Equações Lineares de 1^a Ordem - Aplicações

Maria João Resende

www.professores.uff.br/mjoao

2016-2

Chamamos de **modelo matemático**, uma descrição matemática de algum sistema ou fenômeno físico, sociológico ou até econômico.

Chamamos de modelo matemático, uma descrição matemática de algum sistema ou fenômeno físico, sociológico ou até econômico.

Construção de modelo matemático

Chamamos de **modelo matemático**, uma descrição matemática de algum sistema ou fenômeno físico, sociológico ou até econômico.

Construção de modelo matemático

• identificar as variáveis (por vezes eliminando algumas a princípio, para facilitar os cálculos)

Chamamos de modelo matemático, uma descrição matemática de algum sistema ou fenômeno físico, sociológico ou até econômico.

Construção de modelo matemático

- identificar as variáveis (por vezes eliminando algumas a princípio, para facilitar os cálculos)
- elaborar um conjunto de hipóteses

Chamamos de modelo matemático, uma descrição matemática de algum sistema ou fenômeno físico, sociológico ou até econômico.

Construção de modelo matemático

- identificar as variáveis (por vezes eliminando algumas a princípio, para facilitar os cálculos)
- 2 elaborar um conjunto de hipóteses
- descrever o problema por meio de uma equação (ou sistema de equações)

Trajetórias Ortogonais

Consideremos uma família de curvas \mathscr{F} no plano xy, que são soluções da equação

$$\frac{dy}{dx} = f(x, y)$$

3 / 14

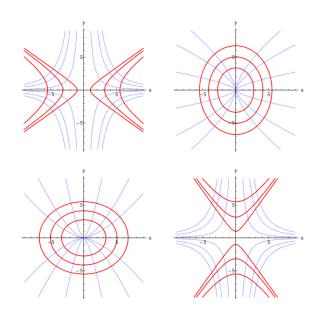
Trajetórias Ortogonais

Consideremos uma família de curvas \mathscr{F} no plano xy, que são soluções da equação

$$\frac{dy}{dx} = f(x, y)$$

Objetivo:

Determinar uma família de curvas \mathscr{G} ortogonal a \mathscr{F} , ou seja, as interseções entre duas curvas de cada uma das famílias é ortogonal.



O coeficiente angular da reta tangente à curva \mathscr{C} nesse ponto é dado por $f(x_0, y_0)$.

O coeficiente angular da reta tangente à curva $\mathscr C$ nesse ponto é dado por $f(x_0,y_0)$.

Assim o coeficiente angular de uma reta ortogonal a $\mathscr C$ é dado por

$$-\frac{1}{f(x_0,y_0)}$$
, se $f(x_0,y_0)$ for não nulo.

O coeficiente angular da reta tangente à curva $\mathscr C$ nesse ponto é dado por $f(x_0,y_0)$.

Assim o coeficiente angular de uma reta ortogonal a $\mathscr C$ é dado por

$$-\frac{1}{f(x_0,y_0)}$$
, se $f(x_0,y_0)$ for não nulo.

Então a equação que define a $\underline{\text{família }\mathscr{G}}$ (ortogonal à família \mathscr{F}) é:

$$\frac{dy}{dx} = -\frac{1}{f(x,y)}$$

Modelos que descrevem o crescimento de populações humanas ou de outras espécies.

Modelos que descrevem o crescimento de populações humanas ou de outras espécies.

Modelos

Modelos que descrevem o crescimento de populações humanas ou de outras espécies.

Modelos

Modelo de Malthus

Modelos que descrevem o crescimento de populações humanas ou de outras espécies.

Modelos

- Modelo de Malthus
- Modelo Logístico (Verhuls t-Pearl)

Modelos que descrevem o crescimento de populações humanas ou de outras espécies.

Modelos

- Modelo de Malthus
- Modelo Logístico (Verhuls t-Pearl)
- **3** ...

P(t) = população total no instante t.

