Lista 2

- **1.** Prove: $X, Y \subset \mathbb{R}$ tem medida nula $\implies X \cup Y$ e $X \cap Y$ também tem medida nula.
- **2.** Seja $\{X_n\}_{n\in\mathbb{N}}$ uma coleção enumerável de conjuntos de medida nula. Mostre que $X=\cup_n X_n$ também possui medida nula.
- 3. Se $f \colon [a,b] \to \mathbb{R}$ é de Lipschitz e $X \subseteq [a,b]$ tem medida nula, então f(X) tem medida nula.
- **4.** Em cada uma das seguintes afirmações abaixo justifique em caso verdadeiro e dê um contra-exemplo em caso falso.
 - (a) Se |f| é integrável, então f é integrável.
 - (b) Se $f: [a, b] \to \mathbb{R}$ limitada é tal que suas somas inferiores e superiores coincidem com respeito a qualquer partição do intervalo [a, b], então f é constante em [a, b].
 - (c) Se $f:[a,b]\to\mathbb{R}$ limitada é integrável, então $F(x)=\int_a^x f(t)dt$ é derivável.
- **5.** Se $f: [1,3] \to \mathbb{R}$ é definida por f(x) = 2 se $x \neq 2$ e f(2) = 1, mostre usando o critério de Cauchy que f é integrável e que a integral em [1,3] vale 4.
- **6.** Seja $f:[a,b]\to\mathbb{R}$ contínua. Mostre que se $\int_a^b f(x)dx=0$, então existe c em [a,b] tal que f(c)=0.
- 7. Dê um exemplo de uma função integrável $f:[a,b]\to\mathbb{R}$ para a qual não existe $c\in[a,b]$ tal que $\int_a^b f(x)dx=f(c)(b-a)$.
- **8.** Seja $f:[a,b]\to\mathbb{R}$ integrável com $f(x)\geq 0$ para todo x. Prove que $\int_a^b f(t)dt=0$ se e somente se existe um subconjunto Y denso em [a,b] tal que f(y)=0 para todo $y\in Y$.
- **9.** Prove que se $f:[a,b]\to\mathbb{R}$ é integrável, então $F(x)=\int_a^x f(t)dt$ é lipschitziana.
- 10. Seja $F(x) = \int_x^{2x} \frac{1}{t} dt$ para x > 0. Prove que a função F é constante.
- **11.** Dada a integral imprópria $\int_a^b \frac{dx}{(x-a)^m} \cos b > a$, analise a sua convergência quando:

(a)
$$0 < m < 1$$

(b)
$$m = 1$$

(c)
$$m > 1$$
.

20 NOVEMBRO **2013**

Prof.: Nivaldo.

Se a integral for convergente, calcule seu valor.

- **12.** Seja $f: [a,b] \to \mathbb{R}$ limitada. Para cada $x \in [a,b]$, defina $f_+(x) = f(x)$ se $f(x) \ge 0$ e $f_+(x) = 0$ se f(x) < 0; e $f_-(x) = -f(x)$ se $f(x) \le 0$ e $f_-(x) = 0$ se f(x) > 0. Prove:
 - (a) $f = f_+ f_- e |f| = f_+ + f_-$.
 - (b) Se f é integrável, então f_+ e f_- são integráveis. Vale a recíproca?

13. Considere as integrais impróprias:

(a)
$$\int_{1}^{3} \frac{dy}{\sqrt[3]{y-2}}$$
 (b) $\int_{1}^{\infty} \frac{x^{5}}{x^{6}+1} dx$.

Decida se são convergentes e calcule seu valor, em caso afirmativo.

- **14.** (a) Mostre que se f é limitada em $[a, \infty)$, integrável em qualquer intervalo [a, r] e $\int_a^\infty g(x)dx$ converge absolutamente, então $\int_a^\infty (f\cdot g)(x)dx$ converge.
 - (b) Usando o item anterior, mostre que $\int_1^\infty \frac{\sin x}{x^2} dx$ converge.
- **15.** Seja $f : [a, b] \to \mathbb{R}$ integrável e $G : [a, b] \to \mathbb{R}$ tal que $G(x) = \int_x^b f(t) dt$.
 - (a) Prove que G'=-f em cada ponto onde f é contínua.
 - (b) Determine h'(x), onde $h(x) = G(x^2) G(x^3)$.
- **16.** Seja $f:[a,b]\to\mathbb{R}$ integrável e tal que $f\geq 0$. Mostre que se $\int_a^b f(t)dt=0$ e f é contínua em um ponto $c\in (a,b)$, então f(c)=0.
- 17. Prove que a sequência $x_n=1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n$ é descrecente e limitada e logo converge. Seu limite é chamado a constante de *Euler-Mascheroni* e seu valor é aproximadamente $\gamma=0,577\ldots$
- **18.** Usando o critério de Cauchy, prove que $f:[0,1]\to\mathbb{R}$ definida por $f(x)=x^3$ é integrável.