m]. It can be shown that gH (with g the
gravity acceleration) depends on the fluid density, ρ [kg/m3], and viscosity
µ [kg/(m s)], the pump angular velocity of rotation N [rad/s], the runner
diameter D [m], the volumetric flow rate Q [m3/s] and the characteristic
roughness length ε [m].
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(a) Determine the characteristic curve gH in dimensionless form, using as
fundamental variables ρ, N and D.

(b) Assume that the dissipation effects are negligible, that is, ignore the vari-
ables µ and ε. In this new situation, called partial similarity, what is the
dimensionless relation?

(c) Assume a pump with characteristic curve H(Q) = 20 − 0.1Q2. Assuming
the partial similarity of (b), what would the new characteristic curve of
the pump H ′(Q′) be if the rotation speed was doubled?

(d) Again, neglecting the dissipation effects, what is the new characteristic
curve if only the fluid density is modified?

13.19 The Figure shows a two-dimensional adiabatic mixing tank. If the flow
is steady and incompressible (with density ρ), answer the following questions.

(a) Calculate the exit volumetric flow rate Q3.
(b) Given p1, p2 and p3, employ the mechanical energy equation to determine

the viscous dissipation in the tank Dv.
(c) As a function of the inlet temperatures, T1, T2, and the specific heat at

constant volume cv (which can be assumed constant), calculate the exit
temperature T3.
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Problem 13.19. Mixing tank.

13.20 A vertical solar panel is L = 1 m tall and w = 2 m wide. The local
Nusselt number follows the correlation

Nux = C

(
Grx

4

)1/4

C = 0.56

where the Grashof number is defined as
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GrL =
βgρ2L3∆T

µ2

with β the expansion coefficient and ∆T the temperature difference between
the panel and the environment. Determine the correlation for the global Nus-
selt number NuL.