P(t) = população total no instante t.

Hipótese:

A taxa segundo a qual a população cresce num determinado instante t, é proporcional à população total no mesmo instante.

P(t) = população total no instante t.

Hipótese:

A taxa segundo a qual a população cresce num determinado instante t, é proporcional à população total no mesmo instante.

$$\frac{dP}{dt} = kP$$

P(t) = população total no instante t.

Hipótese:

A taxa segundo a qual a população cresce num determinado instante t, é proporcional à população total no mesmo instante.

$$\frac{dP}{dt} = kP$$

Observação: Se k < 0 então a população diminui e tende a ser extinta. Se k > 0 então a população cresce e tenderia a infinito. No entanto, como o ambiente tem limitações, a longo prazo o crescimento populacional será eventualmente inibido pela falta de recursos essenciais.

P(t) = população total no instante t.

P(t) = população total no instante t.

L = limite máximo para a população (isto é, a capacidade do ambiente).

P(t) = população total no instante t.

L = limite máximo para a população (isto é, a capacidade do ambiente).

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right)$$

P(t) = população total no instante t.

L = limite máximo para a população (isto é, a capacidade do ambiente).

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right)$$

Observações:

Se P = P(t) é pequeno quando comparado com L, a EDO é praticamente a mesma do modelo anterior.

P(t) = população total no instante t.

L = limite máximo para a população (isto é, a capacidade do ambiente).

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right)$$

Observações:

Se P = P(t) é pequeno quando comparado com L, a EDO é praticamente a mesma do modelo anterior.

Este modelo é mais realista que o de Malthus, mas ainda tem as suas limitações, pois não permite a possibilidade de extinção, já que, a população sempre tenderá para L. Mesmo assim, é um modelo bastante apropriado para a análise de sistemas como por exemplo o crescimento populacional de cidades e o de populações de lactobacilos.

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 0 0

O núcleo de um átomo consiste em combinações de prótons e neutrons. Como muitas dessas combinações são instáveis, os átomos decaem ou transmutam em átomos de outras substâncias. Dizemos que esses núcleos são radioativos.

O núcleo de um átomo consiste em combinações de prótons e neutrons. Como muitas dessas combinações são instáveis, os átomos decaem ou transmutam em átomos de outras substâncias. Dizemos que esses núcleos são radioativos.

Q(t) = quantidade de uma substância radioativa no instante t.

O núcleo de um átomo consiste em combinações de prótons e neutrons. Como muitas dessas combinações são instáveis, os átomos decaem ou transmutam em átomos de outras substâncias. Dizemos que esses núcleos são radioativos.

Q(t) = quantidade de uma substância radioativa no instante t.

Hipótese:

A taxa segundo a qual a substância decai é proporcional à quantidade.

O núcleo de um átomo consiste em combinações de prótons e neutrons. Como muitas dessas combinações são instáveis, os átomos decaem ou transmutam em átomos de outras substâncias. Dizemos que esses núcleos são radioativos.

Q(t) = quantidade de uma substância radioativa no instante t.

Hipótese:

A taxa segundo a qual a substância decai é proporcional à quantidade.

$$\frac{dQ}{dt} = -kQ$$

$$\frac{dQ}{dt} = -kQ$$

$$\frac{dQ}{dt} = -kQ$$

Observações:

A constante k depende do elemento e pode ser determinada através do tempo de "meia-vida" do elemento, que é o tempo necessário para desintegrar metade da quantidade do elemento.

10 / 14

$$\frac{dQ}{dt} = -kQ$$

Observações:

A constante k depende do elemento e pode ser determinada através do tempo de "meia-vida" do elemento, que é o tempo necessário para desintegrar metade da quantidade do elemento.

Por exemplo, a meia-vida do carbono-14 está entre 5538 e 5598 anos, sendo em média 5568 anos com um erro para mais ou para menos de 30 anos. O C-14 é uma importante ferramenta em pesquisa arqueológica conhecida como teste do radiocarbono.

