Hypersurface singularity in arbitrary Characteristic

Rodrigo Salomão (UFF)

24th Brazilian Algebra Meeting

02 August, 2016

Joint work with Abramo Hefez and João Hélder Olmedo Rodrigues (UFF)

- ∢ ∃ ▶

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

3

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

 $\mathcal{O}\simeq \mathcal{R}/\mathfrak{A}$

where

A B F A B F

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$\mathcal{O}\simeq \mathcal{R}/\mathfrak{A}$$

where

 $\mathcal{R} = k[[X_1, \dots, X_n]]$ and $\mathfrak{A} \subset \mathcal{R}$ is a principal ideal.

イロト 不得 トイヨト イヨト

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$\mathcal{O}\simeq \mathcal{R}/\mathfrak{A}$$

where

 $\mathcal{R} = k[[X_1, \ldots, X_n]]$ and $\mathfrak{A} \subset \mathcal{R}$ is a principal ideal.

Each generator of ${\mathfrak A}$ is called an equation for ${\mathcal O}$ and we denote

 $\mathcal{O}_f := \mathcal{R}/\langle f \rangle.$

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$\mathcal{O}\simeq \mathcal{R}/\mathfrak{A}$$

where

 $\mathcal{R} = k[[X_1, \dots, X_n]]$ and $\mathfrak{A} \subset \mathcal{R}$ is a principal ideal.

Each generator of ${\mathfrak A}$ is called an equation for ${\mathcal O}$ and we denote

 $\mathcal{O}_f := \mathcal{R}/\langle f \rangle.$

We note that

$$\mathcal{O}_f \simeq \mathcal{O}_g \iff f \sim_\mathcal{K} g$$
 (Contact Equivalent)

Let us consider k be an algebraically closed field with $p = char(k) \ge 0$ and

Spec \mathcal{O} be a singular algebroid hypersurface over k, that is,

$$\mathcal{O}\simeq \mathcal{R}/\mathfrak{A}$$

where

$$\mathcal{R} = k[[X_1, \dots, X_n]]$$
 and $\mathfrak{A} \subset \mathcal{R}$ is a principal ideal.

Each generator of ${\mathfrak A}$ is called an equation for ${\mathcal O}$ and we denote

$$\mathcal{O}_f := \mathcal{R}/\langle f \rangle.$$

We note that

$$\mathcal{O}_f \simeq \mathcal{O}_g \iff f \sim_\mathcal{K} g$$
 (Contact Equivalent)

 $f \sim_{\mathcal{K}} g$: there is an automorphism ϕ of \mathcal{R} and a unit $u \in \mathcal{R}^*$ such that $g = u \cdot \phi(f)$.

Given an equation f for O, the Tjurina Ideal of f is the ideal

э

(日) (周) (三) (三)

Given an equation f for O, the Tjurina Ideal of f is the ideal

$$T(f) = \langle f, f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}.$$

э

(日) (周) (三) (三)

Given an equation f for O, the Tjurina Ideal of f is the ideal

$$T(f) = \langle f, f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}.$$

and the Tjurina Number of \mathcal{O} is,

$$au(\mathcal{O}) = au(f) := \dim_k \mathcal{R}/T(f) \in \mathbb{N} \cup \infty$$

which is an invariant of \mathcal{O} .

▶ < ∃ ▶

Given an equation f for O, the Tjurina Ideal of f is the ideal

$$T(f) = \langle f, f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}.$$

and the Tjurina Number of \mathcal{O} is,

$$\tau(\mathcal{O}) = \tau(f) := \dim_k \mathcal{R}/T(f) \in \mathbb{N} \cup \infty$$

which is an invariant of \mathcal{O} . We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O}) < \infty$.

A B F A B F

Given an equation f for O, the Tjurina Ideal of f is the ideal

$$T(f) = \langle f, f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}.$$

and the Tjurina Number of \mathcal{O} is,

$$\tau(\mathcal{O}) = \tau(f) := \dim_k \mathcal{R}/\mathcal{T}(f) \in \mathbb{N} \cup \infty$$

which is an invariant of \mathcal{O} . We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O}) < \infty$.

The Jacobian Ideal of f is the ideal

$$J(f) = \langle f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}$$

Given an equation f for O, the Tjurina Ideal of f is the ideal

$$T(f) = \langle f, f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}.$$

and the Tjurina Number of \mathcal{O} is,

$$\tau(\mathcal{O}) = \tau(f) := \dim_k \mathcal{R}/T(f) \in \mathbb{N} \cup \infty$$

which is an invariant of \mathcal{O} . We say that \mathcal{O} is an isolated singularity if $\tau(\mathcal{O}) < \infty$.

The Jacobian Ideal of f is the ideal

$$J(f) = \langle f_{X_1}, \ldots, f_{X_n} \rangle \subset \mathcal{R}$$

and the Milnor Number of f is

$$\mu(f) := \dim_k \mathcal{R}/J(f) \in \mathbb{N} \cup \infty.$$

ヨト イヨト

Remark:

2

■ $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow O$ is an isolated singularity.

