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Abstract

We study the geometry of a reduced canonical curve with a nondegenerate component. We
prove that the other components are rational normal curves in a certain con.guration. In addition,
given a nonsingular point on a nondegenerate component, we analyze the relationship between
the Weierstrass semigroup and the intersection divisors of the osculating spaces with the curve.
We describe how these divisors vary and present an upper bound for their degrees. We study
in detail the curves that attain this bound. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let N be a numerical semigroup, that is, a subsemigroup of the natural num-
bers whose complement is .nite, say with g elements. Pinkham [14] constructed a
moduli space of pointed smooth curves of genus g whose Weierstrass semigroup
at the distinguished point is N . Using a variant of Petri’s analysis, St@ohr [17] and
Oliveira and St@ohr [12] constructed a compacti.cation for the Pinkham’s space for
semigroups whose last gap is 2g− 1 or 2g− 2, respectively. In that case, the bound-
ary consists of reduced Gorenstein curves that, when canonically embedded, have
a nondegenerate component. Our aim is to show how to apply that construction
further.
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Let C be a nonhyperelliptic smooth curve of genus g. Then the canonical map,
given by the regular diIerentials on C, is an embedding. The image is nondegenerate
in Pg−1 (that is, not contained in any hyperplane) and of degree 2g−2. Recall that the
Weierstrass semigroup of a point P of C is the set of pole numbers of rational functions
that are regular away from P. Its complement in the natural numbers consists of g
elements, say ‘1¡‘2¡ · · ·¡‘g, called its gaps. For i=0; : : : ; g − 2, the intersection
of all hyperplanes of Pg−1 that meet C at P with order at least ‘i+2− 1 is a subspace
of dimension i, called the ith osculating space of C at P.
We relate the gaps and the osculating spaces as follows. Let E‘i+2 be the intersection

divisor of the ith osculating space and the curve outside P (see Section 4). Pimentel
[13, Theorem 1.1] proved that the sequence E‘26E‘36 · · ·6E‘g can vary only at
indices of a certain subset of the gaps. We improve his result in Theorem 4.1, proving
that subset can be restricted to the translation gaps ‘ (that is, ‘ + n is a nongap for
every positive nongap n). In Corollary 4.3, we show that if the number of translation
gaps, called the type, is at most two, then a divisor E‘ is either zero or is equal to E‘g .
In that case [13, Theorem 2.1], there is a certain basis for the spaces of the higher-order
diIerentials and the Oliveira and St@ohr construction applies.
To deal with types greater than two, we stratify the moduli space according to

the behavior of the osculating spaces. In Theorem 4.5, we prove an upper bound on
the degree of divisors E‘. In Section 5, we study the curves that attain that bound.
In this case, the type of the Weierstrass semigroup at P is maximal (see De.nition
2.3). In (5:2) and (5:3), we present examples of such curves. Furthermore, we show
in Example 5.2 that, in general, the Weierstrass semigroup does not determine the
behavior of osculating spaces. In Theorem 5.5, we present a basis for the spaces of
the higher-order diIerentials on such curves, and conclude that they are arithmetically
Cohen–Macaulay.
Even if we are only interested in smooth curves, we are led naturally to consider

certain singular Gorenstein curves too, since they appear in the boundary of the moduli
space. More precisely, we consider connected, reduced, canonically embedded curves,
with a nondegenerate component. In Section 3, we characterize such curves. In Theorem
3.1, we show that each other component is a rational normal curve in the subspace that
it spans. The results stated above hold for such curves, provided that the osculating
hyperplane meets the curve only at nonsingular points.
In addition, we prove the following results. In Section 2, we deal with numerical

semigroups. In Proposition 2.1, we prove that every semigroup has a set of generators
determined by its translation gaps. In Proposition 2.5, we prove a lower bound on the
cardinality of sets of sums of gaps and show that this bound is achieved precisely by
the semigroups whose type reaches its maximal value.
In Section 6, we realize a certain family of semigroups of maximal type using

reducible curves. As a byproduct, we obtain certain Gorenstein curves containing an
irreducible component that is not Gorenstein, generalizing [11, Section 4]. In contrast,
we show in Proposition 6.5 that some semigroups of our family cannot be realized as
Weierstrass semigroups of a smooth curve.
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Below, by a semigroup we mean a numerical semigroup. All curves that we con-
sider are complete, reduced algebraic schemes of pure dimension one, de.ned over an
algebraically closed .eld K .

2. Numerical semigroups

Let N be a semigroup and g its genus, that is, the number of its gaps. We write
L= {‘1¡‘2¡ · · ·¡‘g} for the set of gaps. Set d:=2g− 1− ‘g. The last gap satis.es
g6 ‘g6 2g− 1, and so we have 06d6 g− 1. A gap ‘ is called special if ‘g − ‘ is
a gap. Since there exist g− 1−d positive nongaps smaller than the last gap, there are
exactly d special gaps, say s1¡s2¡ · · ·¡sd.
The positive integers t such that t + n is a nongap for every positive nongap n are

called the translations of N (cf. [15, p. 457]). The type � of N is the number of its
translation gaps. We denote the translation gaps by

T :={t1¡t2¡ · · ·¡t�}:
Note that the last gap is a translation and every other translation gap is special and so
16 �6d+ 1.
Below, we prove that every semigroup has a set of generators determined by its

translations gaps.

Proposition 2.1. Let n1 be the smallest positive nongap of N . Then the following
statements hold.
(i) The semigroup N is generated by

{n∈N | n¡‘g} ∪ {n1 + t | t ∈T}:
If n1¿d+ 2; then n1 + ‘g can be excluded from this set.

(ii) We have n1¿ � + 1. If the equality holds; then {n1; n1 + t1; n1 + t2; : : : ; n1 + t�}
is a set of generators for N .

