Hypersurface singularity in arbitrary CHARACTERISTIC

Rodrigo Salomão (UFF)
$24^{\text {th }}$ Brazilian Algebra Meeting

02 August, 2016

> Joint work with
> Abramo Hefez and João Hélder Olmedo Rodrigues (UFF)

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$
\mathcal{O} \simeq \mathcal{R} / \mathfrak{A}
$$

where

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$
\mathcal{O} \simeq \mathcal{R} / \mathfrak{A}
$$

where

$$
\mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \text { and } \mathfrak{A} \subset \mathcal{R} \text { is a principal ideal. }
$$

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$
\mathcal{O} \simeq \mathcal{R} / \mathfrak{A}
$$

where

$$
\mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \text { and } \mathfrak{A} \subset \mathcal{R} \text { is a principal ideal. }
$$

Each generator of \mathfrak{A} is called an equation for \mathcal{O} and we denote

$$
\mathcal{O}_{f}:=\mathcal{R} /\langle f\rangle
$$

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

$\operatorname{Spec} \mathcal{O}$ be a singular algebroid hypersurface over k, that is,

$$
\mathcal{O} \simeq \mathcal{R} / \mathfrak{A}
$$

where

$$
\mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \text { and } \mathfrak{A} \subset \mathcal{R} \text { is a principal ideal. }
$$

Each generator of \mathfrak{A} is called an equation for \mathcal{O} and we denote

$$
\mathcal{O}_{f}:=\mathcal{R} /\langle f\rangle
$$

We note that

$$
\mathcal{O}_{f} \simeq \mathcal{O}_{g} \Longleftrightarrow f \sim_{\mathcal{K}} g(\text { Contact Equivalent })
$$

Introduction

Let us consider k be an algebraically closed field with $p=\operatorname{char}(k) \geq 0$ and

$\operatorname{Spec} \mathcal{O}$ be a singular algebroid hypersurface over k, that is,

$$
\mathcal{O} \simeq \mathcal{R} / \mathfrak{A}
$$

where

$$
\mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \text { and } \mathfrak{A} \subset \mathcal{R} \text { is a principal ideal. }
$$

Each generator of \mathfrak{A} is called an equation for \mathcal{O} and we denote

$$
\mathcal{O}_{f}:=\mathcal{R} /\langle f\rangle
$$

We note that

$$
\mathcal{O}_{f} \simeq \mathcal{O}_{g} \Longleftrightarrow f \sim_{\mathcal{K}} g(\text { Contact Equivalent })
$$

$f \sim_{\mathcal{K}} g$: there is an automorphism ϕ of \mathcal{R} and a unit $u \in \mathcal{R}^{*}$ such that $g=u \cdot \phi(f)$.

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

$$
T(f)=\left\langle f, f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

$$
T(f)=\left\langle f, f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

and the Tjurina Number of \mathcal{O} is,

$$
\tau(\mathcal{O})=\tau(f):=\operatorname{dim}_{k} \mathcal{R} / T(f) \in \mathbb{N} \cup \infty
$$

which is an invariant of \mathcal{O}.

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

$$
T(f)=\left\langle f, f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

and the Tjurina Number of \mathcal{O} is,

$$
\tau(\mathcal{O})=\tau(f):=\operatorname{dim}_{k} \mathcal{R} / T(f) \in \mathbb{N} \cup \infty
$$

which is an invariant of \mathcal{O}. We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O})<\infty$.

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

$$
T(f)=\left\langle f, f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

and the Tjurina Number of \mathcal{O} is,

$$
\tau(\mathcal{O})=\tau(f):=\operatorname{dim}_{k} \mathcal{R} / T(f) \in \mathbb{N} \cup \infty
$$

which is an invariant of \mathcal{O}. We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O})<\infty$.

The Jacobian Ideal of f is the ideal

$$
J(f)=\left\langle f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

Introduction

Given an equation f for \mathcal{O}, the Tjurina Ideal of f is the ideal

$$
T(f)=\left\langle f, f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

and the Tjurina Number of \mathcal{O} is,

$$
\tau(\mathcal{O})=\tau(f):=\operatorname{dim}_{k} \mathcal{R} / T(f) \in \mathbb{N} \cup \infty
$$

which is an invariant of \mathcal{O}. We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O})<\infty$.

The Jacobian Ideal of f is the ideal

$$
J(f)=\left\langle f_{X_{1}}, \ldots, f_{X_{n}}\right\rangle \subset \mathcal{R}
$$

and the Milnor Number of f is

$$
\mu(f):=\operatorname{dim}_{k} \mathcal{R} / J(f) \in \mathbb{N} \cup \infty .
$$

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.

Both properties are no longer true if char $k=p>0$.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.

Both properties are no longer true if char $k=p>0$.
Example: If $f=Y^{p}+X^{p+1} \in k[[X, Y]]$ then $\tau(f)=p^{2}<\infty$.