3

イロト 不得下 イヨト イヨト

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

3

イロト 不得下 イヨト イヨト

Remark:

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \ \Rightarrow \ \mu(f) < \infty;$$

3

イロト 不得下 イヨト イヨト

Remark:

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$\tau(f) < \infty \Rightarrow \mu(f) < \infty;$$

•
$$f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g).$$

3

Remark:

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \; \Rightarrow \; \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

・ロト ・得ト ・ヨト ・ヨト

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \ \Rightarrow \ \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

Both properties are no longer true if char k = p > 0.

・ロト ・得ト ・ヨト ・ヨト

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \ \Rightarrow \ \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

Both properties are no longer true if char k = p > 0.

Example: If $f = Y^p + X^{p+1} \in k[[X, Y]]$ then $\tau(f) = p^2 < \infty$.

イロト 不得下 イヨト イヨト 二日

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \Rightarrow \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

Both properties are no longer true if char k = p > 0.

Example: If $f = Y^p + X^{p+1} \in k[[X, Y]]$ then $\tau(f) = p^2 < \infty$. On the other hand $\mu(f) = \infty$,

イロト 不得 トイヨト イヨト 二日

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \Rightarrow \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

Both properties are no longer true if char k = p > 0.

Example: If $f = Y^p + X^{p+1} \in k[[X, Y]]$ then $\tau(f) = p^2 < \infty$. On the other hand $\mu(f) = \infty$, $\mu((1+Y)f) = p^2$

イロト 不得 トイヨト イヨト 二日

- $J(f) \subseteq T(f) \Rightarrow \tau(f) \leqslant \mu(f)$. Hence, $\mu(f) < \infty \Rightarrow \mathcal{O}$ is an isolated singularity.
- **2** If $k = \mathbb{C}$ then it is possible to prove that

•
$$au(f) < \infty \Rightarrow \mu(f) < \infty;$$

• $f \sim_{\mathcal{K}} g \Rightarrow \mu(f) = \mu(g)$. Hence the Milnor number of any equation representing \mathcal{O} is an invariant of \mathcal{O} .

Both properties are no longer true if char k = p > 0.

Example: If $f = Y^p + X^{p+1} \in k[[X, Y]]$ then $\tau(f) = p^2 < \infty$. On the other hand $\mu(f) = \infty$, $\mu((1+Y)f) = p^2$ and $\mu((1+Y^2)f) = p^2 + p$.

イロト 不得 トイヨト イヨト 二日

æ

Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f) < \infty$, then

$$\mu(f) < \infty \iff f \in \sqrt{J(f)}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f) < \infty$, then

$$\mu(f) < \infty \iff f \in \sqrt{J(f)}.$$

(Teissier, 1972) $p = 0 \Longrightarrow f \in \overline{J(f)} \subseteq \sqrt{J(f)}$.

Proposition. If $f \in \mathfrak{m} \subset \mathcal{R}$ and $\tau(f) < \infty$, then

$$\mu(f) < \infty \iff f \in \sqrt{J(f)}.$$

(Teissier, 1972) $p = 0 \Longrightarrow f \in \overline{J(f)} \subseteq \sqrt{J(f)}$. Therefore, p = 0 and $\tau(f) < \infty \Longrightarrow \mu(f) < \infty$.

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$

- A I I I A I I I I

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

There is a natural map of evaluation $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$, which is a fibration by hypersurfaces;

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

There is a natural map of evaluation $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$, which is a fibration by hypersurfaces;

If p = 0

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

There is a natural map of evaluation $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$, which is a fibration by hypersurfaces;

If p = 0, it follows from Bertini's Theorem on variation of singular points that

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

There is a natural map of evaluation $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$, which is a fibration by hypersurfaces;

If p = 0, it follows from Bertini's Theorem on variation of singular points that there are neighborhoods U of $0 \in \mathbb{A}_k^n$ and V of $0 \in \mathbb{A}_k^1$ such that

$$U \setminus f^{-1}(0) \longrightarrow V \setminus 0$$

is smooth.

Let us consider $f \in k[X_1, \dots, X_n]$ and Z(f) with an isolated singularity in the origin $0 \in \mathbb{A}_k^n$, that is,

$$0\in \operatorname{Sing}(Z(f)) ext{ and } au_0(f):=\dim_k rac{\mathcal{O}_{\mathbb{A}_k^n,0}}{T(f)}= au(f)<\infty.$$

There is a natural map of evaluation $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$, which is a fibration by hypersurfaces;

If p = 0, it follows from Bertini's Theorem on variation of singular points that there are neighborhoods U of $0 \in \mathbb{A}_k^n$ and V of $0 \in \mathbb{A}_k^1$ such that

$$U \setminus f^{-1}(0) \longrightarrow V \setminus 0$$

is smooth. In this case we say that the evaluation map is a local smoothing of the singularity $0 \in Z(f)$.
3 1 4 3 1

Example: $f = Y^p - X^{p+1}$,

Example: $f = Y^p - X^{p+1}$, $\tau_0(f) = p^2 < \infty$.

Example:
$$f = Y^p - X^{p+1}$$
, $\tau_0(f) = p^2 < \infty$. For each $s \in \mathbb{A}^1_k$, Sing $(f^{-1}(s)) = \{(0, s^{1/p})\}$.