(iii) The set of translations of N is a semigroup generated by {n∈N | n¡‘g} ∪ T:

Proof. (i) We must prove that each integer n satisfying ‘g + 16 n6 ‘g + n1 can be
written as a linear combination of the claimed generators. If ‘g−n1¡n−n1¡‘g then
n − n1 ∈N or n − n1 ∈T , since every gap greater than ‘g − n1 is a translation. Now,
if n= n1 + ‘g and n1 is greater than d + 2, then the number of pairs (r; n − r) with
n1 +16 r6 ‘g−1=2g−2−d is greater than the number 2(g−n1) of gaps appearing
in these pairs, and so at least one such pair contains two nongaps.
(ii) Being translation gaps, the residual classes of t1; t2; : : : ; t� modulo n1 are nonzero

and pairwise diIerent and so n1¿ �+ 1. Suppose n1 = �+ 1. Let n be a nongap and
t a translation gap with same residual classes modulo n1. Then n¿ t and so n is a
linear combination of n1 and t.
(iii) It is clear that the translations form a semigroup. The assertion about its gen-

erators follows directly from Statement (i).
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Note that if t1 = 1, then n + 1 is a nongap for every positive nongap n and so the
gap sequence is 1; : : : ; g.

Theorem 2.2. Suppose the gap sequence of N di<ers from 1; : : : ; g. Then we can write
each r ∈{2; : : : ; ‘g − 1} as a sum of gaps a; b; in which at least one of them is not a
translation.

Proof. The existence of a partition of r as a sum of two gaps follows from [10,
Theorem 1.3]. We may assume r ¿ t1. Since L �= {1; : : : ; g}, we have t1¿ 1 and so we
may assume r − 1 is a nongap.
Let � denote the set of translations. We consider two cases.
Suppose r �∈ �. Then r is a gap. So r − t1 is a gap as well and, since � is a

semigroup, it is not a translation. We are done in this case.
Suppose r ∈�. Assume, by way of contradiction, that whenever r= a+ b is a sum

of gaps, then a; b are translations. Let

Ñ :={0} ∪ {n∈N | r − n∈L} ∪ {r + 1; r + 2; : : :}:

It is easy to check that Ñ is a semigroup whose last gap is r. Let ñ1 be its smallest
positive nongap and S̃ (resp. T̃ ) its set of special (resp. translation) gaps. If s̃ is a
special gap of Ñ , then

s̃∈L if and only if r − s̃∈L

and so by our contradiction hypothesis we have S̃ ⊂ �. We conclude that T̃ ⊂ �,
since T̃ ⊂ (S̃ ∪ {r}). On the other hand, it follows from Proposition 2.1 that

G̃:={ñ∈ Ñ | ñ¡ r} ∪ {ñ1 + t̃ | t̃ ∈ T̃}

is a set of generators for Ñ . Since ñ1 ∈N (as r − 1 is a nongap), we obtain G̃ ⊂ N ,
that is, Ñ ⊂ N , which is a contradiction, because ‘g ∈ Ñ . The theorem is proved.

De�nition 2.3. A semigroup is said to be of maximal type if each special gap is a
translation, or equivalently, if �=d+ 1.

We shall meet semigroups of maximal type in Section 5, as Weierstrass semigroups
of pointed curves whose osculating spaces intersect the curve “maximally”. Semigroups
of maximal type also appear as semigroups of values of certain one-dimensional local
rings and were named almost symmetric by Barucci and Fr@oberg; see [2] for further
information.

Remark 2.4. Let s be a special gap and n be a positive nongap. If s+n is a gap, then
it must be a special gap and so

s∈T ⇔ s′ − s is a gap for every special gap s′ ¿s:
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In particular, N is of maximal type if and only if sj − si is a gap whenever j¿ i.
Note that if d=0, then the semigroup has type one. Conversely, if d¿ 1, then the
last special gap is a translation and so the type is at least two.

A semigroup is called symmetric if ‘g − ‘ is a nongap for each gap ‘, that is, if
d=0. By Remark 2.4, a semigroup is symmetric if and only if it has type one. We
say that a semigroup is quasi-symmetric if it has only one special gap, namely g− 1.
Quasi-symmetric semigroups have type two and are also of maximal type.
For each n¿ 2, let

Ln:=

{
n∑

i=1

ai|a1; : : : ; an ∈L

}

be the set of sums of n gaps. Oliveira [10, Theorem 1.5] proved that a semigroup
with ‘2 = 2 is symmetric if and only if #Ln=(2n− 1)(g− 1) for every n¿ 2. Below,
we give a lower bound on the cardinality of Ln for nonsymmetric semigroups. The
semigroups that attain this bound are exactly those with maximal type.

Proposition 2.5. Let N be a nonsymmetric semigroup. For each n¿ 2; set

Mn:={n; : : : ; (n− 1)‘g} ∪ {(n− 1)‘g + ‘ | ‘∈L}:
The following statements hold:
(i) Mn ⊆ Ln.
(ii) (2n− 1)(g− 1)− (n− 1)d+ 16 #Ln6 (2n− 1)(g− 1)− nd+ g.
(iii) The following =ve assertions are equivalent:

(a) The semigroup N is of maximal type.
(b) Ln=Mn for some n¿ 2.
(c) Ln=Mn for every n¿ 2.
(d) #Ln=(2n− 1)(g− 1)− (n− 1)d+ 1 for some n¿ 2.
(e) #Ln=(2n− 1)(g− 1)− (n− 1)d+ 1 for every n¿ 2.