Lei do Resfriamento de Newton

Este modelo descreve a troca de calor entre um corpo e o meio ambiente que o rodeia.

Lei do Resfriamento de Newton

Este modelo descreve a troca de calor entre um corpo e o meio ambiente que o rodeia.

Hipótese:

• A temperatura do corpo T = T(t) depende do tempo e é a mesma em todos os pontos do corpo.

Este modelo descreve a troca de calor entre um corpo e o meio ambiente que o rodeia.

Hipótese:

- A temperatura do corpo T = T(t) depende do tempo e é a mesma em todos os pontos do corpo.
- A temperatura T_m do meio ambiente permanece constante no decorrer da experiência.

Este modelo descreve a troca de calor entre um corpo e o meio ambiente que o rodeia.

Hipótese:

- A temperatura do corpo T = T(t) depende do tempo e é a mesma em todos os pontos do corpo.
- A temperatura T_m do meio ambiente permanece constante no decorrer da experiência.
- A taxa de variação da temperatura em relação ao tempo é proporcional à diferença de temperatura entre o corpo e o meio ambiente.

Este modelo descreve a troca de calor entre um corpo e o meio ambiente que o rodeia.

Hipótese:

- A temperatura do corpo T = T(t) depende do tempo e é a mesma em todos os pontos do corpo.
- A temperatura T_m do meio ambiente permanece constante no decorrer da experiência.
- A taxa de variação da temperatura em relação ao tempo é proporcional à diferença de temperatura entre o corpo e o meio ambiente.

$$\frac{dT}{dt} = k(T - T_m)$$

$$\frac{dT}{dt} = k(T - T_m)$$

$$\frac{dT}{dt} = k(T - T_m)$$

Observação:

• A constante k depende do material que constitui o corpo.

12 / 14

$$\frac{dT}{dt} = k(T - T_m)$$

Observação:

- A constante k depende do material que constitui o corpo.
- Se k > 0, a temperatura do corpo está aumentando com o passar do tempo, em relação à temperatura do meio ambiente.

12 / 14

$$\frac{dT}{dt} = k(T - T_m)$$

Observação:

- A constante k depende do material que constitui o corpo.
- Se k > 0, a temperatura do corpo está aumentando com o passar do tempo, em relação à temperatura do meio ambiente.
- Se k < 0 o corpo está arrefecendo relativamente à temperatura ambiente.

Problema:

Temos um tanque com uma solução salina e a partir de certo momento adicionamos uma outra solução com concentração de sal diferente, ao mesmo tempo que a mistura do tanque é escoada. Qual a concentração de sal da solução no tanque?

13 / 14

Problema:

Temos um tanque com uma solução salina e a partir de certo momento adicionamos uma outra solução com concentração de sal diferente, ao mesmo tempo que a mistura do tanque é escoada. Qual a concentração de sal da solução no tanque?

Hipótese:

A taxa segundo a qual quantidade de sal no tanque varia é a diferença entre as taxas de entrada e de saída de sal.

Q(t) = quantidade de sal no tanque no instante t (Kg)

Q(t) = quantidade de sal no tanque no instante t (Kg)

V = capacidade do tanque(L)

Q(t) = quantidade de sal no tanque no instante t (Kg)

V = capacidade do tanque(L)

C = concentração de sal na solução que será inserida no tanque (Kg/L)

Q(t) = quantidade de sal no tanque no instante t (Kg)

V = capacidade do tanque(L)

C = concentração de sal na solução que será inserida no tanque (Kg/L)

F = razão de entrada e saída de solução do tanque (L/min).

Q(t) = quantidade de sal no tanque no instante t (Kg)

V =capacidade do tanque (L)

C = concentração de sal na solução que será inserida no tanque (Kg/L)

F = razão de entrada e saída de solução do tanque (L/min).

$$\frac{dQ}{dt} = F\left(C - \frac{Q(t)}{V}\right)$$