3 1 4 3 1

Example:
$$f = Y^p - X^{p+1}$$
, $\tau_0(f) = p^2 < \infty$. For each $s \in \mathbb{A}^1_k$, Sing $(f^{-1}(s)) = \{(0, s^{1/p})\}$.

Question: When $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$ is a local smoothing of the singularity $0 \in Z(f) = f^{-1}(0)$?

A B M A B M

Example:
$$f = Y^p - X^{p+1}$$
, $\tau_0(f) = p^2 < \infty$. For each $s \in \mathbb{A}^1_k$, Sing $(f^{-1}(s)) = \{(0, s^{1/p})\}$.

Question: When $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$ is a local smoothing of the singularity $0 \in Z(f) = f^{-1}(0)$?

Theorem. Let $f \in k[X_1, \dots, X_n]$ admitting an isolated singularity at the origin of \mathbb{A}_k^n . The fibration $f : \mathbb{A}_k^n \to \mathbb{A}_k^1$ is a local smoothing at $0 \in f^{-1}(0)$ if and only if $\mu_0(f) := \dim_k \frac{\mathcal{O}_{\mathbb{A}_k^n,0}}{J(f)} = \mu(f) < \infty$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

$f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity)

- < A > < B > < B >

$f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity) char k = p > 0

3

イロト 不得下 イヨト イヨト

 $f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity) char k = p > 0

 $\phi(f) \in k[[X, Y^p]]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f) = \infty$.

 $f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity) char k = p > 0 $\phi(f) \in k[[X, Y^p]]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f) = \infty$.

Question: Is the converse true?

イロト 不得下 イヨト イヨト 二日

 $f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity) char k = p > 0

 $\phi(f) \in k[[X, Y^p]]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f) = \infty$.

Question: Is the converse true?

Remark: $f \in k[[X, Y^p]] = \text{Ker}(\frac{\partial}{\partial Y}) \iff D_f := f_Y \frac{\partial}{\partial X} - f_X \frac{\partial}{\partial Y} =$

 $f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity)

char k = p > 0

 $\phi(f) \in k[[X, Y^p]]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f) = \infty$.

Question: Is the converse true?

Remark: $f \in k[[X, Y^p]] = \text{Ker}(\frac{\partial}{\partial Y}) \iff D_f := f_Y \frac{\partial}{\partial X} - f_X \frac{\partial}{\partial Y} = h \frac{\partial}{\partial Y}$, with $h \in k[[X, Y]]$.

イロト 不得下 イヨト イヨト 二日

 $f \in \mathcal{R} = k[[X, Y]]$ reduced ($\Leftrightarrow \mathcal{O}_f$ has an isolated singularity)

char k = p > 0

 $\phi(f) \in k[[X, Y^p]]$ for some automorphism ϕ of $\mathcal{R} \Longrightarrow \mu(f) = \infty$.

Question: Is the converse true?

Remark: $f \in k[[X, Y^p]] = \text{Ker}(\frac{\partial}{\partial Y}) \iff D_f := f_Y \frac{\partial}{\partial X} - f_X \frac{\partial}{\partial Y} = h \frac{\partial}{\partial Y}$, with $h \in k[[X, Y]]$. In this case we say that D_f and $\frac{\partial}{\partial Y}$ are equivalent vector fields and we write $D_f \sim \frac{\partial}{\partial Y}$.

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(Seshadri, 1960) Let S be a smooth surface and D a vector field on S

-∢∃>

- ∢ ∃ ▶

• *D* is *p*-closed,

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• D has only divisorial singularities in a neighborhood at $P \in S$,

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D = h_P(f_P \frac{\partial}{\partial x} + g_P \frac{\partial}{\partial y})$ where (x, y) are local coordinates of S at P,

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• D has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D = h_P(f_P \frac{\partial}{\partial x} + g_P \frac{\partial}{\partial y})$ where (x, y) are local coordinates of S at $P, h_P \in k(S)$ and $f_P, g_P \in \mathcal{O}_{S,P}$ are relatively prime

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• *D* has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D = h_P(f_P \frac{\partial}{\partial x} + g_P \frac{\partial}{\partial y})$ where (x, y) are local coordinates of *S* at *P*, $h_P \in k(S)$ and $f_P, g_P \in \mathcal{O}_{S,P}$ are relatively prime then $f_P \notin \mathfrak{m}_{S,P}$ or $g_P \notin \mathfrak{m}_{S,P}$.

• D is p-closed, that is, $D^p = hD$, with $h \in k(S)$;

• *D* has only divisorial singularities in a neighborhood at $P \in S$, that is, if $D = h_P(f_P \frac{\partial}{\partial x} + g_P \frac{\partial}{\partial y})$ where (x, y) are local coordinates of *S* at *P*, $h_P \in k(S)$ and $f_P, g_P \in \mathcal{O}_{S,P}$ are relatively prime then $f_P \notin \mathfrak{m}_{S,P}$ or $g_P \notin \mathfrak{m}_{S,P}$.

Then in the completion $\widehat{\mathcal{O}_{S,P}}$ of the local ring there exist local parameters x and y such that $D \sim \frac{\partial}{\partial y}$.