Proof. Statement (i) follows from the proof of [11, Theorem 1.1], but we repeat the
argument here for the reader’s convenience. Let n¿ 2 and m∈{n; : : : ; (n− 1)‘g}. We
write m−n= i(‘g−1)+(r−2) in a such way that 06 i6 n−2 and 26 r6 ‘g. Thus,
m= i‘g+(n−2− i)‘1+r and so the inclusion Mn ⊆ Ln holds, since each r ∈{2; : : : ; ‘g}
can be written as a sum of two gaps whenever N is not symmetric (cf. [10, Theorem
1.3]). Now Statement (ii) follows by observing that #Mn=(2n−1)(g−1)−(n−1)d+1
and Ln ⊆ {n; n+ 1; : : : ; n‘g}.
Let us prove Statement (iii). We have (c) implies (b) and, by Statement (i), (b) is

equivalent to (d) and (c) is equivalent to (e).
(b) ⇒ (a): suppose Ln=Mn and let s be a special gap. If h is a positive nongap,

then (n − 1)‘g + h does not belong to Ln. So (n − 2)‘g + (‘g − s) + (s + h) is not a
sum of gaps, that is, s + h∈N . Thus, each special gap is a translation and so N has
maximal type.
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(a) ⇒ (c): let a1; : : : ; an be gaps and 0¡r¡‘g be such that
∑n

i=1 ai=(n−1)‘g+ r:
Note that ‘g − ai is a translation for each i: indeed, either ‘g − ai is a nongap or it is a
special gap (hence a translation, as N is of maximal type). By writing an=

∑n−1
i=1 (‘g−

ai) + r, we conclude r is a gap. We proved Ln ⊆ Mn and now the result follows from
Statement (i).

3. Canonical curves with a nondegenerate component

The intrinsic geometry of an abstract curve can be translated in terms of the projec-
tive geometry of its canonical model. For singular curves, the canonical map is obtained
by replacing the canonical sheaf by the dualizing sheaf, whose global sections we now
describe.
Let C be a curve and C1; : : : ; Cn its irreducible components. Let � : C̃ → C be its

normalization. The curve C̃ is the disjoint union of normalizations C̃1; : : : ; C̃n of the
components. The space of rational di<erentials on C̃ is the direct product

 1C̃ = 1C̃1 × · · · ×  1C̃n

of rational diIerentials on each component. We say that !∈ 1
C̃
is a regular di<erential

on C if for each P ∈C and for each regular function z of C at P we have∑
Q∈�−1(P)

resQ(�∗z · !)= 0: (1)

We identify the global sections of the dualizing sheaf !C of C with the regular dif-
ferentials on C (cf. [6, p. 82]). In order to de.ne a map of the regular diIerentials
to some projective space, the dualizing sheaf must be invertible, or equivalently, the
curve C must be Gorenstein. If g is the arithmetic genus of C, then by de.nition

g=1 + h1(C;OC)− h0(C;OC): (2)

By duality, h0(C;!C)= h1(C;OC), and so the dimension of the space of regular dif-
ferentials coincides with the arithmetic genus if and only if C is connected. Given a
regular diIerential ! on C, we write

div(!):=
∑

P∈Creg

ordP(!) · P

for the corresponding Weil divisor supported on nonsingular points of C. If D is a
Weil divisor supported on Creg, then we shall, by abuse of notation, write

 n
C(D)=H 0(C;!⊗n

C (−D))

to denote the space of n-fold regular diIerentials ’ such that div(’)¿D.
From now on, we assume that C is a connected Gorenstein curve of arithmetic genus

g and the canonical map is an embedding. We identify C with its image, thus obtaining
a nondegenerate curve in Pg−1 of degree 2g− 2.
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To any curve Z we associate a graph, de.ned as follows: to each component Y of
Z , take a segment and mark on it one point for each singular point of Z that belongs
to Y . Finally, identify the points belonging to more than one component. If Z is a
subcurve of C, we denote by Zc the subcurve of C given by the union of components
not contained in Z .

Theorem 3.1. Let X be a connected subcurve of C. Suppose X is nondegenerate in
Pg−1. Then the following statements hold:
(i) Each connected subcurve of X c has arithmetic genus zero and its singularities

are given by the intersection of smooth branches with independent tangents.
(ii) The singularities of C outside X are ordinary nodes.
(iii) Each irreducible component Y ⊂ X c is a rational normal curve (in the subspace

that it spans). In addition; the subcurve Y c is connected.

Proof. To begin with, let Z be any subcurve of C. Then the regular diIerentials on
Z are precisely those given by restriction of regular diIerentials on C that vanish on
Zc. Indeed, let Z =C1 ∪ · · · ∪Cm. By (1), we have that (!1; : : : ; !m)∈ 1

Z̃
is a regular

diIerential on Z if and only if (!1; : : : ; !m; 0; : : : ; 0) is regular on C.
Let Z be a connected subcurve of X c. As X is nondegenerate, it follows that there

does not exist a nonzero regular diIerential on C vanishing on X . So, by our remark
above, the space of regular diIerentials on Z is the null space. Since Z is connected,
it follows from (2) that its arithmetic genus is zero. Now the assertion about the
singularities and the graph of Z follows from [3, Proposition 1.8]. Statement (i) is
proved. Since the curve C is Gorenstein, the number of branches centered on a singular
point of C − X must be two and so Statement (ii) follows as well.
Let us prove Statement (iii). Let Y be an irreducible component of X c. By Statement

(i), the curve Y has arithmetic genus zero, so it is isomorphic to a projective line.

Claim. The component Y is a rational normal curve if and only if Y c is connected.

Proof (claim). Since Y ⊂ C are both Gorenstein curves, from [3, Lemma 1.12] we
obtain deg(!C |Y )= deg(!Y ) + *, where * is the length of OY∩Y c . So, Y ⊂ Pg−1 is
an irreducible curve of degree * − 2. Let r be the dimension of the space of the
regular diIerentials on Y c. From (2), we have r= g′ − 1 + h0(Y c;OY c ), where g′ is
the arithmetic genus of Y c. By our remark at the beginning of the proof, the curve Y
spans a subspace of dimension g − r − 1. On the other hand, the arithmetic genus of
C is g= g′ + *− 1 (cf. [7, Theorem 3]) and so

g− r − 1= *− 2− (h0(Y c;OY c )− 1):
Hence, Y is a rational normal curve if and only if h0(Y c;OY c ) = 1, proving the claim.

