

Departamento de Matemática Aplicada **2ª VE de Cálculo II - B**

Turma H1 - 03/07/2012 Prof. Maria João Resende

Questão	Valor	Nota
1 ^a	2,0	
2 ^a	2,0	
3 ^a	2,0	
4 ^a	2,0	
5 ^a	2,0	
Total	10	

Nome:	

Instruções: Não é permitido sair da sala durante a prova nem o uso de qualquer material eletrônico.

Cada resposta deverá ter devidamente identificado o número da questão à qual se refere. As respostas sem uma justificação correta serão desconsideradas.

- 1. Considere a função $f(x,y) = \ln(xy + y^2)$.
 - (a) Em que direção a derivada de f no ponto (3,2) é zero?
 - (b) Qual a direção e a taxa de maior crescimento da função no ponto (3, 2)?
 - (c) Calcule uma aproximação da variação da função quando passamos do ponto (3,2) para o ponto (2.9,2.2).
- 2. Encontre todos os máximos locais, mínimos locais e pontos de sela da função $f(x,y) = x^2 + y^2 2x 4y + 6$. A função admite extremos globais?
- 3. Justifique porque a função f(x,y)=xy admite um valor máximo e um valor mínimo quando restrita à elipse de equação $\frac{x^2}{8}+\frac{y^2}{2}=1$. Determine tais valores.
- 4. Sejam $f(x,y) = (x^2 + xy + 1, y^2 + 2)$ e $g(u,v) = (u+v, 2u, v^2)$. Determine a função afim que melhor aproxima $g \circ f$ numa vizinhança do ponto (1,1).
- 5. Considere o sistema

$$\begin{cases} x + y^2 + 2yv + uv - 2z = 0 \\ x^2 - yz - 2u - v = 0 \end{cases}$$

- (a) Explique por que o sistema acima define implicitamente uma função diferenciável (u,v)=F(x,y,z) tal que F(1,-1,1)=(2,-2) numa vizinhança do ponto (1,-1,1).
- (b) Encontre a matriz derivada DF(1, -1, 1).