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_k^2$, where k is an algebraically closed field of characteristic p > 0.

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_k^2$, where k is an algebraically closed field of characteristic p > 0. Suppose that $\mu(f) = \infty$ and set $h = \gcd(f_X, f_Y) \in \mathfrak{m} \subset \mathcal{R} = k[[X, Y]].$

Proposition. Let $f \in k[X, Y]$ vanishing and with isolated singularity at the origin $0 \in \mathbb{A}_k^2$, where k is an algebraically closed field of characteristic p > 0. Suppose that $\mu(f) = \infty$ and set $h = \gcd(f_X, f_Y) \in \mathfrak{m} \subset \mathcal{R} = k[[X, Y]]$. Then there exists an automorphism ϕ of \mathcal{R} such that $\phi(f) \in k[[X, Y^p]]$ if and only if f_X/h or f_Y/h does not belong to \mathfrak{m} .

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

-∢∃>

Example: p = 3, $f = X^2Y + Y^2X$ has isolated singularity since $\tau(f) = 4$

Example: p = 3, $f = X^2Y + Y^2X$ has isolated singularity since $\tau(f) = 4$ $f_X = Y(Y - X), f_Y = -X(Y - X) \Rightarrow \mu(f) = \infty.$

Example: p = 3, $f = X^2Y + Y^2X$ has isolated singularity since $\tau(f) = 4$ $f_X = Y(Y - X), f_Y = -X(Y - X) \Rightarrow \mu(f) = \infty$. $h = gcd(f_X, f_Y) = Y - X$ and $f_X/h = Y, f_Y/h = -X \in \mathfrak{m}$.

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$.

B ▶ < B ▶

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I.

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I. Let $J \subseteq I$ be ideals of \mathcal{R} .

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I.

Let $J \subseteq I$ be ideals of \mathcal{R} . The ideal J is called a reduction of I if for some $s \ge 0$ one has $JI^s = I^{s+1}$.

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I.

Let $J \subseteq I$ be ideals of \mathcal{R} . The ideal J is called a reduction of I if for some $s \ge 0$ one has $JI^s = I^{s+1}$. In this case, $\sqrt{J} = \sqrt{I}$.
Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_1, \ldots, a_\ell \in \mathcal{R}$ with $a_i \in I^i$, satisfying

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I.

Let $J \subseteq I$ be ideals of \mathcal{R} . The ideal J is called a reduction of I if for some $s \ge 0$ one has $JI^s = I^{s+1}$. In this case, $\sqrt{J} = \sqrt{I}$.

J is called a minimal reduction of I if it is a reduction and it is minimal with respect to the inclusion.

Let us consider I an ideal of \mathcal{R} and $g \in \mathcal{R}$. We say that g is integral over I if there are $\ell \geq 1$ and $a_1, \ldots, a_\ell \in \mathcal{R}$ with $a_i \in I^i$, satisfying

$$g^{\ell}+a_1g^{\ell-1}+\cdots+a_{\ell}=0.$$

The integral closure \overline{I} of I is the set of all integral elements of \mathcal{R} over I.

Let $J \subseteq I$ be ideals of \mathcal{R} . The ideal J is called a reduction of I if for some $s \ge 0$ one has $JI^s = I^{s+1}$. In this case, $\sqrt{J} = \sqrt{I}$. J is called a minimal reduction of I if it is a reduction and it is minimal

J is called a minimal reduction of I if it is a reduction and it is minimal with respect to the inclusion.

We denote by $e_0(I)$ the Hilbert-Samuel multiplicity of an m-primary ideal I of \mathcal{R} and we put $e_0(I) = \infty$ if I is not m-primary.

イロト イポト イヨト イヨト 二日

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

∃ ▶ ∢ ∃ ▶

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

$$\bullet f \in \overline{J(f)};$$

∃ ▶ ∢ ∃ ▶

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

 $\ \, \mathbf{I}\in\overline{J(f)};$

2 J(f) is a minimal reduction of T(f);

- ∢ ∃ ▶

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\bullet \ f \in \overline{J(f)};$
- 2 J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

< 3 > < 3 >

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{I}\in\overline{J(f)};$
- **2** J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{I}\in\overline{J(f)};$
- **2** J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

Remark: In general $J(f) \subset T(f) \Longrightarrow e_0(T(f)) \le e_0(J(f)) = \mu(f)$.

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{f}\in\overline{J(f)};$
- **2** J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence. **Remark:** In general $J(f) \subset T(f) \Longrightarrow e_0(T(f)) \le e_0(J(f)) = \mu(f)$. **Example:** $p > 2, f = X^p + X^{p+2} + Y^{p+2}$.

イロト イポト イヨト イヨト 二日

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{f}\in\overline{J(f)};$
- 2 J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

Remark: In general $J(f) \subset T(f) \Longrightarrow e_0(T(f)) \le e_0(J(f)) = \mu(f)$.

Example:
$$p > 2$$
, $f = X^p + X^{p+2} + Y^{p+2}$.
 $J(f) = \langle X^{p+1}, Y^{p+1} \rangle \Rightarrow \mu(f) = (p+1)^2$ and $\tau(f) = p(p+1)$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{f}\in\overline{J(f)};$
- **2** J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

Remark: In general
$$J(f) \subset T(f) \Longrightarrow e_0(T(f)) \le e_0(J(f)) = \mu(f)$$
.