To .nish the proof of Statement (iii), we need only to prove that Y c is connected.
Let Z be a maximal connected subcurve of Y c. It suRces to prove that Z contains the
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subcurve X . Suppose that it is not so. Then it follows from Statements (i) and (ii) that
the graph of Z ∪ Y is contractible and its singularities outside X are ordinary nodes.
Hence, there is a component E ⊂ Z such that E meets the subcurve (Z ∪ Y )− E just
at one node. On the other hand, since the map induced by !C |E is an embedding and
E is smooth and rational, the component E intersects its complement Ec at least at
three points, counting the multiplicities. Therefore, E intersects the subcurve (Z ∪ Y )c,
reaching a contradiction. The theorem is proved.

Remark 3.2. Suppose C has two distinct nondegenerate irreducible components, say X
and Y . Then their degrees are at least g− 1. Since C has degree 2g− 2, we conclude
that X and Y have degree g − 1 and C =X ∪ Y . So, X and Y are rational normal
curves and therefore each nonsingular point of C is noninSectionary. In characteristic
zero, Garcia and Lax [4] have shown that for every odd number n¿ 3, there exists an
irreducible rational curve with n ordinary nodes such that every nonsingular point is a
nonWeierstrass point.

4. Osculating spaces and Weierstrass semigroups

As before, let C be a canonically embedded Gorenstein curve of arithmetic genus g.
Let P be a nonsingular point of C and X the irreducible component of C containing
P. Let L be the set of integers ‘ such that there exists a hyperplane H ⊂ Pg−1, not
containing X , such that ordP(X:H)= ‘−1 (that is, there exists a regular diIerential on
C vanishing with order ‘−1 at P). When C is smooth, L is the set of Weierstrass gaps.
To establish a common nomenclature with the smooth case, we call the elements of L
the gaps of C at P. The number of gaps is the dimension of the subspace spanned by
X plus one and so is, at most, g. We assume that there are g gaps at P or equivalently,
the component X is nondegenerate. In addition, we assume that the complement of the
gaps in the natural numbers is a semigroup and call it Weierstrass semigroup of C at P.
Let ‘1¡‘2¡ · · ·¡‘g be the gaps. Let T (i) be the intersection of all hyperplanes

of Pg−1 that meet C at P with multiplicity at least ‘i+2 − 1. Each T (i) is a projective
subspace of dimension i, called the ith-osculating space of C at P. So, T (0) is the
point P, T (1) is the tangent line and T (g−2) is the osculating hyperplane of C at P. Put
d:=deg(C∗:T (g−2)); where C∗ is the punctured curve C \{P}. The contact order of the
osculating hyperplane and the curve at P is ‘g − 1 and so ‘g=2g− 1− d. We assume
that the osculating hyperplane meets the curve C outside P at least at one point, that is,
d¿ 1. In addition, we assume that C:T (g−2) consists only of nonsingular points of C.
When T ⊂ Pg−1 is a projective subspace of codimension possibly greater than one,

we de.ne the intersection divisor C:T as the in.mum of divisors C:H , where H is a
hyperplane containing T . Thus, for i=0; : : : ; g− 2,

C:T (i) =
∑

Q∈C∩T (g−2)
min{ordQ(C:H) |H is a hyperplane; ordP(C:H)¿ ‘i+2 − 1} · Q
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or equivalently,

C:T (i) =
∑

Q∈C∩T (g−2)
min{ordQ(!) |!∈ 1C((‘i+2 − 1)P)} · Q:

We denote by !‘ a regular diIerential on C whose order at P is ‘−1. Given a vector
space of regular diIerentials, a basis for it is called P-hermitian if the orders at P of
its elements are pairwise distinct.
Let {!‘ | ‘∈L} be a P-hermitian basis for the space of regular diIerentials on C.

Note that div(!‘g) does not depend on the choice of the P-hermitian basis and it is
equal to C:T (g−2). More generally, we have

C∗:T (i) =
∑

Q∈C∗∩T (g−2)
min{ordQ(!‘) | ‘¿ ‘i+2} · Q (i=0; : : : ; g− 2): (3)

Put E‘i+2 :=C∗:T (i) for each i. When C is smooth, Pimentel showed that the sequence
E‘26E‘36 · · ·6E‘g can change only at indices given by special gaps. More precisely,
he proved [13, Theorem 1.1] that if E‘i ¡E‘i+1 ; then ‘i is special. We improve his
result as follows.

Theorem 4.1. If E‘i ¡E‘i+1 ; then ‘i is a translation gap.

Proof. Assume ‘i is not a translation gap. Thus, there is a positive nongap n such that
‘i + n is a gap. Let {!‘ | ‘∈L} be a basis for the regular diIerentials on C. By [13,
Proposition 1.6], we can assume, after an eventual change of basis, that div(!‘)¿E‘g

for nonspecial gaps ‘ (the proof there, for smooth curves, works also in our case,
since we are assuming the osculating hyperplane cuts C only at nonsingular points).
Therefore, we can assume that ‘i is special (otherwise E‘i =E‘i+1), and in particular
that ‘i + n �= ‘g. Furthermore, we have div(!‘g−n)¿E‘g , since ‘g − n is nonspecial.
By the Riemann–Roch theorem, the vector space  2C(div(!‘g)) has dimension g and

so {!‘!‘g | ‘∈L} form a P-hermitian basis for it. Now, the sets

W1:={!‘!‘g | ‘¿‘i} ∪ {!‘i+n!‘g−n} and W2:={!‘!‘g | ‘¿ ‘i}
span the same subspace of  2C(div(!‘g)). Hence∑

Q∈C∗∩T (g−2)
min{ordQ(’) |’∈W1} · Q=

∑
Q∈C∗∩T (g−2)

min{ordQ(’) |’∈W2} · Q;

that is,

E‘i+n + E‘g =E‘i + E‘g

reaching a contradiction. The theorem is proved.

Let t1¡t2¡ · · ·¡t�= ‘g be the translation gaps of C at P.

De�nition 4.2. The ascending sequence Et1 ; Et2 ; : : : ; Et� is called the sequence of
(canonical) osculating divisors of C at P.
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As we have seen in Remark 2.4, a semigroup has type one if and only if every
gap is nonspecial, that is, d=0. So, if the type of Weierstrass semigroup is one then
the osculating hyperplane does not cut the curve outside P. In this case, E‘=0 for
every gap ‘. For semigroups of type two, we have the following result, which is a
generalization of [13, Proposition 2.4].

