

Departamento de Matemática Aplicada 2ª VE de Cálculo II - B

Turma F1 - 30/11/2010 Prof. Maria João Resende

Nome Completo:

Instruções: A prova vale 10 pontos e tem duração de 1h50min.

Não é permitido sair da sala durante a prova nem o uso de qualquer material eletrônico. A resolução da prova deve ser realizada na(s) folha(s) de papel anexa(s) e cada resposta deverá ter devidamente identificado o número da questão à qual se refere.

As respostas sem uma justificação correta serão desconsideradas.

- 1. (1,5 pts) Considere a função real definida por $f(x,y) = ye^{-xy}$. Determine as direções \overrightarrow{u} em que $\frac{\partial f}{\partial \overrightarrow{u}}(0,2) = 1$.
- 2. (3,0 pts) Considere a função vetorial definida por $f(u,v) = (u^2 + u^2v + 10v, u + v^3)$.
 - (a) Mostre que f tem uma inversa, f^{-1} , na vizinhança do ponto (1,1).
 - (b) Calcule um valor aproximado de $f^{-1}(11, 8; 2, 2)$.
- 3. (3,0 pts) Seja $f(\theta)$ uma função com derivada contínua, para todo o $\theta \in \mathbb{R}$, e tal que f(1) = e + 2.
 - (a) Prove que a equação $\frac{z^2}{2} + e^{xy} = f\left(\frac{x}{y}\right)$ define implicitamente z = z(x,y) numa vizinhança do ponto (1,1,-2).
 - (b) Prove que $\left(x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}\right)_{|(1,1)} = e$.
- 4. (2,5 pts) Considere o conjunto $E = \left\{ (x,y,z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{9} \le 1 \right\}$ e a função real definida por $f(x,y,z) = x^2 + y^2 z$.
 - (a) Determine, caso existam, os máximos e os mínimos absolutos da restrição de f ao conjunto E.
 - (b) Considere as superfícies S_1 dada pela equação $x+y+z=2\sqrt{2}$ e S_2 dada por $\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{9}=1$. Determine a equação da reta tangente à curva de interseção de S_1 e S_2 no ponto $(\sqrt{2},\sqrt{2},0)$.