Example:
$$p > 2$$
, $f = X^p + X^{p+2} + Y^{p+2}$.
 $J(f) = \langle X^{p+1}, Y^{p+1} \rangle \Rightarrow \mu(f) = (p+1)^2$ and $\tau(f) = p(p+1)$
 $g = (1+X)f \Rightarrow \mu(g) = p(p+1)$ and

$$e_0(T(f)) = e_0(T(g)) \le e_0(J(g)) = \mu(g) = p(p+1) < (p+1)^2 = \mu(f)$$

・ロト ・四ト ・ヨト ・ヨトー

(Northcott-Rees) If $f \in \mathfrak{m}$ is such that $\tau(f) < \infty$, then the following conditions are equivalent:

- $\ \, \mathbf{f}\in\overline{J(f)};$
- 2 J(f) is a minimal reduction of T(f);
- **3** $e_0(T(f)) = e_0(J(f)).$

Corollary. $p = 0, f \in \mathcal{R} \Longrightarrow \mu(f)$ is invariant under contact equivalence.

Remark: In general
$$J(f) \subset T(f) \Longrightarrow e_0(T(f)) \le e_0(J(f)) = \mu(f)$$
.

Example:
$$p > 2$$
, $f = X^p + X^{p+2} + Y^{p+2}$.
 $J(f) = \langle X^{p+1}, Y^{p+1} \rangle \Rightarrow \mu(f) = (p+1)^2$ and $\tau(f) = p(p+1)$
 $g = (1+X)f \Rightarrow \mu(g) = p(p+1)$ and

 $e_0(T(f)) = e_0(T(g)) \le e_0(J(g)) = \mu(g) = p(p+1) < (p+1)^2 = \mu(f)$

 $\implies f \notin \overline{J(f)}.$

イロト イ団ト イヨト イヨト 二耳

This leads to consider the Milnor number of a hypersurface $\mathcal{O} = \mathcal{O}_f$ as

 $\mu(\mathcal{O})=e_0(T(f)).$

This leads to consider the Milnor number of a hypersurface $\mathcal{O} = \mathcal{O}_f$ as

$$\mu(\mathcal{O})=e_0(T(f)).$$

Remark:

1 It is an invariant of \mathcal{O} ;

This leads to consider the Milnor number of a hypersurface $\mathcal{O} = \mathcal{O}_f$ as

$$\mu(\mathcal{O})=e_0(T(f)).$$

Remark:

- **1** It is an invariant of \mathcal{O} ;
- 2 $p = 0 \Rightarrow \mu(\mathcal{O}) = \mu(f)$ for any equation f of \mathcal{O} ;

This leads to consider the Milnor number of a hypersurface $\mathcal{O} = \mathcal{O}_f$ as

$$\mu(\mathcal{O})=e_0(T(f)).$$

Remark:

- **1** It is an invariant of \mathcal{O} ;
- 2 $p = 0 \Rightarrow \mu(\mathcal{O}) = \mu(f)$ for any equation f of \mathcal{O} ;

We call an equation f of \mathcal{O} a good equation if $f \in \overline{J(f)}$.

Last example shows that there are bad equations since we have the existence of $f \in \mathcal{R}$ such that $e_0(\mathcal{T}(f)) < \mu(f)$.

Last example shows that there are bad equations since we have the existence of $f \in \mathcal{R}$ such that $e_0(\mathcal{T}(f)) < \mu(f)$.

Good news: good equations are "generic" in the contact class.

 $0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$

イロト イポト イヨト イヨト

 $0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree s

イロト イポト イヨト イヨト

 $0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree s is called a null-form for T(f) if

 $\varphi(f, f_{X_1}, \ldots, f_{X_n}) \in \mathfrak{m} T(f)^s.$

$$0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree *s* is called a null-form for T(f) if

$$\varphi(f,f_{X_1},\ldots,f_{X_n})\in\mathfrak{m}\,T(f)^s.$$

 $\mathcal{N}_{\mathcal{T}(f)}$ = null-forms of $\mathcal{T}(f)$ is a homogeneous ideal of $k[Y_0, Y_1, \ldots, Y_n]$

- 4 同 6 4 日 6 4 日 6

$$0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree *s* is called a null-form for T(f) if

$$\varphi(f,f_{X_1},\ldots,f_{X_n})\in\mathfrak{m}\,T(f)^s.$$

 $\mathcal{N}_{\mathcal{T}(f)}$ = null-forms of $\mathcal{T}(f)$ is a homogeneous ideal of $k[Y_0, Y_1, \dots, Y_n]$ and $k[Y_0, \dots, Y_n] \longrightarrow \mathcal{T}(f)^s$

$$\frac{\mathcal{I}[T_0,\ldots,T_n]}{\mathcal{N}_{\mathcal{T}(f)}} \simeq \bigoplus_{s \ge 0} \frac{\mathcal{I}(T)^s}{\mathfrak{m}\mathcal{T}(f)^s}$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along $\mathcal{T}(f)$,

$$0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree *s* is called a null-form for T(f) if