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.
Both properties are no longer true if char $k=p>0$.
Example: If $f=Y^{p}+X^{p+1} \in k[[X, Y]]$ then $\tau(f)=p^{2}<\infty$. On the other hand $\mu(f)=\infty$,

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.
Both properties are no longer true if char $k=p>0$.
Example: If $f=Y^{p}+X^{p+1} \in k[[X, Y]]$ then $\tau(f)=p^{2}<\infty$. On the other hand $\mu(f)=\infty, \mu((1+Y) f)=p^{2}$

Introduction

Remark:

(1) $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f)<\infty \Rightarrow \mathcal{O}$ is an isolated singularity.
(2) If $k=\mathbb{C}$ then it is possible to prove that

- $\tau(f)<\infty \Rightarrow \mu(f)<\infty$;
- $f \sim_{\mathcal{K}} g \Rightarrow \mu(f)=\mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O}.
Both properties are no longer true if char $k=p>0$.
Example: If $f=Y^{p}+X^{p+1} \in k[[X, Y]]$ then $\tau(f)=p^{2}<\infty$. On the other hand $\mu(f)=\infty, \mu((1+Y) f)=p^{2}$ and $\mu\left(\left(1+Y^{2}\right) f\right)=p^{2}+p$.

Finiteness of μ

Question: For which f do we have $\mu(f)<\infty$?

Finiteness of μ

Question: For which f do we have $\mu(f)<\infty$?
Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f)<\infty$, then

$$
\mu(f)<\infty \Longleftrightarrow f \in \sqrt{J(f)}
$$

Finiteness of μ

Question: For which f do we have $\mu(f)<\infty$?
Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f)<\infty$, then

$$
\mu(f)<\infty \Longleftrightarrow f \in \sqrt{J(f)}
$$

(Teissier, 1972) $p=0 \Longrightarrow f \in \overline{J(f)} \subseteq \sqrt{J(f)}$.

Finiteness of μ

Question: For which f do we have $\mu(f)<\infty$?
Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f)<\infty$, then

$$
\mu(f)<\infty \Longleftrightarrow f \in \sqrt{J(f)}
$$

(Teissier, 1972) $p=0 \Longrightarrow f \in \overline{J(f)} \subseteq \sqrt{J(f)}$.
Therefore, $p=0$ and $\tau(f)<\infty \Longrightarrow \mu(f)<\infty$.

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{n}, 0}}{T(f)}=\tau(f)<\infty
$$

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{n}, 0}}{T(f)}=\tau(f)<\infty
$$

There is a natural map of evaluation $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$, which is a fibration by hypersurfaces;

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{n}, 0}}{T(f)}=\tau(f)<\infty
$$

There is a natural map of evaluation $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$, which is a fibration by hypersurfaces;

If $p=0$

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{n}, 0}}{T(f)}=\tau(f)<\infty
$$

There is a natural map of evaluation $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$, which is a fibration by hypersurfaces;

If $p=0$, it follows from Bertini's Theorem on variation of singular points that

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{n}, 0}}{T(f)}=\tau(f)<\infty
$$

There is a natural map of evaluation $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$, which is a fibration by hypersurfaces;

If $p=0$, it follows from Bertini's Theorem on variation of singular points that there are neighborhoods U of $0 \in \mathbb{A}_{k}^{n}$ and V of $0 \in \mathbb{A}_{k}^{1}$ such that

$$
U \backslash f^{-1}(0) \longrightarrow V \backslash 0
$$

is smooth.

Connection with Bertini's Theorem

Let us consider $f \in k\left[X_{1}, \cdots, X_{n}\right]$ and $Z(f)$ with an isolated singularity in the origin $0 \in \mathbb{A}_{k}^{n}$, that is,

$$
0 \in \operatorname{Sing}(Z(f)) \text { and } \tau_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{\mathbb{A}_{k}^{p}, 0}}{T(f)}=\tau(f)<\infty .
$$

There is a natural map of evaluation $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$, which is a fibration by hypersurfaces;

If $p=0$, it follows from Bertini's Theorem on variation of singular points that there are neighborhoods U of $0 \in \mathbb{A}_{k}^{n}$ and V of $0 \in \mathbb{A}_{k}^{1}$ such that

$$
U \backslash f^{-1}(0) \longrightarrow V \backslash 0
$$

is smooth. In this case we say that the evaluation map is a local smoothing of the singularity $0 \in Z(f)$.

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Example: $f=Y^{p}-X^{p+1}$,

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Example: $\quad f=Y^{p}-X^{p+1}, \tau_{0}(f)=p^{2}<\infty$.

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Example: $f=Y^{p}-X^{p+1}, \tau_{0}(f)=p^{2}<\infty$. For each $s \in \mathbb{A}_{k}^{1}$, Sing $\left(f^{-1}(s)\right)=\left\{\left(0, s^{1 / p}\right)\right\}$.

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Example: $f=Y^{p}-X^{p+1}, \tau_{0}(f)=p^{2}<\infty$. For each $s \in \mathbb{A}_{k}^{1}$, Sing $\left(f^{-1}(s)\right)=\left\{\left(0, s^{1 / p}\right)\right\}$.

Question: When $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$ is a local smoothing of the singularity $0 \in Z(f)=f^{-1}(0)$?

