UFF - Instituto de Matemática Data: 05 maio 2016.

Lista 1

1. Dados a, b em um anel A, mostre que as identidades abaixo são válidas (indique todas as propriedades utilizadas em cada passo):

(i)
$$(a + b)^2 = a^2 + 2ab + b^2$$
 (ii) $-(a^{-1}) = (-a)^{-1}$ (iii) $(a^{-1})^2 = (a^2)^{-1}$.

- 2. Nos itens abaixo, determine se os conjuntos, com as operações indicadas, são anéis. Caso não sejam, determine quais condições não foram satisfeitas.
 - (a) $A = \mathbb{Z}$, $a \oplus b := a \cdot b$, $a \odot b := a + b$.
 - (b) $A = \mathbb{Z}, a \oplus b := a b, a \odot b := a \cdot b.$
 - (c) $A = \{x \in \mathbb{R} \mid x > 0\}, \ a \oplus b := a \cdot b, \ a \odot b := \exp(\log(a) \cdot \log(b)).$
- 3. Seja $P = \{2n \mid n \in \mathbb{Z}\}$ o conjunto dos números inteiros pares (incluindo os negativos). Dados $a, b \in P$, digamos a = 2m e b = 2n, definimos:

$$\begin{cases} \mathfrak{a} \oplus \mathfrak{b} := \mathfrak{a} + \mathfrak{b} & \text{(a soma usual)} \\ \mathfrak{a} \odot \mathfrak{b} := 2 \mathfrak{m} \mathfrak{n} \end{cases}$$

Pergunta: (P, \oplus, \odot) é um anel? É um domínio? É um corpo?

- 4. Seja $A = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Mostre que A é um domínio e determine A^* .
- 5. Seja $F = \{a + bi \mid a, b \in \mathbb{Q}\}$. Prove que F é um subcorpo dos números complexos.
- **6.** Construa um corpo com 4 elementos (monte uma tabela com as operações de soma e multiplicação).
- 7. Qualquer que seja o anel A, prove que $A \times A$ não é um domínio.
- ${\bf 8.}\,$ Seja Xo conjunto dos números racionais com denominadores ímpares, ou seja,

$$X = \big\{\frac{\mathfrak{a}}{\mathfrak{b}} \mid \mathfrak{a}, \mathfrak{b} \in \mathbb{Z}, \mathfrak{b} \text{ \'e impar} \big\}.$$

Prove que X é um subanel do corpo $\mathbb Q$ dos números racionais. Em seguida, determine o conjunto X^* dos elementos invertíveis de X.

- 9. Mostre que a interseção de dois subanéis de um anel A é ainda um subanel de A.
- 10. Mostre que se A é um subanel de \mathbb{Z} , então $A = \mathbb{Z}$.