$$\varphi(f,f_{X_1},\ldots,f_{X_n})\in\mathfrak{m}\,T(f)^s.$$

 $\mathcal{N}_{\mathcal{T}(f)}$ = null-forms of $\mathcal{T}(f)$ is a homogeneous ideal of $k[Y_0, Y_1, \dots, Y_n]$ and $k[Y_0, \dots, Y_n] \longrightarrow \mathcal{T}(f)^s$

$$\frac{\zeta[Y_0,\ldots,Y_n]}{\mathcal{N}_{\mathcal{T}(f)}} \simeq \bigoplus_{s \ge 0} \frac{I(f)^s}{\mathfrak{m}\mathcal{T}(f)^s}$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along T(f), which has Krull dimension n (since T(f) is \mathfrak{m} -primary).

$$0 \neq f \in \mathfrak{m} \subset \mathcal{R} = k[[X_1, \ldots, X_n]], \tau(f) < \infty$$

 $\varphi \in k[Y_0, Y_1, \dots, Y_n]$ homogeneous with degree *s* is called a null-form for T(f) if

$$\varphi(f,f_{X_1},\ldots,f_{X_n})\in\mathfrak{m}\,T(f)^s.$$

 $\mathcal{N}_{\mathcal{T}(f)}$ = null-forms of $\mathcal{T}(f)$ is a homogeneous ideal of $k[Y_0, Y_1, \dots, Y_n]$ and $k[Y_0, \dots, Y_n] \longrightarrow \mathcal{T}(f)^s$

$$\frac{k[Y_0,\ldots,Y_n]}{\mathcal{N}_{\mathcal{T}(f)}} \simeq \bigoplus_{s \ge 0} \frac{\mathcal{T}(f)^s}{\mathfrak{m}\mathcal{T}(f)^s}$$

is the special fiber ring associated to the blow-up of Spec \mathcal{R} along T(f), which has Krull dimension n (since T(f) is m-primary). Hence the zero set $Z(\mathcal{N}_{T(f)}) \subset \mathbb{A}^{n+1}$ and $\mathcal{N}_{T(f)} \neq 0$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

Theorem. Let $f \in \mathfrak{m}$ with $\tau(f) < \infty$ and

$$u = \alpha_0 + \alpha_1 X_1 + \cdots + \alpha_n X_n + h.o.t. \in \mathcal{R}^*.$$

Image: Image:

ヨト イヨト

$$u = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_n X_n + h.o.t. \in \mathcal{R}^*.$$

We have that $uf \in \overline{J(uf)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G(\alpha_0, -\alpha_1, \ldots, -\alpha_n) \neq 0$.

$$u = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_n X_n + h.o.t. \in \mathcal{R}^*.$$

We have that $uf \in \overline{J(uf)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G(\alpha_0, -\alpha_1, \ldots, -\alpha_n) \neq 0$.

Consequences:

•
$$uf \in \overline{J(uf)}$$
 hold for $u \in \mathcal{R}^*$ generic;

$$u = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_n X_n + h.o.t. \in \mathcal{R}^*.$$

We have that $uf \in \overline{J(uf)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G(\alpha_0, -\alpha_1, \ldots, -\alpha_n) \neq 0$.

Consequences:

- $uf \in \overline{J(uf)}$ hold for $u \in \mathcal{R}^*$ generic;
- for a generic $u \in \mathcal{R}^*$ we have $\mu(\mathcal{O}_f) = \mu(uf)$.

$$u = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_n X_n + h.o.t. \in \mathcal{R}^*.$$

We have that $uf \in \overline{J(uf)}$ if and only if there exists $G \in \mathcal{N}_{T(f)}$ such that $G(\alpha_0, -\alpha_1, \ldots, -\alpha_n) \neq 0$.

Consequences:

- $uf \in \overline{J(uf)}$ hold for $u \in \mathcal{R}^*$ generic;
- for a generic $u \in \mathcal{R}^*$ we have $\mu(\mathcal{O}_f) = \mu(uf)$.

•
$$\mu(\mathcal{O}_f) = \min\{\mu(uf), u \in \mathcal{R}^*\}.$$

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

(日) (周) (三) (三)

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

• $\mu(uf) = \mu(\mathcal{O}_f)$ for all $u \in \mathcal{R}^*$;

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

• $\mu(uf) = \mu(\mathcal{O}_f)$ for all $u \in \mathcal{R}^*$; • $Z(\mathcal{N}_{T(f)}) = Z(Y_0)$;

- A I I I A I I I I

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

- $\mu(uf) = \mu(\mathcal{O}_f)$ for all $u \in \mathcal{R}^*$;
- **2** $Z(\mathcal{N}_{T(f)}) = Z(Y_0);$
- $\ \, \bullet \ \, f^{\ell} \in \mathfrak{m} T(f)^{\ell}, \ \, \text{for some} \ \, \ell \geq 1.$

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

\$\mu(uf) = \mu(\mathcal{O}_f)\$ for all \$u \in \mathcal{R}^*\$;
\$\mathcal{Z}(\mathcal{N}_{T(f)}) = Z(Y_0)\$;
\$\mathcal{f}^{\ell} \in \mathcal{m} T(f)^{\ell}\$, for some \$\ell \ge 1\$.