Corollary 4.3. Suppose the type of Weierstrass semigroup of C at P is two and let
s be its last special gap. Then for each gap ‘; we have E‘=0 if ‘6 s and E‘=E‘g

otherwise.

Proof. It follows from Theorem 4.1 that E‘=E‘g for each gap ‘¿ t�−1 and Et1 = 0,
since E‘2 = 0. For semigroups whose type is greater than one, we have s= t�−1. Since
the type is two, the result follows.

Lemma 4.4 (Pimentel [13, Lemma 1.3]). Let ‘; ‘′ be gaps such that ‘+‘′= ‘g. Then

div(!‘) + div(!‘′)� E‘g :

Proof. By the Riemann–Roch theorem, the vector space  2C(div(!‘g)−P) has dimen-
sion g. Hence, the quadratic diIerentials {!‘i!‘g | i=1; : : : ; g} form a P-hermitian basis
for it. Since ‘ + ‘′ does not belong to ‘g + L, we obtain that !‘!‘′ does not belong
to  2C(div(!‘g)− P) and so the lemma follows.

Let s1¡s2¡ · · ·¡sd be the special gaps of C at P. Now, we prove an upper
bound on the degree of divisors E‘.

Theorem 4.5. For each i=1; : : : ; d; we have deg(Esi)6 i − 1:

Proof. For i=d, by applying Lemma 4.4, we obtain

div(!s1 ) + div(!sd)� E‘g

and so deg(Esd)6d− 1. The general case follows by a similar argument. Indeed, let
Dj:=E‘g − Esd+1−j for j=1; : : : ; d. So, for a given i, we must prove that deg(Di)¿ i.
Consider the following set of i diIerentials

W :={!s1 ; !s2 ; : : : ; !si}:
By Lemma 4.4, we have div(!sj)�Dj for each j. Since Dj6Di whenever j6 i, we
obtain div(!)�Di for each !∈W . Suppose now that deg(Di)¡i. Write Di:=

∑
k akQk

with each ak positive. By doing a normalization (that is, a change of the P-hermitian
basis), we can assume that the diIerentials of W have pairwise diIerent orders at Q1
(cf. [13, Remark 1.2]). Thus, at most a1 of them have order smaller than a1 at Q1.
Normalize the remaining diIerentials making their orders pairwise diIerent at Q2; at
most a2 among these have order smaller than a2. By proceeding in this way, we con-
clude that there exist at least i − deg(Di) diIerentials ! in W such that div(!)¿Di,
reaching a contradiction. The theorem is proved.
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5. Curves with maximal osculating divisors

Keep the assumptions of the previous section. We study pointed curves that intersect
maximally their osculating spaces, in the sense that the bound given in Theorem 4.5
is attained.

De�nition 5.1. The sequence of osculating divisors of C at P is called maximal if
deg(Esi)= i − 1 for i=1; : : : ; d.

Below, we present examples of curves whose sequence of osculating divisors is
maximal. Note that, in this case, it follows from Theorem 4.1 that each special gap is
a translation, that is, the Weierstrass semigroup is of maximal type.

Example 5.2 (Kummer’s extensions). Assume char(K)= 0. Let n; r be coprime inte-
gers such that n¿ 3 and 16 r ¡n − r. Let C be the smooth curve whose function
.eld is K(x; y), where

yn= xn−r(x − c1)r(x − c2) · · · (x − cn):

Here, x, y are transcendental over K and c1; : : : ; cn are constants pairwise diIerent. Then
P∞ (the pole of x) and P0; P1; : : : ; Pn (the zeros of x; x − c1; : : : ; x − cn, respectively)
are exactly the places of K(x; y) that are (fully) rami.ed over K(x). By the Riemann–
Hurwitz formula, the genus of C is n(n− 1)=2.
For each j=1; : : : ; n − 1, set kj:=[rj=n]. Note that nkj6 rj − 1, as n and r are

coprime. It follows that the n(n− 1)=2 diIerentials

!i;j:=
xi(x − c1)kj

yj dx;
j=1; : : : ; n− 1;
i= j − kj − 1; : : : ; 2j − kj − 2;

are regular and have pairwise diIerent orders at P∞. So, they form a basis for the
space of the regular diIerentials on C. The gaps of C at P∞ are

{un+ v | u=0; : : : ; n− 2; v=1; : : : ; n− 1− u}
or more conveniently,

1; : : : ; (n− 1);
n+ 1; : : : ; 2(n− 1);
2n+ 1; : : : ; 3(n− 1);
...
(n− 1)2:

Thus, ‘g=(n − 1)2, d= n − 2 and sj = j(n − 1) for j=1; : : : ; n − 2. Therefore, the
Weierstrass semigroup of C at P∞ is of maximal type. On the other hand, the sequence
of osculating divisors depends on the value of r.
Assume r=1. Then kj =0 for every j and so the sequence of osculating divisors of

C at P∞ is

0; P0; 2P0; : : : ; (d− 1)P0; dP0
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and so it is maximal. The osculating hyperplane meets C outside P∞ only at P0.
Suppose r ¿ 1. Then the sequence of osculating divisors at P∞ is (note that n¿ 2r)

: : : ; (n− 2r − 1)P0 + (r − 1)P1; (n− r − 1)P0 + (r − 1)P1
and so it is not maximal in this case. From these examples we conclude that, in general,
the gap sequence does not determine the behavior of osculating spaces (compare with
Corollary 4.3).

