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Introduction

Let us consider k be an algebraically closed field with p = char(k) ≥ 0 and

SpecO be a singular algebroid hypersurface over k, that is,

O ' R/A

where

R = k[[X1, . . . ,Xn]] and A ⊂ R is a principal ideal.

Each generator of A is called an equation for O and we denote

Of := R/〈f 〉.

We note that

Of ' Og ⇐⇒ f ∼K g (Contact Equivalent)

f ∼K g : there is an automorphism φ of R and a unit u ∈ R∗ such that
g = u · φ(f ).
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Introduction

Given an equation f for O, the Tjurina Ideal of f is the ideal

T (f ) = 〈f , fX1 , . . . , fXn〉 ⊂ R.

and the Tjurina Number of O is,

τ(O) = τ(f ) := dimk R/T (f ) ∈ N ∪∞

which is an invariant of O. We say that O is an isolated singularity if
τ(O) <∞.

The Jacobian Ideal of f is the ideal

J(f ) = 〈fX1 , . . . , fXn〉 ⊂ R

and the Milnor Number of f is

µ(f ) := dimk R/J(f ) ∈ N ∪∞.
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Introduction

Remark:

1 J(f ) ⊆ T (f )⇒ τ(f ) 6 µ(f ).

Hence, µ(f ) <∞ ⇒ O is an isolated
singularity.

2 If k = C then it is possible to prove that

τ(f ) <∞ ⇒ µ(f ) <∞;
f ∼K g ⇒ µ(f ) = µ(g). Hence the Milnor number of any equation
representing O is an invariant of O.

Both properties are no longer true if char k = p > 0.

Example: If f = Y p + X p+1 ∈ k[[X ,Y ]] then τ(f ) = p2 <∞. On the
other hand µ(f ) =∞, µ((1 + Y )f ) = p2 and µ((1 + Y 2)f ) = p2 + p.
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Finiteness of µ

Question: For which f do we have µ(f ) <∞?

Proposition. If f ∈ m ⊂ R and τ(f ) <∞, then

µ(f ) <∞ ⇐⇒ f ∈
√
J(f ).

(Teissier, 1972) p = 0 =⇒ f ∈ J(f ) ⊆
√
J(f ).

Therefore, p = 0 and τ(f ) <∞ =⇒ µ(f ) <∞.
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Connection with Bertini’s Theorem

Let us consider f ∈ k[X1, · · · ,Xn] and Z (f ) with an isolated singularity in
the origin 0 ∈ An

k

, that is,

0 ∈ Sing(Z (f )) and τ0(f ) := dimk

OAn
k ,0

T (f )
= τ(f ) <∞.

There is a natural map of evaluation f : An
k → A1

k , which is a fibration by
hypersurfaces;

If p = 0, it follows from Bertini’s Theorem on variation of singular points
that there are neighborhoods U of 0 ∈ An

k and V of 0 ∈ A1
k such that

U \ f −1(0) −→ V \ 0

is smooth. In this case we say that the evaluation map is a local
smoothing of the singularity 0 ∈ Z (f ).
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Connection with Bertini’s Theorem

As was discovered by Zariski, the above Bertini’s Theorem does not work
anymore if p > 0.

Example: f = Y p − X p+1, τ0(f ) = p2 <∞. For each s ∈ A1
k ,

Sing
(
f −1(s)

)
= {(0, s1/p)}.

Question: When f : An
k → A1

k is a local smoothing of the singularity
0 ∈ Z (f ) = f −1(0)?

Theorem. Let f ∈ k[X1, · · · ,Xn] admitting an isolated singularity at the
origin of An

k . The fibration f : An
k → A1

k is a local smoothing at

0 ∈ f −1(0) if and only if µ0(f ) := dimk

OAn
k
,0

J(f ) = µ(f ) <∞.
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Connection with vector fields

f ∈ R = k[[X ,Y ]] reduced (⇔ Of has an isolated singularity)

char k = p > 0

φ(f ) ∈ k[[X ,Y p]] for some automorphism φ of R =⇒ µ(f ) =∞.

Question: Is the converse true?

Remark: f ∈ k[[X ,Y p]] = Ker( ∂
∂Y )⇐⇒ Df := fY

∂
∂X − fX

∂
∂Y =h ∂

∂Y ,

with h ∈ k[[X ,Y ]]. In this case we say that Df and ∂
∂Y are equivalent

vector fields and we write Df ∼ ∂
∂Y .
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Connection with vector fields

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S

(D ∈ Derk k(S)) satisfying:

D is p-closed, that is, Dp = hD, with h ∈ k(S);

D has only divisorial singularities in a neighborhood at P ∈ S , that
is, if D = hP(fP

∂
∂x + gp

∂
∂y ) where (x , y) are local coordinates of S at

P, hP ∈ k(S) and fP , gP ∈ OS,P are relatively prime then fP 6∈ mS ,P

or gP 6∈ mS,P .

Then in the completion ÔS,P of the local ring there exist local parameters
x and y such that D ∼ ∂

∂y .
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Connection with vector fields

By using the vector field Df on Seshadri’s result, which is a p-closed
vector field of A2(k) by the Galois correspondence for purely inseparable
field extensions (Jacobson, 1964), we obtain:

Proposition. Let f ∈ k[X ,Y ] vanishing and with isolated singularity at
the origin 0 ∈ A2

k , where k is an algebraically closed field of characteristic
p > 0. Suppose that µ(f ) =∞ and set
h = gcd(fX , fY ) ∈ m ⊂ R = k[[X ,Y ]]. Then there exists an automorphism
φ of R such that φ(f ) ∈ k[[X ,Y p]] if and only if fX/h or fY /h does not
belong to m.
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Connection with vector fields

The above proposition does not provide the complete classification of
equations having infinity Milnor number.

Example: p = 3, f = X 2Y + Y 2X has isolated singularity since τ(f ) = 4
fX = Y (Y − X ), fY = −X (Y − X )⇒ µ(f ) =∞.
h = gcd(fX , fY ) = Y − X and fX/h = Y , fY /h = −X ∈ m.
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Good equations and the invariant µ(O)

Let us consider I an ideal of R and g ∈ R.

We say that g is integral over
I if there are ` ≥ 1 and a1, . . . , a` ∈ R with ai ∈ I i , satisfying

g ` + a1g
`−1 + · · ·+ a` = 0.

The integral closure I of I is the set of all integral elements of R over I .

Let J ⊆ I be ideals of R. The ideal J is called a reduction of I if for some
s ≥ 0 one has JI s = I s+1. In this case,

√
J =
√
I .

J is called a minimal reduction of I if it is a reduction and it is minimal
with respect to the inclusion.

We denote by e0(I ) the Hilbert-Samuel multiplicity of an m-primary ideal I
of R and we put e0(I ) =∞ if I is not m-primary.
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√
J =
√
I .

J is called a minimal reduction of I if it is a reduction and it is minimal
with respect to the inclusion.

We denote by e0(I ) the Hilbert-Samuel multiplicity of an m-primary ideal I
of R and we put e0(I ) =∞ if I is not m-primary.
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Good equations and the invariant µ(O)

(Northcott-Rees) If f ∈ m is such that τ(f ) <∞, then the following
conditions are equivalent:

1 f ∈ J(f );

2 J(f ) is a minimal reduction of T (f );

3 e0(T (f )) = e0(J(f )).

Corollary. p = 0, f ∈ R =⇒ µ(f ) is invariant under contact equivalence.

Remark: In general J(f ) ⊂ T (f ) =⇒ e0(T (f )) ≤ e0(J(f )) = µ(f ).

Example: p > 2, f = X p + X p+2 + Y p+2.
J(f ) = 〈X p+1,Y p+1〉 ⇒ µ(f ) = (p + 1)2 and τ(f ) = p(p + 1)
g = (1 + X )f ⇒ µ(g) = p(p + 1) and

e0(T (f )) = e0(T (g)) ≤ e0(J(g)) = µ(g) = p(p + 1) < (p + 1)2 = µ(f )

=⇒ f 6∈ J(f ).
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Good equations and the invariant µ(O)

In characteristic zero the importance of J(f ) is due to the fact that it is a
reduction of T (f ) (⇒ µ(f ) = e0(T (f ))).

This leads to consider the Milnor number of a hypersurface O = Of as

µ(O) = e0(T (f )).

Remark:

1 It is an invariant of O;

2 p = 0⇒ µ(O) = µ(f ) for any equation f of O;

We call an equation f of O a good equation if f ∈ J(f ).
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Variation of µ(uf ) and computation of µ(O)

Last example shows that there are bad equations since we have the
existence of f ∈ R such that e0(T (f )) < µ(f ).

Good news: good equations are “generic” in the contact class.
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Variation of µ(uf ) and computation of µ(O)

0 6= f ∈ m ⊂ R = k[[X1, . . . ,Xn]], τ(f ) <∞

ϕ ∈ k[Y0,Y1, . . . ,Yn] homogeneous with degree s is called a null-form for
T (f ) if

ϕ(f , fX1 , . . . , fXn) ∈ mT (f )s .

NT (f ) = null-forms of T (f ) is a homogeneous ideal of k[Y0,Y1, . . . ,Yn]
and

k[Y0, . . . ,Yn]

NT (f )
'
⊕
s>0

T (f )s

mT (f )s

is the special fiber ring associated to the blow-up of SpecR along T (f ),
which has Krull dimension n (since T (f ) is m-primary). Hence the zero set
Z (NT (f )) ⊂ An+1 and NT (f ) 6= 0.
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Variation of µ(uf ) and computation of µ(O)

Theorem. Let f ∈ m with τ(f ) <∞ and

u = α0 + α1X1 + · · ·+ αnXn + h.o.t. ∈ R∗.

We have that uf ∈ J(uf ) if and only if there exists G ∈ NT (f ) such that
G (α0,−α1, . . . ,−αn) 6= 0.

Consequences:

uf ∈ J(uf ) hold for u ∈ R∗ generic;

for a generic u ∈ R∗ we have µ(Of ) = µ(uf ).

µ(Of ) = min{µ(uf ), u ∈ R∗}.
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Variation of µ(uf ) and computation of µ(O)

Theorem. f ∈ m with τ(f ) <∞. The following conditions are equivalent.

1 µ(uf ) = µ(Of ) for all u ∈ R∗;
2 Z (NT (f )) = Z (Y0);

3 f ` ∈ mT (f )`, for some ` ≥ 1.

In this case we say that f is µ-stable

Example: f ∈ k[X1, . . . ,Xn] quasi-homogeneous of degree d with p - d .

There are integers d1, . . . , dn such that df = d1X1fX1 + · · ·+ dnXnfXn .
Hence f ∈ mT (f ) and is µ-stable.
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Plane Branches

f ∈ m ⊂ k[[X ,Y ]] = R irreducible

h ∈ R; I (f , h) = dimk
R
〈f ,h〉

S(f ) := {I (f , h); h ∈ R \ 〈f 〉} ⊆ N

semi-group of values of f is invariant under contact equivalence.

S(f ) = 〈v0, . . . , vg 〉 the minimal set of generators of S(f )

S(f ) has a conductor: ∃ c(f ) ∈ S(f ) such that

c(f )− 1 6∈ S(f ) and x ∈ N, x ≥ c(f ) =⇒ x ∈ S(f ).

Two plane branches f and h are called equisingular when

S(f ) = S(h).
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Plane Branches

(Milnor, 1968) p = 0 =⇒ µ(f ) = c(f ).

In particular, µ is an invariant of the equisingularity class. It may fails if
p > 0.

Example: f = (Y 2 − X 3)2 − X 11Y and h = (Y 2 − X 3 + X 2Y )2 − X 11Y
are equisingular with S(f ) = S(h) = 〈4, 6, 25〉 and c(f ) = c(h) = 28. If
p = 5 we have µ(f ) = 41 6= 30 = µ(Of ) ⇒ f is not µ-stable
h3 ∈ mT (h)3⇒ h is µ-stable: µ(Oh) = µ(h) = 29.

µ-stability is not preserved in the same equisingularity class;

Neither the Milnor number of a hypersurface is.

Note that p divides one of the generators of S(f ).
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Plane Branches

We say that S(f ) = 〈v0, . . . , vg 〉 is tame if p - v0v1 · · · vg .

(Deligne, 1973): In general, µ(f ) ≥ c(f ). Also, the difference µ(f )− c(f )
counts the number of wild vanishing cycles.

Theorem. If f ∈ m2 is a plane branch singularity with S(f ) tame, then

µ(f ) = µ(Of ) = c(f ).

In particular, Of is µ-stable.
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Plane Branches

µ-stability does not imply that the semi-group is tame;

We have strong evidences to believe that

µ(f ) = c(f ) =⇒ S(f ) is tame.

(Garćıa-Barroso and Ploski, 2015) The equivalence holds if

p > v0 = mult(f ).
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About a result of Zariski

(Zariski, 1966): If f is a plane branch and char k = 0, then
c(f ) = τ(f ) ⇐⇒ up to change coordinates f = Y n −Xm with n and m
relatively primes.

In particular S(f ) = 〈n,m〉.

Countre-Example if p > 0: Consider p = 7 and
f = (Y 2 − X 3)2 − 4X 8Y − X 13. Then
S(f ) = 〈4, 6, 19〉 is tame
µ(f ) = c(f ) = 22 = τ(f ).
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THANK YOU!
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