Connection with Bertini's Theorem

As was discovered by Zariski, the above Bertini's Theorem does not work anymore if $p>0$.

Example: $\quad f=Y^{p}-X^{p+1}, \tau_{0}(f)=p^{2}<\infty$. For each $s \in \mathbb{A}_{k}^{1}$, $\operatorname{Sing}\left(f^{-1}(s)\right)=\left\{\left(0, s^{1 / p}\right)\right\}$.

Question: When $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$ is a local smoothing of the singularity $0 \in Z(f)=f^{-1}(0)$?

Theorem. Let $f \in k\left[X_{1}, \cdots, X_{n}\right]$ admitting an isolated singularity at the origin of \mathbb{A}_{k}^{n}. The fibration $f: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{1}$ is a local smoothing at $0 \in f^{-1}(0)$ if and only if $\mu_{0}(f):=\operatorname{dim}_{k} \frac{\mathcal{O}_{A_{k}^{n}, 0}}{J(f)}=\mu(f)<\infty$.

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_{f}$ has an isolated singularity)

Connection with vector fields

$$
\begin{aligned}
& f \in \mathcal{R}=k[[X, Y]] \text { reduced }\left(\Leftrightarrow \mathcal{O}_{f} \text { has an isolated singularity }\right) \\
& \text { char } k=p>0
\end{aligned}
$$

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_{f}$ has an isolated singularity)
char $k=p>0$
$\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f)=\infty$.

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_{f}$ has an isolated singularity)
char $k=p>0$
$\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f)=\infty$.
Question: Is the converse true?

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced $\left(\Leftrightarrow \mathcal{O}_{f}\right.$ has an isolated singularity)
char $k=p>0$
$\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f)=\infty$.
Question: Is the converse true?
Remark: $f \in k\left[\left[X, Y^{p}\right]\right]=\operatorname{Ker}\left(\frac{\partial}{\partial Y}\right) \Longleftrightarrow D_{f}:=f_{Y} \frac{\partial}{\partial X}-f_{X} \frac{\partial}{\partial Y}=$

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced $\left(\Leftrightarrow \mathcal{O}_{f}\right.$ has an isolated singularity)
char $k=p>0$
$\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f)=\infty$.
Question: Is the converse true?
Remark: $f \in k\left[\left[X, Y^{p}\right]\right]=\operatorname{Ker}\left(\frac{\partial}{\partial Y}\right) \Longleftrightarrow D_{f}:=f_{Y} \frac{\partial}{\partial X}-f_{X} \frac{\partial}{\partial Y}=h \frac{\partial}{\partial Y}$, with $h \in k[[X, Y]]$.

Connection with vector fields

$f \in \mathcal{R}=k[[X, Y]]$ reduced $\left(\Leftrightarrow \mathcal{O}_{f}\right.$ has an isolated singularity)
char $k=p>0$
$\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f)=\infty$.
Question: Is the converse true?
Remark: $f \in k\left[\left[X, Y^{p}\right]\right]=\operatorname{Ker}\left(\frac{\partial}{\partial Y}\right) \Longleftrightarrow D_{f}:=f_{Y} \frac{\partial}{\partial X}-f_{X} \frac{\partial}{\partial Y}=h \frac{\partial}{\partial Y}$, with $h \in k[[X, Y]]$. In this case we say that D_{f} and $\frac{\partial}{\partial Y}$ are equivalent vector fields and we write $D_{f} \sim \frac{\partial}{\partial Y}$.

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S ($D \in \operatorname{Der}_{k} k(S)$)

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S ($D \in \operatorname{Der}_{k} k(S)$) satisfying:

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S ($D \in \operatorname{Der}_{k} k(S)$) satisfying:

- D is p-closed,

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S ($\left.D \in \operatorname{Der}_{k} k(S)\right)$ satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S ($\left.D \in \operatorname{Der}_{k} k(S)\right)$ satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;
- D has only divisorial singularities in a neighborhood at $P \in S$,

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S
($\left.D \in \operatorname{Der}_{k} k(S)\right)$ satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;
- D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D=h_{P}\left(f_{P} \frac{\partial}{\partial x}+g_{p} \frac{\partial}{\partial y}\right)$ where (x, y) are local coordinates of S at P,

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S
($\left.D \in \operatorname{Der}_{k} k(S)\right)$ satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;
- D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D=h_{P}\left(f_{P} \frac{\partial}{\partial x}+g_{p} \frac{\partial}{\partial y}\right)$ where (x, y) are local coordinates of S at $P, h_{P} \in k(S)$ and $f_{P}, g_{P} \in \mathcal{O}_{S, P}$ are relatively prime

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S
($\left.D \in \operatorname{Der}_{k} k(S)\right)$ satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;
- D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D=h_{P}\left(f_{P} \frac{\partial}{\partial x}+g_{p} \frac{\partial}{\partial y}\right)$ where (x, y) are local coordinates of S at $P, h_{P} \in k(S)$ and $f_{P}, g_{P} \in \mathcal{O}_{S, P}$ are relatively prime then $f_{P} \notin \mathfrak{m}_{S, P}$ or $g_{P} \notin \mathfrak{m}_{S, P}$.

Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S
($D \in \operatorname{Der}_{k} k(S)$) satisfying:

- D is p-closed, that is, $D^{p}=h D$, with $h \in k(S)$;
- D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D=h_{P}\left(f_{P} \frac{\partial}{\partial x}+g_{p} \frac{\partial}{\partial y}\right)$ where (x, y) are local coordinates of S at $P, h_{P} \in k(S)$ and $f_{P}, g_{P} \in \mathcal{O}_{S, P}$ are relatively prime then $f_{P} \notin \mathfrak{m}_{S, P}$ or $g_{P} \notin \mathfrak{m}_{S, P}$.
Then in the completion $\widehat{\mathcal{O}_{S, P}}$ of the local ring there exist local parameters x and y such that $D \sim \frac{\partial}{\partial y}$.

Connection with vector fields

By using the vector field D_{f} on Seshadri's result, which is a p-closed vector field of $\mathbb{A}^{2}(k)$ by the Galois correspondence for purely inseparable field extensions (Jacobson, 1964), we obtain:

Connection with vector fields

By using the vector field D_{f} on Seshadri's result, which is a p-closed vector field of $\mathbb{A}^{2}(k)$ by the Galois correspondence for purely inseparable field extensions (Jacobson, 1964), we obtain:

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_{k}^{2}$, where k is an algebraically closed field of characteristic $p>0$.

Connection with vector fields

By using the vector field D_{f} on Seshadri's result, which is a p-closed vector field of $\mathbb{A}^{2}(k)$ by the Galois correspondence for purely inseparable field extensions (Jacobson, 1964), we obtain:

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_{k}^{2}$, where k is an algebraically closed field of characteristic $p>0$. Suppose that $\mu(f)=\infty$ and set $h=\operatorname{gcd}\left(f_{X}, f_{Y}\right) \in \mathfrak{m} \subset \mathcal{R}=k[[X, Y]]$.

Connection with vector fields

By using the vector field D_{f} on Seshadri's result, which is a p-closed vector field of $\mathbb{A}^{2}(k)$ by the Galois correspondence for purely inseparable field extensions (Jacobson, 1964), we obtain:

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_{k}^{2}$, where k is an algebraically closed field of characteristic $p>0$. Suppose that $\mu(f)=\infty$ and set $h=\operatorname{gcd}\left(f_{X}, f_{Y}\right) \in \mathfrak{m} \subset \mathcal{R}=k[[X, Y]]$. Then there exists an automorphism ϕ of \mathcal{R} such that $\phi(f) \in k\left[\left[X, Y^{p}\right]\right]$ if and only if f_{X} / h or f_{Y} / h does not belong to \mathfrak{m}.

Connection with vector fields

The above proposition does not provide the complete classification of equations having infinity Milnor number.

Connection with vector fields

The above proposition does not provide the complete classification of equations having infinity Milnor number.

Example: $p=3, f=X^{2} Y+Y^{2} X$ has isolated singularity since $\tau(f)=4$

Connection with vector fields

The above proposition does not provide the complete classification of equations having infinity Milnor number.
Example: $p=3, f=X^{2} Y+Y^{2} X$ has isolated singularity since $\tau(f)=4$ $f_{X}=Y(Y-X), f_{Y}=-X(Y-X) \Rightarrow \mu(f)=\infty$.

Connection with vector fields

The above proposition does not provide the complete classification of equations having infinity Milnor number.
Example: $p=3, f=X^{2} Y+Y^{2} X$ has isolated singularity since $\tau(f)=4$ $f_{X}=Y(Y-X), f_{Y}=-X(Y-X) \Rightarrow \mu(f)=\infty$.
$h=\operatorname{gcd}\left(f_{X}, f_{Y}\right)=Y-X$ and $f_{X} / h=Y, f_{Y} / h=-X \in \mathfrak{m}$.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I. Let $J \subseteq I$ be ideals of \mathcal{R}.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I.
Let $J \subseteq I$ be ideals of \mathcal{R}. The ideal J is called a reduction of I if for some $s \geq 0$ one has $\mathrm{Jl}^{s}=I^{s+1}$.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I.
Let $J \subseteq I$ be ideals of \mathcal{R}. The ideal J is called a reduction of I if for some $s \geq 0$ one has $J I^{s}=I^{s+1}$. In this case, $\sqrt{J}=\sqrt{I}$.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I.
Let $J \subseteq I$ be ideals of \mathcal{R}. The ideal J is called a reduction of I if for some $s \geq 0$ one has $J I^{s}=I^{s+1}$. In this case, $\sqrt{J}=\sqrt{I}$.
J is called a minimal reduction of I if it is a reduction and it is minimal with respect to the inclusion.

Good equations and the invariant $\mu(\mathcal{O})$

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_{1}, \ldots, a_{\ell} \in \mathcal{R}$ with $a_{i} \in I^{i}$, satisfying

$$
g^{\ell}+a_{1} g^{\ell-1}+\cdots+a_{\ell}=0
$$

The integral closure \bar{I} of I is the set of all integral elements of \mathcal{R} over I.
Let $J \subseteq I$ be ideals of \mathcal{R}. The ideal J is called a reduction of I if for some $s \geq 0$ one has $J I^{s}=I^{s+1}$. In this case, $\sqrt{J}=\sqrt{I}$.
J is called a minimal reduction of I if it is a reduction and it is minimal with respect to the inclusion.