Example 5.3 (Hermitian curves). Consider the plane curve C given by

Y q + Y =X q+1;

where q¿ 2 is a power of char(K)¿ 0. As a smooth projective plane curve, C has
degree q + 1 and genus q(q − 1)=2. Let P be a nonWeierstrass point of C. Then the
gap sequence at P is {uq + v | u=0; : : : ; q − 2; v=1; : : : ; q − 1 − u} (see, e.g., [5]).
So, d= q− 2 and the special gaps are si= i(q− 1) for i=1; : : : ; q− 2. Note that this
is a gap sequence of a semigroup of maximal type (compare with Example 5.2). By
choosing a P-hermitian basis for the regular diIerentials on C (cf. [5, Section 1]), we
see that the osculating hyperplane of C at P meets C outside P at just one more point
and deg(E�i)= i − 1 for i=1; : : : ; d+ 1. Hence, the sequence of osculating divisors at
P is maximal.

We write the intersection divisor of C∗ and the osculating hyperplane as

E‘g =d1Q1 + · · ·+ dmQm

and so
∑

di=d. If the sequence of osculating divisors is maximal, then there is a
partition on the set of special gaps, namely

Si:={sk | ordQi(Esk )= ordQi(Esk+1)− 1} (i=1; : : : ; m);

where sd+1:=‘g. Put Si= {si;1¡si;2¡ · · ·¡si;di}. After an eventual reordination of
the Qi’s, we may assume

sm;dm ¡ sm−1;dm−1 ¡ · · ·¡s1;d1 = sd: (4)

Proposition 5.4. Suppose the sequence of osculating divisors of C at P is maximal.
Let {!‘ | ‘∈L} be a P-hermitian basis for the regular di<erentials on C. Then; for
each i=1; : : : ; m and j=1; : : : ; di; the following assertions hold:
(i) ordQi(!si; j)= j − 1.
(ii) si; j + si;di+1−j = ‘g.

In addition; after an eventual change of the basis; the following also hold.
(iii) ordQi(!‘)¿di for each gap ‘ �∈ Si.
(iv) div(!‘)¿E‘g for each nonspecial gap ‘.

Proof. Let Dj:=E‘g −Esd+1−j for j=1; : : : ; d. We have deg(Dj)= j, since the sequence
of osculating divisors is maximal. As we have seen in the proof of Theorem 4.5, we
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have div(!sj)� Dj for each j. By (4), we have D1 =Q1 and so ordQ1 (!s1 ) = 0. More-
over, we have div(!‘)¿Q1 for each gap ‘¿s1, because otherwise we could normalize
!s1 �→ !s1 + c!‘, for a suitable constant c∈K , in order to obtain ordQ1 (!s1 )¿ 0. So,
it follows from (3) that s1;1 = s1. Similarly, we have div(!s2 )� D2 and div(!‘)¿D2
for each gap ‘¿s2. By (3) and (4), the gap s2 is equal to s1;2 or s2;1, according to
D2−D1 is Q1 or Q2. By proceeding in this way, we obtain successively for j=1; : : : ; d,

Dj−16 div(!sj); div(!sj)� Dj and div(!‘)¿Dj for each gap ‘¿sj;

and conclude that (i) and (ii) hold.
Let us prove (iii). Let ‘ be a gap and suppose ‘ �∈ Si. We have proved that

ordQi(!‘)¿j − 1 whenever ‘¿si; j. So, by normalizing !‘ �→ !‘ +
∑

s¿‘ cs!s,
where s runs through Si and the cs’s are suitable constants, we get ordQi(!‘)¿di,
as required. Since (iv) is a particular case of (iii), the proposition is proved.

Below, we present a monomial basis for the space of n-fold regular diIerentials.
Such bases were given in [17, Section 2] for symmetric semigroups, in [11, Theorem
2.3] for the quasi-symmetric case and in [13, Theorem 2.1] for semigroups whose type
is two. To do that, we make local considerations not only at P, but also at the other
points of the intersection between the curve and the osculating hyperplane.
Suppose the set of gaps of C at P is not {1; : : : ; g}. Given r ∈{2; : : : ; ‘g − 1}, we

consider all pairs of gaps (a; b) such that

r= a+ b and a or b is not a translation:

By Theorem 2:2, there is at least one such pair. Let (ar; br) be the pair with the smallest
a. For r= ‘g, set a‘g = s1;1 and b‘g = s1;d1 . Note that, as we have seen in the proof of
Proposition 5.4, s1;1 = s1.

Theorem 5.5. Preserve the above notation. Suppose the sequence of osculating divi-
sors of C at P is maximal. Assume L �= {1; : : : ; g} and d¿ 2. Let {!‘ | ‘∈L} be a
P-hermitian basis for the regular di<erentials on C as given by Proposition 5:4: Then;
for each n¿ 2; the (2n− 1)(g− 1) monomial expressions

!k
‘1!ar!br!

n−2−k
‘g ; k =0; : : : ; n− 2; r=2; : : : ; ‘g;

!‘j!
n−1
‘g ; j=1; : : : ; g;

!k+1
si; 1 !si; j!

n−2−k
‘g ; i=1; : : : ; m; j=1; : : : ; di;

k =0; : : : ; n− 2; (i; j; k) �=(1; d1; 0);
form a basis for the n-fold regular di<erentials on C.

Proof. By the Riemann–Roch theorem, the space of the n-fold regular diIerentials on
C has dimension (2n − 1)(g − 1). Therefore, we need only to show that the above
diIerentials are linearly independent.
The diIerentials in the two .rst rows have pairwise diIerent orders at P and so are

linearly independent. Let ’ be a diIerential in the .rst row with r �= ‘g. The sequence
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of osculating divisors is maximal and so every special gap is a translation. Thus, we
have that ar or br is not a special gap. Hence, it follows from Proposition 5.4 (iv)
that div(’)¿ (n − 1)E‘g . On the other hand, if ’ is in the .rst row and r= ‘g, then
div(’)¿ (n− 1)E‘g −Q1. Now, let  i; j; k :=!k+1

si; 1 !si; j!
n−2−k
‘g be a diIerential in the last

row. By Proposition 5.4, we have for each i; j; k,

ordQi( i; j; k)= (j − 1) + (n− 2− k)di ¡ (n− 1)di

and

ordQu( i; j; k)¿ ndu for u �= i:

So, the diIerentials { i; j; k} are linearly independent. Since ordQ1 ( 1; j; k)¡ (n−1)d1−1
for j �=d1 or k �=0, we conclude that all the diIerentials listed are linearly independent,
as required.

