Lista 5

- 1. Em um anel qualquer: $a \mid b \in a \mid c \implies a \mid b + c$.
- 2. Sejam $a,b\in\mathbb{Z}$ não ambos nulos e seja $d=\mathrm{mdc}(a,b)$. Então $\mathrm{mdc}(\frac{a}{d},\frac{b}{d})=1$.
- 3. Sejam a, b, c em um domínio, com a e b não nulos. Seja d = mdc(a, b). Então:

$$a \mid c = b \mid c \implies ab \mid cd.$$

- **4.** Utilizando divisões sucessivas, calcule em \mathbb{Z} :
 - (a) mdc(30, 18)
- (b) mdc(72,486)
- (c) mdc(1011, 99)
- **5.** Para cada par a, b do exercício anterior, encontre $x, y \in \mathbb{Z}$ tais que ax + by = mdc(a, b).
- **6.** Seja D um domínio principal. Dados $a, b \in D$, sejam d = mdc(a, b) e m = mmc(a, b). Vamos mostrar que dm é associado a ab.
 - (a) Sejam $x,y \in D$ tais que ax + by = d. Multiplicando ambos os lados por m, conclua que $ab \mid dm$.
 - (b) Mostre que $m \mid \frac{ab}{d}$ e logo $dm \mid ab$.
 - (c) Conclua que dm e ab são associados. Em particular, em \mathbb{Z} , tomando a, b, d, m positivos, temos a igualdade dm = ab.
- 7. Se I, I são ideais em um anel A, então $I \cap J$ é um ideal de A.
- 8. Seja D um domínio principal. Dados $a, b \in D$, seja $m \in D$ tal que $(m) = (a) \cap (b)$ (veja o exercício anterior). Mostre que m = mmc(a, b).
- 9. (Um exemplo onde o mdc não existe) Seja $A = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}.$
 - (a) Prove que A é um subdomínio dos números complexos.
 - (b) Defina $N(\alpha+b\sqrt{-5})=\alpha^2+5b^2$. Prove que se $\mathfrak{u},\mathfrak{v}\in A,$ então

$$N(u \cdot v) = N(u) \cdot N(v)$$
.

- (c) Mostre que $2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$.
- (d) Utilizando a função $N(\cdot)$, mostre que $2,3,1+\sqrt{5}$ e $1-\sqrt{5}$ são irredutíveis em A.
- (e) Tente se convencer que $\mathrm{mdc}(2\cdot 3,2\cdot (1+\sqrt{-5}))$ $n\tilde{ao}$ existe (veremos mais tarde).