We denote by $e_{0}(I)$ the Hilbert-Samuel multiplicity of an \mathfrak{m}-primary ideal I of \mathcal{R} and we put $e_{0}(I)=\infty$ if I is not \mathfrak{m}-primary.

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.
Remark: In general $J(f) \subset T(f) \Longrightarrow e_{0}(T(f)) \leq e_{0}(J(f))=\mu(f)$.

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.
Remark: In general $J(f) \subset T(f) \Longrightarrow e_{0}(T(f)) \leq e_{0}(J(f))=\mu(f)$.
Example: $p>2, f=X^{p}+X^{p+2}+Y^{p+2}$.

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.
Remark: In general $J(f) \subset T(f) \Longrightarrow e_{0}(T(f)) \leq e_{0}(J(f))=\mu(f)$.
Example: $p>2, f=X^{p}+X^{p+2}+Y^{p+2}$.
$J(f)=\left\langle X^{p+1}, Y^{p+1}\right\rangle \Rightarrow \mu(f)=(p+1)^{2}$ and $\tau(f)=p(p+1)$

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.
Remark: In general $J(f) \subset T(f) \Longrightarrow e_{0}(T(f)) \leq e_{0}(J(f))=\mu(f)$.
Example: $p>2, f=X^{p}+X^{p+2}+Y^{p+2}$.
$J(f)=\left\langle X^{p+1}, Y^{p+1}\right\rangle \Rightarrow \mu(f)=(p+1)^{2}$ and $\tau(f)=p(p+1)$
$g=(1+X) f \Rightarrow \mu(g)=p(p+1)$ and

$$
e_{0}(T(f))=e_{0}(T(g)) \leq e_{0}(J(g))=\mu(g)=p(p+1)<(p+1)^{2}=\mu(f)
$$

Good equations and the invariant $\mu(\mathcal{O})$

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f)<\infty$, then the following conditions are equivalent:
(1) $f \in \overline{J(f)}$;
(2) $J(f)$ is a minimal reduction of $T(f)$;
(3) $e_{0}(T(f))=e_{0}(J(f))$.

Corollary. $p=0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.
Remark: In general $J(f) \subset T(f) \Longrightarrow e_{0}(T(f)) \leq e_{0}(J(f))=\mu(f)$.
Example: $p>2, f=X^{p}+X^{p+2}+Y^{p+2}$.

$$
\begin{aligned}
& J(f)=\left\langle X^{p+1}, Y^{p+1}\right\rangle \Rightarrow \mu(f)=(p+1)^{2} \text { and } \tau(f)=p(p+1) \\
& g=(1+X) f \Rightarrow \mu(g)=p(p+1) \text { and } \\
& e_{0}(T(f))=e_{0}(T(g)) \leq e_{0}(J(g))=\mu(g)=p(p+1)<(p+1)^{2}=\mu(f)
\end{aligned}
$$

$\Longrightarrow f \notin \overline{J(f)}$.

Good equations and the invariant $\mu(\mathcal{O})$

In characteristic zero the importance of $J(f)$ is due to the fact that it is a reduction of $T(f)\left(\Rightarrow \mu(f)=e_{0}(T(f))\right)$.

Good equations and the invariant $\mu(\mathcal{O})$

In characteristic zero the importance of $J(f)$ is due to the fact that it is a reduction of $T(f)\left(\Rightarrow \mu(f)=e_{0}(T(f))\right)$.
This leads to consider the Milnor number of a hypersurface $\mathcal{O}=\mathcal{O}_{f}$ as

$$
\mu(\mathcal{O})=e_{0}(T(f))
$$

Good equations and the invariant $\mu(\mathcal{O})$

In characteristic zero the importance of $J(f)$ is due to the fact that it is a reduction of $T(f)\left(\Rightarrow \mu(f)=e_{0}(T(f))\right)$.
This leads to consider the Milnor number of a hypersurface $\mathcal{O}=\mathcal{O}_{f}$ as

$$
\mu(\mathcal{O})=e_{0}(T(f))
$$

Remark:

(1) It is an invariant of \mathcal{O};

Good equations and the invariant $\mu(\mathcal{O})$

In characteristic zero the importance of $J(f)$ is due to the fact that it is a reduction of $T(f)\left(\Rightarrow \mu(f)=e_{0}(T(f))\right)$.
This leads to consider the Milnor number of a hypersurface $\mathcal{O}=\mathcal{O}_{f}$ as

$$
\mu(\mathcal{O})=e_{0}(T(f))
$$

Remark:

(1) It is an invariant of \mathcal{O};
(2) $p=0 \Rightarrow \mu(\mathcal{O})=\mu(f)$ for any equation f of \mathcal{O};