It follows from Theorem 5.5 that the map

K[W‘1 ; : : : ; W‘g ]n →  n
C(0)

given by W‘i �→ !‘i is surjective for each n¿ 2, which is known as Noether’s The-
orem. In particular, the canonical curve C ⊂ Pg−1 is arithmetically Cohen–Macaulay.
If C is smooth, this means that C is projectively normal.

Corollary 5.6. Let i; j; k be positive integers such that i6m and j + k6di. Then
si; j+k 6 si; j + si; k . Moreover; if si; j + si; k is a gap; then the equality holds.

Proof. Let {!‘ | ‘∈L} be a P-hermitian basis as given by Proposition 5.4. The quadratic
diIerential !‘g−si; j!si; j+k has order k − 1 + di at Qi and order greater than ‘g − 2
at P. By Theorem 5.5, it belongs to the space spanned by {!‘!‘g | ‘6 si; k}, since
ordQi(!‘g)=di and ordQi(!‘)¿k − 1 for each ‘¿si;k . So, ‘g − si; j + si; j+k 6 si; k + ‘g
and the result follows.
Assume now that si; j + si; k is a gap. By Theorem 5.5 we can write

!‘g−si; j!si; j+si; k =
∑
‘¿si; k

a‘!‘!‘g (a‘ �=0):

Since the right-hand side has order k−1+di at Qi, we have ordQi(!si; j+si; k )= k+j−1,
that is, si; j + si; k = si; j+k .

Remark 5.7. The semigroup N \ {1; 2; 3; 5; 7}, or more generally the semigroups

N \ {1; 2; : : : ; 2k − 1; 3k − 1; 4k − 1} for k¿ 2;

are examples of semigroups of maximal type that do not satisfy the conditions of
Corollary 5.6. So, they cannot be realized as a Weierstrass semigroup of a pointed
curve whose sequence of osculating divisors is maximal.
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6. Certain Gorenstein curves

As we have seen in Remark 5.7, there are semigroups of maximal type that cannot be
realized by pointed curves whose sequence of osculating divisors is maximal. However,
Theorem 3.1 and Corollary 5.6 suggest how to realize a certain family of them (see
De.nition 6.2 below) by using reducible canonical curves. On the other hand, some
semigroups of this family cannot be realized as Weierstrass semigroups of smooth
curves, as we shall see in Proposition 6.5.
Let N = {0; n1; n2; : : :} be a nonsymmetric semigroup. Let L= {‘1; ‘2; : : : ; ‘g} be its

set of gaps, where ‘g=2g−1−d. Let � be the set of translations of N and t1; t2; : : : ; t�
be the translation gaps. We assume that N is of maximal type, that is, �=d+ 1 and
so every special gap is a translation.
We associate to the semigroup N the projective monomial curve

X :={(a‘1−1b‘g−‘1 : a‘2−1b‘g−‘2 : · · · : a‘g−1b‘g−‘g)∈Pg−1 | (a : b)∈P1}:
Thus, X ⊂ Pg−1 is a nondegenerate, irreducible rational curve of degree 2g − 2 − d.
Its function .eld is generated by the function t given by

(a‘1−1b‘g−‘1 : a‘2−1b‘g−‘2 : · · · : a‘g−1b‘g−‘g) �→ a
b
:

This function is a local parameter of X at the nonsingular point (1 : 0 : · · · : 0). The
contact orders of X and hyperplanes “x‘i =0” at this point are ‘i − 1 for i=1; : : : ; g.
The curve X has just one singular point, namely the unibranched point (0 : · · · : 0 : 1).
We use the local parameter x:=1=t to study the local ring of this singularity.

Proposition 6.1. The completion of the local ring of the curve X at its singular point
is { ∞∑

i=0

dixi ∈K[[x]] |d‘=0; ‘∈L \ {t1; t2; : : : ; t�}
}

:

This ring is Gorenstein if and only if n1 = �+ 1.

Proof. Let S be the set of special gaps of N . The completion of the local ring is

K[[x‘g−‘1 ; x‘g−‘2 ; : : : ; x‘g−‘g−1 ]]

and so its semigroup of values is generated by

{n∈N | n¡‘g} ∪ S = {n∈N | n¡‘g} ∪ {t1; t2; : : : ; t�}
since N is of maximal type and nonsymmetric. So, by Proposition 2.1 (iii), the semi-
group of values is � and the completion is as asserted.
The local ring of an irreducible branch is Gorenstein if and only if its semigroup

of values is symmetric (cf. [9]). The semigroup � has genus g − � and its last gap
is ‘g − n1 and so it is symmetric if and only if 2(g − �) − 1=2g − � − n1, that is,
n1 = �+ 1.
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By Proposition 6.1, the singularity degree of X at its singular point is g− �. Since
X is rational and does not have other singularities, its arithmetic genus is g − � (cf.
[7, Theorem 2]). So, a basis for regular diIerentials on X is given by {t‘−1 dt | ‘∈L \
{t1; t2; : : : ; t�}}.

De�nition 6.2. Let d1; : : : ; dm be positive integers such that
∑

di=d. A semigroup of
maximal type is called (d1; : : : ; dm)-symmetric if there exists a partition

⋃m
i=1 Si of the

set of special gaps, say Si= {si;1; si;2; : : : ; si;di}, such that si; j = jsi;1 for j=1; : : : ; di and
‘g=(di + 1)si;1 for each i.

