(a)
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 8$$

(a)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 8$$
 (b) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0.8$

$$(c) \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

2-28 Determine se a série é absolutamente convergente. condicionalmente convergente ou divergente.

2.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

$$3. \quad \sum_{n=0}^{\infty} \frac{(-10)^n}{n!}$$

5.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{4^{n+1}}$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{5}$$

$$9. \sum_{n=1}^{\infty} \frac{1}{(2n)!}$$

11.
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^{1/n}}{n^3}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$

8.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$$

10.
$$\sum_{n=1}^{\infty} e^{-n} n!$$

$$\sum_{n=1}^{\infty} \operatorname{sen} 4n$$

$$\sum_{n=1}^{\infty} \frac{\sin 4n}{4^n}$$

13.
$$\sum_{n=1}^{\infty} \frac{n(-3)^n}{4^{n-1}}$$

14.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 2^n}{n!}$$

$$15 \sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$$

16.
$$\sum_{n=1}^{\infty} \frac{3-\cos n}{n^{2/3}-2}$$

17.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

18.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

$$19. \sum_{n=1}^{\infty} \frac{\cos(n\pi/3)}{n!}$$

20.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{(\ln n)^n}$$

21.
$$\sum_{n=1}^{\infty} \frac{n^n}{3^{1+3n}}$$

22.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

23.
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$

24.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(\operatorname{arctg} n)^n}$$

25.
$$1 - \frac{1 \cdot 3}{3!} + \frac{1 \cdot 3 \cdot 5}{5!} - \frac{1 \cdot 3 \cdot 5 \cdot 7}{7!} + \cdots + (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{(2n-1)!} + \cdots$$

26.
$$\frac{2}{5} + \frac{2 \cdot 6}{5 \cdot 8} + \frac{2 \cdot 6 \cdot 10}{5 \cdot 8 \cdot 11} + \frac{2 \cdot 6 \cdot 10 \cdot 14}{5 \cdot 8 \cdot 11 \cdot 14} + \cdots$$

27.
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)}{n!}$$

28.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n n!}{5 \cdot 8 \cdot 11 \cdot \cdots \cdot (3n+2)}$$

Os termos de uma série são definidos recursivamente pelas equações

$$a_1 = 2$$
 $a_{n+1} = \frac{5n+1}{4n+3} a_n$

Determine se $\sum a_n$ converge ou diverge.

30. Uma série $\sum a_n$ é definida pelas equações

$$a_1 = 1 \qquad a_{n+1} = \frac{2 + \cos n}{\sqrt{n}} a_n$$

Determine se $\sum a_n$ converge ou diverge.

31. Para quais das seguintes séries o Teste da Razão não é conclusivo (isto é, ele não dá uma resposta definida)?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{\sqrt{n}}$$

$$(d) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}$$

32. Para quais inteiros positivos k a série

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(kn)!}$$

é convergente?

(a) Mostre que $\sum_{n=0}^{\infty} x^n/n!$ converge para todo x.

(b) Deduza que $\lim_{n\to\infty} x^n/n! = 0$ para todo x.

34. Seja $\sum a_n$ uma série com termos positivos e seja $r_n = a_{n+1}/a_n$. Suponha que $\lim_{n\to\infty} r_n = L < 1$, assim $\sum a_n$ converge pelo

Teste da Razão. Como habitualmente, faça R_n ser o resto depois de n termos, isto é,

$$R_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots$$

(a) Se $\{r_n\}$ for uma sequência decrescente e $r_{n+1} < 1$, mostre, pela soma de uma série geométrica, que

$$R_n \leq \frac{a_{n+1}}{1 - r_{n+1}}$$

(b) Se $\{r_n\}$ for uma sequência crescente, mostre que

$$R_n \leq \frac{a_{n+1}}{1-L}$$

35. (a) Calcule a soma parcial s₅ da série

$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

Use o Exercício 34 para estimar o erro ao usar s_5 como uma aproximação da soma da série.

(b) Calcule um valor de n de maneira que s_n aproxime a soma com precisão 0,00005. Use esse valor de n para aproximar a soma da série.

36. Utilize a soma dos primeiros dez termos para aproximar a soma da série $\sum_{n=1}^{\infty} n/2^n$. Use o Exercício 34 para estimar o erro.

37. Prove que, se $\sum a_n$ for absolutamente convergente, então

$$\left|\sum_{n=1}^{\infty} a_n\right| \leqslant \sum_{n=1}^{\infty} |a_n|$$

38. Prove o Teste da Raiz. [Dica para a parte (i): Tome qualquer número r tal que L < r < 1 e use o fato de que existe um inteiro N tal que $\sqrt[n]{|a_n|} < r$ quando $n \ge N$.]

39. Dada uma série qualquer $\sum a_n$ definimos uma série $\sum a_n^+$ cujos termos são todos termos positivos de $\sum a_n$ e uma série $\sum a_n^-$ cujos termos são todos termos negativos de $\sum a_n$. Para ser específico, seja

$$a_n^+ = \frac{a_n + |a_n|}{2}$$
 $a_n^- = \frac{a_n - |a_n|}{2}$

Note que, se $a_n > 0$, então $a_n^+ = a_n$ e $a_n^- = 0$, ao passo que, se $a_n < 0$, então $a_n^- = a_n$ e $a_n^+ = 0$.

 (a) Se Σ a_n for absolutamente convergente, mostre que ambas as séries Σ a_n⁺ e Σ a_n⁻ são convergentes.

(b) Se Σa_n for condicionalmente convergente, mostre que ambas as séries Σa_n^+ e Σa_n^- são divergentes.

40. Prove que, se Σ a_n for uma série condicionalmente convergente e r for qualquer número real, então existe um rearranjo de Σ a_n cuja soma é r. [Dicas: Use a notação do Exercício 39. Tome um número apenas suficiente de termos positivos a_n⁺ de modo que sua soma seja maior que r. Então adicione um número apenas suficiente de termos negativos a_n⁺ de tal modo que a soma cumulativa seja menor que r. Continue dessa maneira e use o Teorema 11.2.6.]