Good equations and the invariant $\mu(\mathcal{O})$

In characteristic zero the importance of $J(f)$ is due to the fact that it is a reduction of $T(f)\left(\Rightarrow \mu(f)=e_{0}(T(f))\right)$.
This leads to consider the Milnor number of a hypersurface $\mathcal{O}=\mathcal{O}_{f}$ as

$$
\mu(\mathcal{O})=e_{0}(T(f))
$$

Remark:

(1) It is an invariant of \mathcal{O};
(2) $p=0 \Rightarrow \mu(\mathcal{O})=\mu(f)$ for any equation f of \mathcal{O};

We call an equation f of \mathcal{O} a good equation if $f \in \overline{J(f)}$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Last example shows that there are bad equations since we have the existence of $f \in \mathcal{R}$ such that $e_{0}(T(f))<\mu(f)$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Last example shows that there are bad equations since we have the existence of $f \in \mathcal{R}$ such that $e_{0}(T(f))<\mu(f)$.

Good news: good equations are "generic" in the contact class.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$$
0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty
$$

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s is called a null-form for $T(f)$ if

$$
\varphi\left(f, f_{X_{1}}, \ldots, f_{X_{n}}\right) \in \mathfrak{m} T(f)^{s} .
$$

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s is called a null-form for $T(f)$ if

$$
\varphi\left(f, f_{X_{1}}, \ldots, f_{X_{n}}\right) \in \mathfrak{m} T(f)^{s} .
$$

$\mathcal{N}_{T(f)}=$ null-forms of $T(f)$ is a homogeneous ideal of $k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s is called a null-form for $T(f)$ if

$$
\varphi\left(f, f_{X_{1}}, \ldots, f_{X_{n}}\right) \in \mathfrak{m} T(f)^{s}
$$

$\mathcal{N}_{T(f)}=$ null-forms of $T(f)$ is a homogeneous ideal of $k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ and

$$
\frac{k\left[Y_{0}, \ldots, Y_{n}\right]}{\mathcal{N}_{T(f)}} \simeq \bigoplus_{s \geqslant 0} \frac{T(f)^{s}}{\mathfrak{m} T(f)^{s}}
$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along $T(f)$,

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s is called a null-form for $T(f)$ if

$$
\varphi\left(f, f_{X_{1}}, \ldots, f_{X_{n}}\right) \in \mathfrak{m} T(f)^{s}
$$

$\mathcal{N}_{T(f)}=$ null-forms of $T(f)$ is a homogeneous ideal of $k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ and

$$
\frac{k\left[Y_{0}, \ldots, Y_{n}\right]}{\mathcal{N}_{T(f)}} \simeq \bigoplus_{s \geqslant 0} \frac{T(f)^{s}}{\mathfrak{m} T(f)^{s}}
$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along $T(f)$, which has Krull dimension n (since $T(f)$ is \mathfrak{m}-primary).

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

$0 \neq f \in \mathfrak{m} \subset \mathcal{R}=k\left[\left[X_{1}, \ldots, X_{n}\right]\right], \tau(f)<\infty$
$\varphi \in k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ homogeneous with degree s is called a null-form for $T(f)$ if

$$
\varphi\left(f, f_{X_{1}}, \ldots, f_{X_{n}}\right) \in \mathfrak{m} T(f)^{s}
$$

$\mathcal{N}_{T(f)}=$ null-forms of $T(f)$ is a homogeneous ideal of $k\left[Y_{0}, Y_{1}, \ldots, Y_{n}\right]$ and

$$
\frac{k\left[Y_{0}, \ldots, Y_{n}\right]}{\mathcal{N}_{T(f)}} \simeq \bigoplus_{s \geqslant 0} \frac{T(f)^{s}}{\mathfrak{m} T(f)^{s}}
$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along $T(f)$, which has Krull dimension n (since $T(f)$ is \mathfrak{m}-primary). Hence the zero set $Z\left(\mathcal{N}_{T(f)}\right) \subset \mathbb{A}^{n+1}$ and $\mathcal{N}_{T(f)} \neq 0$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f)<\infty$ and

$$
u=\alpha_{0}+\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}+\text { h.o.t. } \in \mathcal{R}^{*}
$$

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f)<\infty$ and

$$
u=\alpha_{0}+\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}+\text { h.o.t. } \in \mathcal{R}^{*}
$$

We have that $u f \in \overline{J(u f)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G\left(\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n}\right) \neq 0$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f)<\infty$ and

$$
u=\alpha_{0}+\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}+\text { h.o.t. } \in \mathcal{R}^{*}
$$

We have that uf $\in \overline{J(u f)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G\left(\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n}\right) \neq 0$.

Consequences:

- uf $\in \overline{J(u f)}$ hold for $u \in \mathcal{R}^{*}$ generic;

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f)<\infty$ and

$$
u=\alpha_{0}+\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}+\text { h.o.t. } \in \mathcal{R}^{*}
$$

We have that uf $\in \overline{J(u f)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G\left(\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n}\right) \neq 0$.

Consequences:

- uf $\in \overline{J(u f)}$ hold for $u \in \mathcal{R}^{*}$ generic;
- for a generic $u \in \mathcal{R}^{*}$ we have $\mu\left(\mathcal{O}_{f}\right)=\mu(u f)$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f)<\infty$ and

$$
u=\alpha_{0}+\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}+\text { h.o.t. } \in \mathcal{R}^{*}
$$

We have that uf $\in \overline{J(u f)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G\left(\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n}\right) \neq 0$.

Consequences:

- uf $\in \overline{J(u f)}$ hold for $u \in \mathcal{R}^{*}$ generic;
- for a generic $u \in \mathcal{R}^{*}$ we have $\mu\left(\mathcal{O}_{f}\right)=\mu(u f)$.
- $\mu\left(\mathcal{O}_{f}\right)=\min \left\{\mu(u f), u \in \mathcal{R}^{*}\right\}$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;
(2) $Z\left(\mathcal{N}_{T(f)}\right)=Z\left(Y_{0}\right)$;

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;
(2) $Z\left(\mathcal{N}_{T(f)}\right)=Z\left(Y_{0}\right)$;
(3) $f^{\ell} \in \mathfrak{m} T(f)^{\ell}$, for some $\ell \geq 1$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;
(2) $Z\left(\mathcal{N}_{T(f)}\right)=Z\left(Y_{0}\right)$;
(3) $f^{\ell} \in \mathfrak{m} T(f)^{\ell}$, for some $\ell \geq 1$.

In this case we say that f is μ-stable
Example: $f \in k\left[X_{1}, \ldots, X_{n}\right]$ quasi-homogeneous of degree d with $p \nmid d$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;
(2) $Z\left(\mathcal{N}_{T(f)}\right)=Z\left(Y_{0}\right)$;
(3) $f^{\ell} \in \mathfrak{m} T(f)^{\ell}$, for some $\ell \geq 1$.

In this case we say that f is μ-stable
Example: $f \in k\left[X_{1}, \ldots, X_{n}\right]$ quasi-homogeneous of degree d with $p \nmid d$.
There are integers d_{1}, \ldots, d_{n} such that $d f=d_{1} X_{1} f_{X_{1}}+\cdots+d_{n} X_{n} f_{X_{n}}$.

Variation of $\mu(u f)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f)<\infty$. The following conditions are equivalent.
(1) $\mu(u f)=\mu\left(\mathcal{O}_{f}\right)$ for all $u \in \mathcal{R}^{*}$;
(2) $Z\left(\mathcal{N}_{T(f)}\right)=Z\left(Y_{0}\right)$;
(3) $f^{\ell} \in \mathfrak{m} T(f)^{\ell}$, for some $\ell \geq 1$.

In this case we say that f is μ-stable
Example: $f \in k\left[X_{1}, \ldots, X_{n}\right]$ quasi-homogeneous of degree d with $p \nmid d$.
There are integers d_{1}, \ldots, d_{n} such that $d f=d_{1} X_{1} f_{X_{1}}+\cdots+d_{n} X_{n} f_{X_{n}}$. Hence $f \in \mathfrak{m} T(f)$ and is μ-stable.

Plane Branches

$$
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible }
$$

Plane Branches

$$
\begin{aligned}
& f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
& \quad h \in \mathcal{R}
\end{aligned}
$$

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle}
\end{gathered}
$$

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$
$S(f)$ has a conductor:

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$
$S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$
$S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that $c(f)-1 \notin S(f)$ and

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$ $S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that $c(f)-1 \notin S(f)$ and $x \in \mathbb{N}, x \geq c(f) \Longrightarrow x \in S(f)$.

Plane Branches

$$
\begin{gathered}
f \in \mathfrak{m} \subset k[[X, Y]]=\mathcal{R} \text { irreducible } \\
h \in \mathcal{R} ; I(f, h)=\operatorname{dim}_{k} \frac{\mathcal{R}}{\langle f, h\rangle} \\
S(f):=\{I(f, h) ; h \in \mathcal{R} \backslash\langle f\rangle\} \subseteq \mathbb{N}
\end{gathered}
$$

semi-group of values of f is invariant under contact equivalence.
$S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ the minimal set of generators of $S(f)$
$S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that

$$
c(f)-1 \notin S(f) \text { and } x \in \mathbb{N}, x \geq c(f) \Longrightarrow x \in S(f)
$$

Two plane branches f and h are called equisingular when

$$
S(f)=S(h)
$$

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right)$

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3}$

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3} \Rightarrow h$ is μ-stable:

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3} \Rightarrow h$ is μ-stable: $\mu\left(\mathcal{O}_{h}\right)=\mu(h)=29$.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3} \Rightarrow h$ is μ-stable: $\mu\left(\mathcal{O}_{h}\right)=\mu(h)=29$.

- μ-stability is not preserved in the same equisingularity class;

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3} \Rightarrow h$ is μ-stable: $\mu\left(\mathcal{O}_{h}\right)=\mu(h)=29$.

- μ-stability is not preserved in the same equisingularity class;
- Neither the Milnor number of a hypersurface is.

Plane Branches

(Milnor, 1968) $p=0 \Longrightarrow \mu(f)=c(f)$.
In particular, μ is an invariant of the equisingularity class. It may fails if $p>0$.

Example: $f=\left(Y^{2}-X^{3}\right)^{2}-X^{11} Y$ and $h=\left(Y^{2}-X^{3}+X^{2} Y\right)^{2}-X^{11} Y$ are equisingular with $S(f)=S(h)=\langle 4,6,25\rangle$ and $c(f)=c(h)=28$. If $p=5$ we have $\mu(f)=41 \neq 30=\mu\left(\mathcal{O}_{f}\right) \Rightarrow f$ is not μ-stable $h^{3} \in \mathfrak{m} T(h)^{3} \Rightarrow h$ is μ-stable: $\mu\left(\mathcal{O}_{h}\right)=\mu(h)=29$.

- μ-stability is not preserved in the same equisingularity class;
- Neither the Milnor number of a hypersurface is.

Note that p divides one of the generators of $S(f)$.

Plane Branches

We say that $S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ is tame if $p \nmid v_{0} v_{1} \cdots v_{g}$.

Plane Branches

We say that $S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ is tame if $p \nmid v_{0} v_{1} \cdots v_{g}$.
(Deligne, 1973): In general, $\mu(f) \geq c(f)$. Also, the difference $\mu(f)-c(f)$ counts the number of wild vanishing cycles.

Plane Branches

We say that $S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ is tame if $p \nmid v_{0} v_{1} \cdots v_{g}$.
(Deligne, 1973): In general, $\mu(f) \geq c(f)$. Also, the difference $\mu(f)-c(f)$ counts the number of wild vanishing cycles.

Theorem. If $f \in \mathfrak{m}^{2}$ is a plane branch singularity with $S(f)$ tame, then

$$
\mu(f)=\mu\left(\mathcal{O}_{f}\right)=c(f)
$$

Plane Branches

We say that $S(f)=\left\langle v_{0}, \ldots, v_{g}\right\rangle$ is tame if $p \nmid v_{0} v_{1} \cdots v_{g}$.
(Deligne, 1973): In general, $\mu(f) \geq c(f)$. Also, the difference $\mu(f)-c(f)$ counts the number of wild vanishing cycles.

Theorem. If $f \in \mathfrak{m}^{2}$ is a plane branch singularity with $S(f)$ tame, then

$$
\mu(f)=\mu\left(\mathcal{O}_{f}\right)=c(f)
$$

In particular, \mathcal{O}_{f} is μ-stable.

Plane Branches

- μ-stability does not imply that the semi-group is tame;

Plane Branches

- μ-stability does not imply that the semi-group is tame;
- We have strong evidences to believe that

$$
\mu(f)=c(f) \Longrightarrow S(f) \text { is tame }
$$

Plane Branches

- μ-stability does not imply that the semi-group is tame;
- We have strong evidences to believe that

$$
\mu(f)=c(f) \Longrightarrow S(f) \text { is tame. }
$$

(García-Barroso and Ploski, 2015) The equivalence holds if

$$
p>v_{0}=\operatorname{mult}(f) .
$$

About a result of Zariski

(Zariski, 1966): If f is a plane branch and char $k=0$, then $c(f)=\tau(f) \Longleftrightarrow$ up to change coordinates $f=Y^{n}-X^{m}$ with n and m relatively primes.

About a result of Zariski

(Zariski, 1966): If f is a plane branch and char $k=0$, then $c(f)=\tau(f) \Longleftrightarrow$ up to change coordinates $f=Y^{n}-X^{m}$ with n and m relatively primes.

In particular $S(f)=\langle n, m\rangle$.

About a result of Zariski

(Zariski, 1966): If f is a plane branch and char $k=0$, then $c(f)=\tau(f) \Longleftrightarrow$ up to change coordinates $f=Y^{n}-X^{m}$ with n and m relatively primes.

In particular $S(f)=\langle n, m\rangle$.
Countre-Example if $p>0$: Consider $p=7$ and $f=\left(Y^{2}-X^{3}\right)^{2}-4 X^{8} Y-X^{13}$.

About a result of Zariski

(Zariski, 1966): If f is a plane branch and char $k=0$, then $c(f)=\tau(f) \Longleftrightarrow$ up to change coordinates $f=Y^{n}-X^{m}$ with n and m relatively primes.

In particular $S(f)=\langle n, m\rangle$.
Countre-Example if $p>0$: Consider $p=7$ and $f=\left(Y^{2}-X^{3}\right)^{2}-4 X^{8} Y-X^{13}$. Then $S(f)=\langle 4,6,19\rangle$ is tame

About a result of Zariski

(Zariski, 1966): If f is a plane branch and char $k=0$, then $c(f)=\tau(f) \Longleftrightarrow$ up to change coordinates $f=Y^{n}-X^{m}$ with n and m relatively primes.

In particular $S(f)=\langle n, m\rangle$.
Countre-Example if $p>0$: Consider $p=7$ and $f=\left(Y^{2}-X^{3}\right)^{2}-4 X^{8} Y-X^{13}$. Then
$S(f)=\langle 4,6,19\rangle$ is tame
$\mu(f)=c(f)=22=\tau(f)$.

THANK YOU!