From now on we assume that N is a (d1; : : : ; dm)-symmetric semigroup whose gap
sequence is not 1; : : : ; g. For convenience, set si;di+1:=‘g for each i.
For i=1; : : : ; m, consider the rational normal curve

Yi:=
{
(c‘1 : · · · : c‘g)∈Pg−1

∣∣∣∣ c‘=0 if ‘ �∈ Si ∪ {‘g}
csi; j = aj−1bdi+1−j for j=1; : : : ; di + 1

}
;

where (a : b)∈P1. As a generator of K(Yi) we take the function yi de.ned by

(c‘1 : · · · : c‘g) �→
csi; 1
csi; 2

:

This is a local parameter of Yi at the point (0 : · · · : 0 : 1). Let C ⊂ Pg−1 be the
reduced curve given by the union of curves X; Y1; : : : ; Ym. Since these curves meet only
at the point (0 : · · · : 0 : 1), this is unique singular point of C. The algebra of rational
functions on C is K(C)=K(X )×K(Y1)× · · ·×K(Ym)=K(x)×K(y1)× · · ·×K(ym):

Proposition 6.3. Let A:=K[[x]]×K[[y1]]×· · ·×K[[ym]]. The completion of the local
ring of C at its unique singular point is



 ∞∑

i=0

cixi;
∞∑
j=0

e1; jy
j
1 ; : : : ;

∞∑
j=0

em;jy j
m


∈A

∣∣∣∣∣∣∣∣
c‘=0; ‘∈L \ {t1; t2; : : : ; t�}
c0 = e1;0 = · · ·= em;0

csi; j = ei; j ; j=1; : : : ; di

c‘g = e1;d1+1 + · · ·+ em;dm+1


 :

This is a local Gorenstein ring whose singularity degree is g+ m.

Proof. Let R:=(0 : · · · : 0 : 1). The image of completion ring
ÔC;R ,→ ÔX;R × ÔY1 ;R × · · · × ÔYm;R

consists of elements (f0; f1; : : : ; fm)∈A where

f0 =f(u(W‘1 ); : : : ; u(W‘g−1 ));

fi=f(ui(W‘1 ); : : : ; ui(W‘g−1 )) for i=1; : : : ; m;

for some f∈K[[W‘1 ; : : : ; W‘g−1 ]] and

u(W‘j):=x‘g−‘j ; ui(W‘j):=
{
0 if ‘j �∈ Si ∪ {‘g}
ydi+1−k
i if ‘j = si; k ; k =1; : : : ; di
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and so the asserted relations between the coeRcients hold. In particular, the singularity
degree of the local ring of C at R is at most

g− �+ m+
m∑
i=1

di + 1= g+ m:

On the other hand, the codimension of its conductor in its integral closure A is at
least 2g − d +

∑m
i=1(di + 2)=2g + 2m. Since this codimension is at most twice the

singularity degree (e.g. [16, p. 80]), it follows that the equality holds. Therefore, there
are no other relations between the coeRcients and ÔC;R is Gorenstein, as required.

Corollary 6.4. The curve C ⊂ Pg−1 is a canonical curve of arithmetic genus g whose
gaps at the point (1 : 0 : · · · : 0) are the integers ‘1; ‘2; : : : ; ‘g. Moreover; its sequence
of osculating divisors at this point is maximal.

Proof. The normalization C̃ of C is the disjoint union of the rational nonsingular
curves X̃ ; Y1; : : : ; Ym and so C̃ has arithmetic genus −m. We conclude that the curve
C has arithmetic genus g (cf. [7, Theorem 2]). By Proposition 6.3, the g diIerentials

(t‘−1 dt; 0; : : : ; 0); ‘∈L \ {t1; t2; : : : ; t�};
(tsi; j−1 dt; 0; y−j−1

i dyi; 0); i=1; : : : ; m; j=1; : : : ; di;

(t‘g−1 dt; y−d1−2
1 dy1; : : : ; y−dm−2

m dym)

form a basis for the regular diIerentials and so C is a canonical curve. From the
diIerentials on the second line we conclude that the sequence of osculating divisors is
maximal.

As is well known, a necessary condition to a numerical semigroup is realizable as
a Weierstrass semigroup of some smooth pointed curve (the “Buchweitz’s criterion”)
in that its sets of sums of gaps must satisfy #Ln6 (2n− 1)(g− 1) for n¿ 2. See [8]
for examples of semigroups that do not satisfy this condition. By Proposition 2.5 (iii),
these inequalities are satis.ed for semigroups of maximal type. However, as has been
shown in symmetric and quasi-symmetric cases (cf. [18, Scholium 3.5; 11, Theorem
5.1], respectively) this condition is not always suRcient. This is the case for some
other semigroups of maximal type.

Proposition 6.5. Let p be a prime number. Let H be a nonrealizable semigroup of
genus h. Let g be an integer such that g¿ (2p− 1)(ph+ p− 1) and p− 1 divides
2g but p does not divide s; where s:=(2g=(p− 1))− 1. Let

N :=pH ∪ (s+ pN+) ∪ (2s+ pN+) ∪ · · · ∪ ((p− 2)s+ pN+)
∪{(p− 1)s− pj | j∈Z \ H};

where N+ is the set of the positive integers. Then N is a (p−2)-symmetric semigroup
of genus g which is not realizable as a Weierstrass semigroup of a smooth curve.
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Proof. Since the prime p does not divide s, the classes of p; s; 2s; : : : ; (p−1)s modulo p
are pairwise diIerent. Thus, the above union is disjoint, and therefore N is a semigroup.
Its last gap is (p− 1)s=2g− 1− (p− 2) and its special gaps are s; 2s; : : : ; (p− 2)s.
So, N is a (p− 2)-symmetric semigroup of genus g.
Now we argue as in the quasi-symmetric case (see [11, Theorem 5.1] for details):

suppose C is a smooth curve whose Weierstrass semigroup at P is N . Let f be
the morphism associated to the base-point-free linear system |nh+2P|. It follows from
Castelnuovo’s bound [1, p. 116] that f is not birational. So, f is a morphism of degree
p (since p is prime) that carries C onto a smooth curve having at f(P) the semigroup
H (for the last step one uses Puiseux’s Theorem), reaching a contradiction.

As Prof. Torres pointed to me, the semigroups given in Proposition 6.5 appear
implicitly in the family given by him in [19, Corollary 4:2:1].
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