In this case we say that f is μ -stable

Example: $f \in k[X_1, \ldots, X_n]$ quasi-homogeneous of degree d with $p \nmid d$.
Variation of $\mu(uf)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

\$\mu(uf) = \mu(\mathcal{O}_f)\$ for all \$u \in \mathcal{R}^*\$;
\$\mathcal{Z}(\mathcal{N}_{T(f)}) = Z(Y_0)\$;
\$\mathcal{f}^{\ell} \in \mathcal{m} T(f)^{\ell}\$, for some \$\ell \ge 1\$.

In this case we say that f is μ -stable

Example: $f \in k[X_1, ..., X_n]$ quasi-homogeneous of degree d with $p \nmid d$. There are integers $d_1, ..., d_n$ such that $df = d_1 X_1 f_{X_1} + \cdots + d_n X_n f_{X_n}$.

Variation of $\mu(uf)$ and computation of $\mu(\mathcal{O})$

Theorem. $f \in \mathfrak{m}$ with $\tau(f) < \infty$. The following conditions are equivalent.

In this case we say that f is μ -stable

Example: $f \in k[X_1, \ldots, X_n]$ quasi-homogeneous of degree d with $p \nmid d$.

There are integers d_1, \ldots, d_n such that $df = d_1X_1f_{X_1} + \cdots + d_nX_nf_{X_n}$. Hence $f \in \mathfrak{m}T(f)$ and is μ -stable.

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R}$$
 irreducible

2

イロト イ団ト イヨト イヨト

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R}$$
 irreducible

 $h \in \mathcal{R};$

2

イロト イ団ト イヨト イヨト

 $f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R}$ irreducible $h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$

2

イロト イポト イヨト イヨト

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

æ

イロト イ団ト イヨト イヨト

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R}$$
 irreducible
 $h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$
 $S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$

semi-group of values of f

æ

イロト イヨト イヨト イヨト

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R}$$
 irreducible
 $h \in \mathcal{R}; I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$
 $S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$

Image: Image:

э

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$\mathcal{S}(f) = \langle v_0, \ldots, v_g
angle$$
 the minimal set of generators of $\mathcal{S}(f)$

Image: Image:

э

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$S(f) = \langle v_0, \dots, v_g \rangle$$
 the minimal set of generators of $S(f)$
 $S(f)$ has a conductor:

æ

イロト イヨト イヨト イヨト

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$S(f) = \langle v_0, \dots, v_g
angle$$
 the minimal set of generators of $S(f)$
 $S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that

Image: Image:

э

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$S(f) = \langle v_0, \dots, v_g
angle$$
 the minimal set of generators of $S(f)$
 $S(f)$ has a conductor: $\exists \ c(f) \in S(f)$ such that
 $c(f) - 1
ot\in S(f)$ and

Image: Image:

э

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$S(f) = \langle v_0, \dots, v_g \rangle$$
 the minimal set of generators of $S(f)$
 $S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that
 $c(f) - 1 \notin S(f)$ and $x \in \mathbb{N}, x \ge c(f) \Longrightarrow x \in S(f)$.

Image: Image:

э

$$f \in \mathfrak{m} \subset k[[X, Y]] = \mathcal{R} \text{ irreducible}$$
$$h \in \mathcal{R}; \ I(f, h) = \dim_k \frac{\mathcal{R}}{\langle f, h \rangle}$$
$$S(f) := \{I(f, h); h \in \mathcal{R} \setminus \langle f \rangle\} \subseteq \mathbb{N}$$

$$S(f) = \langle v_0, \dots, v_g \rangle$$
 the minimal set of generators of $S(f)$
 $S(f)$ has a conductor: $\exists c(f) \in S(f)$ such that
 $c(f) - 1 \notin S(f)$ and $x \in \mathbb{N}, x \ge c(f) \Longrightarrow x \in S(f)$.

Two plane branches f and h are called equisingular when

$$S(f)=S(h).$$

(日) (周) (三) (三)

(Milnor, 1968) $p = 0 \Longrightarrow \mu(f) = c(f)$.

(日) (四) (王) (王) (王)

(Milnor, 1968) $p = 0 \Longrightarrow \mu(f) = c(f)$.

In particular, μ is an invariant of the equisingularity class.

3

(Milnor, 1968) $p = 0 \Longrightarrow \mu(f) = c(f)$.

In particular, μ is an invariant of the equisingularity class. It may fails if p>0.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In particular, μ is an invariant of the equisingularity class. It may fails if $\rho>0.$

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28.

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

In particular, μ is an invariant of the equisingularity class. It may fails if $\rho > 0$.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have

3

・ロト ・四ト ・ヨト ・ヨトー

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f)$

3

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable

イロト イポト イヨト イヨト 二日

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3$

3

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3 \Rightarrow h$ is μ -stable:

3

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3 \Rightarrow h$ is μ -stable: $\mu(\mathcal{O}_h) = \mu(h) = 29$.

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3 \Rightarrow h$ is μ -stable: $\mu(\mathcal{O}_h) = \mu(h) = 29$.

• μ -stability is not preserved in the same equisingularity class;

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3 \Rightarrow h$ is μ -stable: $\mu(\mathcal{O}_h) = \mu(h) = 29$.

- μ -stability is not preserved in the same equisingularity class;
- Neither the Milnor number of a hypersurface is.

In particular, μ is an invariant of the equisingularity class. It may fails if p > 0.

Example: $f = (Y^2 - X^3)^2 - X^{11}Y$ and $h = (Y^2 - X^3 + X^2Y)^2 - X^{11}Y$ are equisingular with $S(f) = S(h) = \langle 4, 6, 25 \rangle$ and c(f) = c(h) = 28. If p = 5 we have $\mu(f) = 41 \neq 30 = \mu(\mathcal{O}_f) \Rightarrow f$ is not μ -stable $h^3 \in \mathfrak{mT}(h)^3 \Rightarrow h$ is μ -stable: $\mu(\mathcal{O}_h) = \mu(h) = 29$.

• µ-stability is not preserved in the same equisingularity class;

• Neither the Milnor number of a hypersurface is.

Note that p divides one of the generators of S(f).

(日) (四) (王) (王) (王)

We say that $S(f) = \langle v_0, \dots, v_g \rangle$ is tame if $p \nmid v_0 v_1 \cdots v_g$.

æ

イロト イ理ト イヨト イヨトー

We say that
$$S(f) = \langle v_0, \dots, v_g
angle$$
 is tame if $p \nmid v_0 v_1 \cdots v_g$.

(Deligne, 1973): In general, $\mu(f) \ge c(f)$. Also, the difference $\mu(f) - c(f)$ counts the number of wild vanishing cycles.

Image: Image:

ヨト イヨト

We say that
$$S(f) = \langle v_0, \dots, v_g \rangle$$
 is tame if $p \nmid v_0 v_1 \cdots v_g$.

(Deligne, 1973): In general, $\mu(f) \ge c(f)$. Also, the difference $\mu(f) - c(f)$ counts the number of wild vanishing cycles.

Theorem. If $f \in \mathfrak{m}^2$ is a plane branch singularity with S(f) tame, then

$$\mu(f) = \mu(\mathcal{O}_f) = c(f).$$

We say that
$$S(f) = \langle v_0, \dots, v_g \rangle$$
 is tame if $p \nmid v_0 v_1 \cdots v_g$.

(Deligne, 1973): In general, $\mu(f) \ge c(f)$. Also, the difference $\mu(f) - c(f)$ counts the number of wild vanishing cycles.

Theorem. If $f \in \mathfrak{m}^2$ is a plane branch singularity with S(f) tame, then

$$\mu(f) = \mu(\mathcal{O}_f) = c(f).$$

In particular, \mathcal{O}_f is μ -stable.

• μ -stability does not imply that the semi-group is tame;

æ

- μ -stability does not imply that the semi-group is tame;
- We have strong evidences to believe that

$$\mu(f) = c(f) \Longrightarrow S(f)$$
 is tame.

- μ -stability does not imply that the semi-group is tame;
- We have strong evidences to believe that

$$\mu(f) = c(f) \Longrightarrow S(f)$$
 is tame.

(García-Barroso and Ploski, 2015) The equivalence holds if

 $p > v_0 = \operatorname{mult}(f).$

(Zariski, 1966): If f is a plane branch and char k = 0, then $c(f) = \tau(f) \iff$ up to change coordinates $f = Y^n - X^m$ with n and m relatively primes.

(日) (周) (三) (三)

(Zariski, 1966): If f is a plane branch and char k = 0, then $c(f) = \tau(f) \iff$ up to change coordinates $f = Y^n - X^m$ with n and m relatively primes.

In particular $S(f) = \langle n, m \rangle$.

イロト イ理ト イヨト イヨト
(Zariski, 1966): If f is a plane branch and char k = 0, then $c(f) = \tau(f) \iff$ up to change coordinates $f = Y^n - X^m$ with n and m relatively primes.

In particular $S(f) = \langle n, m \rangle$.

Countre-Example if p > 0: Consider p = 7 and $f = (Y^2 - X^3)^2 - 4X^8Y - X^{13}$.

(Zariski, 1966): If f is a plane branch and char k = 0, then $c(f) = \tau(f) \iff$ up to change coordinates $f = Y^n - X^m$ with n and m relatively primes.

In particular $S(f) = \langle n, m \rangle$.

Countre-Example if p > 0: Consider p = 7 and $f = (Y^2 - X^3)^2 - 4X^8Y - X^{13}$. Then $S(f) = \langle 4, 6, 19 \rangle$ is tame

(Zariski, 1966): If f is a plane branch and char k = 0, then $c(f) = \tau(f) \iff$ up to change coordinates $f = Y^n - X^m$ with n and m relatively primes.

In particular $S(f) = \langle n, m \rangle$.

Countre-Example if p > 0: Consider p = 7 and $f = (Y^2 - X^3)^2 - 4X^8Y - X^{13}$. Then $S(f) = \langle 4, 6, 19 \rangle$ is tame $\mu(f) = c(f) = 22 = \tau(f)$.

- 4 同 ト 4 三 ト - 4 三 ト

THANK YOU!

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト