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JOÃO HÉLDER OLMEDO RODRIGUES

HYPERSURFACE SINGULARITIES IN

ARBITRARY CHARACTERISTIC

Niterói
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Orientador: Abramo Hefez

Coorientador: Rodrigo Salomão

Niterói
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trabalho e foi, além de um grande incentivador, um amigo.
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É raiz morta
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Resumo

O estudo de singularidades de espaços anaĺıticos ou algébricos sobre o corpo
dos números complexos é um tema tradicional que tem visto avanços impressionantes
nas últimas décadas. Em contraste, uma teoria paralela sobre corpos algebricamente
fechados é ainda pobre e existem muitas questões interessantes para serem respondidas.
Nosso objetivo nessa tese é contribuir nessa direção focando em algumas questões sobre
singularidades de hipersuperf́ıcies e, mais particularmente, sobre singularidades de curvas
planas.

Nosso ponto principal aqui será o estudo do número de Milnor de uma singu-
laridade isolada de uma hipersuperf́ıcie, o qual é definido como a codimensão do ideal
gerado pelas derivadas parciais de uma série de potências que representa localmente a
hipersuperf́ıcie. Este é um invariante topológico importante sobre os números complexos,
mas seu significado muda dramaticamente quando o corpo de base é arbitrário. Acontece
que, se o corpo é de caracteŕıstica positiva, este número pode ser infinito e depender da
equação local da hipersuperf́ıcie. Nessa tese estudaremos a variação do número de Mil-
nor em termos de uma equação local dando condições necessárias e suficientes para sua
invariância. Nós também relacionamos, para uma singularidade isolada, a finitude desse
número com a suavidade de uma fibra genérica de uma deformação da hipersuperf́ıcie,
relacionando isso com um resultado de Bertini. Finalmente nós especializamos ao caso
de singularidades irredut́ıveis de curvas planas onde damos uma condição suficiente em
termos de um invariante de equisingularidade para a validade de um resultado de Milnor,
conhecido sobre os números complexos, que diz que o número de Milnor em um ponto
coincide com o condutor da curva naquele ponto. Conclúımos o trabalho com o estudo
do módulo de diferenciais de Kähler de uma curva plana sobre corpos de caracteŕıstica
positiva, evidenciando várias diferenças com o caso de caracteŕıstica zero.

Palavras-chave: Singularidades em caracteŕıstica positiva, Número de Milnor em ca-
racteŕıstica positiva, Singularidades de hipersuperf́ıcies algebróides, Fibrações por hiper-
superf́ıcies não lisas.



Abstract

The study of singularities of algebraic or analytic spaces over the field of com-
plex numbers is a traditional subject that has seen impressive developments in several
directions in the last decades. In contrast, the parallel theory over arbitrary algebraically
closed fields is still poor and there are lots of interesting questions to be answered. Our
aim in this thesis is to contribute in that direction by focusing on some questions about
hypersurface singularities and, more particularly, about plane curve singularities.

Our main concern here will be the study of the Milnor number of an isolated
hypersurface singularity which is defined as the codimension of the ideal generated by
the partial derivatives of a power series that represents locally the hypersurface. This is
an important topological invariant of the singularity over the complex numbers, but its
meaning changes dramatically when the base field is arbitrary. It turns out that, if the
ground field is of positive characteristic, this number may be infinite and depends upon
the local equation of the hypersurface, not being an intrinsic invariant of the hypersurface.
In this thesis we will study the variation of the Milnor number in terms of a local equation,
giving necessary and sufficient conditions for its invariance. We also relate, for an isolated
singularity, the finiteness of this number to the smoothness of the generic fiber of a
deformation of the hypersurface, relating it to a Bertini type result. Finally, we specialize
to the case of plane irreducible curves where we give a sufficient condition in terms of
an equisingularity invariant for the validity of a result of Milnor, known to be true over
the complex numbers, that asserts that the Milnor number at a point coincides with the
conductor of the curve at that point. We conclude the work with the study of the module
of Kähler differentials of plane curves over fields of positive characteristic, evidencing
many differences from the characteristic zero case.

Keywords: Singularities in positive characteristic, Milnor number in positive charac-
teristic, Singularities of algebroid hypersurfaces, Fibrations by non-smooth hypersurfaces
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CHAPTER 1

Introduction

The local study of singularities of algebraic varieties over an arbitrary alge-

braically closed field may be reduced to the study of algebroid varieties.

By an algebroid variety over a field k we mean SpecO where O is a noetherian

local complete ring with coefficient field k. To simplify notation we will also call O
an algebroid variety. If m is the maximal ideal of O, then dimm/m2 is the embedding

dimension of O and it is well known that dimm/m2 > dimO. The algebroid variety will

be said smooth if dimm/m2 = dimO, otherwise it will be said singular. Our main concern

here will be the singular case.

Let us set n = dimm/m2. We denote by R = k[[X1, . . . , Xn]] the ring of formal

power series in n indeterminates with coefficients in k and by R∗ the group of its units.

If we choose a minimal set of generators {x1, . . . , xn} of m, from the completeness of O,

we get a k-algebras epimorphism

ϕ : R → O.
Xi 7→ xi

Any such choice gives us a closed embedding SpecO →֒ (An
k , 0), where (An

k , 0) =

SpecR. If kerϕ = A, then we have

O ≃ R /A.
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Hypersurface singularities in arbitrary characteristic

Another choice of generators ofm will produce a new embedding and consequently

an ideal B such that

R /A ≃ O ≃ R /B.

The ideals A and B are related by the existence of an automorphism Φ of R that

transforms A into B.

Now, if O is a singular hypersurface, that is if dimO = n−1, then the ideal A is a

principal ideal 〈f〉, uniquely determined modulo an automorphism Φ of R. From now on

we only consider algebroid singular hypersurfaces. When n = 2, the singular hypersurface

is called a plane curve and in this case we write R = k[[X, Y ]].

A generator f of the ideal A of a hypersurface embedded in (An
k , 0) will be called

an equation of O. Two generators of the ideal A are associated.

Conversely, given f ∈ R not zero nor invertible, we associate to it the hypersur-

face denoted by Of = R/〈f〉. So, two elements f and g in R will determine the same

algebroid hypersurface if and only if there is an automorphism Φ and a unit u ∈ R∗ such

that g = uΦ(f). In such case we say that f and g are contact equivalent.

Given f ∈ R, we define the Tjurina ideal in R as being the ideal

T (f) = 〈f, fX1, . . . , fXn
〉.

This ideal plays a fundamental role in our presentation. The Tjurina Algebra of f is the

algebra R/T (f) and its dimension τ(f) as a k-vector space is the Tjurina number of f .

It is easy to check that this number is invariant by contact equivalence, so it

defines an invariant τ(O) of O.

Another ideal that plays an important role when k = C is the Jacobian ideal J(f)

of f which is the ideal generated by all the partial derivatives of f :

J(f) = 〈fX1, . . . , fXn
〉.

The Milnor Algebra of f is the algebra R/J(f) and its dimension µ(f) as a k-vector

space is the Milnor number of f . It is immediate to verify that µ(f) = µ(Φ(f)) for any

automorphism Φ of R.

When R = C{X1, . . . , Xn} is the convergent power series ring, Milnor proves by

topological methods that µ(uf) = µ(f) for any u ∈ R∗. This result is usually extended

over characteristic zero fields by Lefschetz’ principle. In arbitrary characteristic this does

not hold as one can see from the example below.

João Hélder Olmedo Rodrigues 3 Universidade Federal Fluminense
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Example 1.1.1. Let chark = p and f = Y p+Xp+1 ∈ k[[X, Y ]]. Then Of is an irreducible

plane curve such that τ(f) = p2 and

µ(f) = ∞, but µ((1 + Y )f) = p2 6= µ(f).

This is a relevant issue in our investigation since some important problems are

connected to it. For instance, we will characterize in Section 2.1 the reduced f ∈ k[[X, Y ]]

for which there exists an automorphism Φ of k[[X, Y ]] such that Φ(f) ∈ k[[Xp, Y ]], where

p = char(k). This is a sufficient (but not necessary) condition for the infiniteness of µ(f).

In Section 2.3, we characterize the f for which µ(f) = µ(uf) for all u ∈ R∗ and will study

in general the variation of µ(uf) when f is fixed and u varies in R∗.

From the inclusion J(f) ⊂ T (f), it is clear that

τ(f) 6 µ(f).

So, one always has

µ(f) <∞ ⇒ τ(f) <∞.

In characteristic zero, one also has the converse of the above implication. This

will be proved algebraically in Section 2.2. In positive characteristic, the converse may

fail, as one can see from Example 1.1.1 above.

Motivated by the above discussion and by the fact that the ideal of a singularity

of a hypersurface is the Tjurina ideal, the natural definition for isolated singularity is the

following:

Definition 1.1.2. A hypersurface Of has an isolated singularity at the origin if f ∈ m
2

and τ(f) <∞.

Notice that this is a well posed definition, since τ(f) = τ(g) when f and g are

contact equivalent. So, in characteristic zero, to say that Of has an isolated singularity

is equivalent to say that µ(f) <∞, but not in arbitrary characteristic.

There is an easy criterion in arbitrary characteristic (cf. [B], Proposition 1.2.11)

for a plane curve Of to have an isolated singularity: Of has an isolated singularity if

and only if f is reduced. In contrast, the fact that f is reduced is not sufficient to

guarantee that µ(f) < ∞ as shows Example 1.1.1. Also, the vanishing of one of the

partial derivatives of f implies µ(f) = ∞, but this is not a necessary condition, even in

the case of plane curves, as the following example shows.

João Hélder Olmedo Rodrigues 4 Universidade Federal Fluminense
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Example 1.1.3. Let chark = 3 and f = X2Y + Y 2X ∈ k[[X, Y ]]. We have that f =

XY (X + Y ) is reduced, but fX and fY are both nonzero and have the common factor

Y −X, implying that µ(f) = ∞.

In the next section we will give a criterion for the finiteness of µ(f) which will

shed light on why in characteristic zero τ(f) <∞ implies µ(f) <∞.

Recall that in the complex case the Milnor number of f was introduced in [Mi]

as the rank of the middle cohomology group of the fiber of the local smoothing f = s. In

this setting µ(f) is referred to as the number of vanishing cycles associated to f . When

we switch to a field of positive characteristic p, the fibration f = s may not be a local

smoothing anymore, that is, it may be a counter example to Bertini’s theorem on the

variation of singular points in linear systems, true in characteristic zero. In Section 2.1,

we characterize this phenomenon, that may only occur in positive characteristic, in terms

of the infiniteness of the Milnor number.

Finally, in the last two sections, we study plane branches singularities over arbi-

trary algebraically closed fields. In characteristic zero, the Milnor number µ(f) coincides

with the conductor c(f) of the semigroup of values of a branch (f). In arbitrary charac-

teristic, Deligne proves in [De] (see also [MH-W]) the inequality µ(f) > c(f), where the

difference µ(f)− c(f) measures the existence of wild vanishing cycles. We prove that Mil-

nor’s number and the conductor of a branch (f) coincide when the characteristic does not

divide any of the minimal generators of the semigroup of values of f , which we call tame

semigroup. Our proof was inspired by a result of P. Jaworski in the work [Ja2], which we

simplified and extended to arbitrary characteristic, under the appropriate assumptions.

We would like to point out that in the process of writing the final version of this thesis,

E. Garćıa Barroso and A. Ploski posted the preprint [GB-P], showing by other methods

our last result in the chapter 3 (with the converse), but in the much easier particular case

when p is greater than the multiplicity of f , and also observed that their proof fails when

p is less or equal than the multiplicity of f . We should also mention that H.D. Nguyen

in [Ng] has shown, in the irreducible case, the also much weaker result, namely, that if

p > c(f) + mult(f) − 1, then µ(f) = c(f). Notice that once fixed the ground field k of

positive characteristic p, both results in [GB-P] and [Ng] cover only finitely many values

of the multiplicity mult(f), while our result is in full generality.

The last chapter of this thesis is dedicated to the study of the module of Kähler

differentials of singularities of curves, where we show some similarities among the charac-

teristic zero case and the branches with tame semigroups, for instance that the nonzero

values of functions are values of differentials, and some differences, as the non validity of

João Hélder Olmedo Rodrigues 5 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

the result of Zariski that classifies the branches that have no differentials whose values

are not values of functions.

João Hélder Olmedo Rodrigues 6 Universidade Federal Fluminense



CHAPTER 2

Milnor number

2.1 The finiteness of Milnor Number

In this section we give a necessary and sufficient condition on an equation f of a

hypersurface O to have µ(f) <∞. We also relate the finiteness of µ(f) with the condition

that the fibration f = s is a smoothing for the singularity O, establishing necessary and

sufficient conditions for the validity of one of Bertini’s theorem in positive characteristic

for this fibration.

To discuss the finiteness of µ(f) we must impose that τ(f) <∞, or equivalently

that Of has an isolated singularity, because otherwise µ(f) = ∞. So, assume that

τ(f) <∞ and look to the natural exact sequence of k-vector spaces

0 → T (f)/J(f) → R/J(f) → R/T (f) → 0.

Intuitively, if the element f ∈ T (f) = 〈f〉+ J(f) is not too far from the ideal J(f) then

µ(f) = τ(f) + dimk T (f)/J(f)

must be finite. This can be made precise and we arrive at the following result which gives

a criterion for the finiteness of µ(f).

7
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Proposition 2.1.1. Let f ∈ m and suppose that τ(f) <∞. Then

µ(f) <∞ ⇔ f ∈
√

J(f).

Proof: Notice that when f ∈ m \ m2 both conditions hold trivially. So, we will be only

concerned with the case f ∈ m2.

Suppose that µ(f) <∞, then J(f) is m-primary, hence f ∈ m =
√

J(f).

Conversely, suppose that f ∈
√

J(f). Since τ(f) <∞, we have that
√

T (f) = m.

Now,

T (f) = 〈f〉+ J(f) ⊂
√

J(f) ⊂ m,

since f ∈ m2. Taking radicals we get

m =
√

T (f) ⊂
√

J(f) ⊂ m.

So,
√

J(f) = m, which in turn implies that µ(f) <∞.

Remark 2.1.2. At this point, accordingly to the announced equivalence between the con-

ditions τ(f) < ∞ and µ(f) < ∞ in characteristic zero we deduce that in this situation

one always has f ∈
√

J(f). We will postpone the proof of this fact to the next section.

The following result will be needed in Chapter 4 of the thesis.

Lemma 2.1.3. ([B], Lemma 1.2.13) Let f ∈ m ⊂ R be such that J(f) ⊂ 〈f〉. Then

either f = 0, if chark = 0, or f = ugp for some unit u of R and g ∈ R, if chark = p > 0.

We now discuss an interesting connection between the finiteness of µ(f) and

Bertini’s Theorem.

Let f ∈ k[X1, . . . , Xn] and assume that f has an isolated singularity at the origin

of An
k . By this we mean that in the local ring OAn

k
,0 = k[X1, . . . , Xn]〈X1,...,Xn〉 the ideal

T0(f) := T (f)OAn
k
,0 has finite codimension:

τ0(f) := dimk OAn
k
,0/T0(f) <∞.

Accordingly, denote µ0(f) := dimk OAn
k
,0/J0(f). Of course these numbers coincide with

the preceding τ(f) and µ(f) since R ≃ ÔAn
k
,0.

We are going to study when the fibration by hypersurfaces induced by

f : An
k → A1

k

João Hélder Olmedo Rodrigues 8 Universidade Federal Fluminense
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is a local smoothing of the singularity, that is, we will investigate under which condi-

tions there are Zariski open neighbourhoods U ⊂ An
k and V ⊂ A1

k of the origin 0 ∈ An
k

(respectively 0 ∈ A1
k) such that

U \ f−1(0) → V \ 0

is smooth. Equivalently one can ask for the non-existence of horizontal subvarieties (vari-

eties C ( An
k whose image dominates A1

k) through 0 ∈ An
k consisting of singularities of the

fibers. Notice that in characteristic zero this is always the case due to Bertini’s theorem

on the variation of singular points in linear systems. However, it is well known that this

is not true over fields of positive characteristic.

Example 2.1.4. We have already seen that f = Y p+Xp+1 has an isolated singularity at

the origin when chark = p > 0. The fiber over each s ∈ A1
k has (0, s1/p) as a singularity.

Example 2.1.5. When p = 3 the polynomial f = X2Y + Y 2X has an isolated sin-

gularity at the origin because τ(f) = 4 < ∞. Again, the fiber over each s ∈ A1
k has

((−s)1/3, (−s)1/3) as a singularity.

In arbitrary characteristic we have the following characterization which was mo-

tivated by the proof of the Proposition 2.1.1.

Theorem 2.1.6. Let f be a polynomial admitting an isolated singularity at the origin.

The fibration f : An
k → A1

k is a local smoothing if and only if µ0(f) <∞.

Proof: If µ0(f) = ∞, then the codimension of J(f) = 〈fX1 , . . . , fXn
〉 in OAn

k
,0 is in-

finite. This implies that the sequence fX1 , . . . , fXn
is not OAn

k
,0-regular. In this case

Z(fX1, . . . , fXn
) contains a curve C trough the origin in An

k . We clearly have that

C ∩Z(f − s) is made of singular points of the fiber f = s. Hence, it remains to show that

C dominates A1
k under f . Otherwise, f(C) would be finite and there might exist s0 such

that Z(fX1 , . . . , fXn
, f−s0) is infinite in some neighbourhood at the origin of An

k . But this

is a contradiction because, if s0 6= 0, then f − s0 does not vanish in some neighbourhood

of the origin and if s0 = 0 it says that f does not have an isolated singularity at the origin.

Now, if µ0(f) <∞ then the same argument used in Proposition 2.1.1 shows that

f belongs to the ideal
√

J(f) of OAn
k
,0. Hence there exists a relation

B fN = A1fX1 + · · ·+ AnfXn
, with A1, . . . , An, B ∈ k[X1, . . . , Xn], B(0) 6= 0. (2.1)

Notice that each fiber f−1(s), with s 6= 0 in the open neighbourhood An
k \ Z(B) of the

origin, is smooth. Indeed, if x ∈ An
k \ Z(B) is a singular point of the fiber f−1(s), with
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s 6= 0, then f(x) = s and fXi
(x) = 0 for each i = 1, . . . , n. On the other hand, since

B(x) 6= 0 it follows from (2.1) that s = f(x) = 0, which is a contradiction.

2.2 Good equations and the invariant µ(O)

As we have already seen, in positive characteristic, the usual definition of µ is

somehow pathological in the sense that when a power series f has an isolated singularity

(τ(f) < ∞) its Milnor number µ(f) may be infinite or may change in the same contact

class. It is not, therefore a geometric invariant of the singularity because contact equiva-

lent power series define isomorphic singularities. In the complex case, however, µ(f) is a

very important topological invariant in the case of isolated singularities which is therefore

preserved under contact equivalence and is always finite. These last two properties are

also true when we work over (algebraically closed) fields of characteristic zero as is shown

in [B] as an application of the Lefschetz’s Principle and using the validity of the result

over C (see Prop. 5.2.1 and Prop. 5.3.1 in [B]). The purpose of this section is to give

completely algebraic proofs of the these results (no topological arguments are involved)

and to suggest what would be the best definition of a Milnor number for an isolated

hypersurface singularity over an arbitrary algebraically closed field.

To begin with we recall a definition:

Definition 2.2.1. Let I ⊂ R be an ideal. An element g ∈ R for which there exists ℓ > 1

and a1, . . . , aℓ ∈ R with ai ∈ I i satisfying

gℓ + a1g
ℓ−1 + · · ·+ aℓ = 0

is said to be integral over I. We denote the set of elements which are integral over I as

I. It is well known that I is an ideal of R. Obviously we have

I ⊂ I ⊂
√
I, I ⊆ I ′ ⇒ I ⊆ I ′ and I = I.

We say that an ideal I is integrally closed in R if it satisfies I = I. We refer the reader

to [H-S] for details.

Example 2.2.2. Every principal ideal, say I = gR, is integrally closed inside R. In fact,

this is clear if g = 0 since R is a domain. If g 6= 0 and h ∈ R is integral over I then we

can write

hℓ + b1gh
ℓ−1 + · · ·+ bℓg

ℓ = 0,
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for some bi ∈ R. This means that h
g
∈ K is integral over R, whereK is the field of fractions

of R. But R is integrally closed inside K, hence h
g
∈ R implying that h ∈ gR = I.

Definition 2.2.3. Let J ⊆ I be ideals of R. The ideal J is said to be a reduction of I

if for some s > 0 an equality JIs = Is+1 holds. Observe that in this case
√
I =

√
J . A

reduction of an ideal I is said to be a minimal reduction if it is minimal with respect to

inclusion.

The concepts of integral element over an ideal and of a reduction of an ideal are

related by the following.

Remark 2.2.4. For any element g ∈ R and any ideal I ⊆ R, we have g ∈ I if and only

if there exists an integer s such that (I + 〈g〉)s = I(I + 〈g〉)s−1. In other words, g ∈ I if

and only if I is a reduction of I + 〈g〉.

Proof: First suppose that g ∈ I. Then an equation of integral dependence of g over

I of degree s shows that gs ∈ I(I + 〈g〉)s−1 and hence that (I + 〈g〉)s = I(I + 〈g〉)s−1.

Conversely, if (I + 〈g〉)s = I(I + 〈g〉)s−1 then gs = b1g
s−1 + b2g

s−2 + · · ·+ bs−1g + bs for

some bi ∈ I i, which can be easily rewritten into an equation of integral dependence of g

over I.

In order to show that the preceding concepts fit well for the ideals J(f) and

T (f) = J(f) + 〈f〉 we are going to show (in characteristic zero) that f ∈ J(f). Precisely,

in characteristic zero, we have the following result attributed to B. Teissier (see [Te]).

Theorem 2.2.5. Let k be a field (non necessarily algebraically closed) of character-

istic zero. If f ∈ R = k[[X1, · · · , Xn]] is a non invertible element, then we have

f ∈ 〈X1fX1 , . . . , XnfXn
〉. Hence we also have f ∈ mJ(f) ⊂ J(f).

Proof: See [H-S], proof of Proposition 7.1.5.

Remark 2.2.6. Since J(f) ⊆
√

J(f) we see in the particular case of characteristic zero

that

τ(f) <∞ =⇒ µ(f) <∞

using our criterion given by Proposition 2.1.1 for finiteness of µ(f) and Theorem 2.2.5.

Observe that this proof is completely algebraic (avoiding typical topological methods over

C) and that it holds even if the field k is not algebraically closed.
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Also a consequence of the preceding Theorem 2.2.5 and Remark 2.2.4 is that in

characteristic zero the ideal J(f) is always a reduction of the ideal T (f). This is far from

being the case if our ground field k has positive characteristic, as shows the following

example.

Example 2.2.7. Let f = Y p + Xp+1, chark = p > 0. Then J(f) = 〈Xp〉 and hence,

according to Example 2.2.2, J(f) = J(f). Then f is not integral over J(f) because

otherwise f would be a multiple of Xp. Hence J(f) is not a reduction of T (f) = J(f)+〈f〉.
Alternatively, we can see this directly by observing that J(f) is not m-primary, though

T (f) is.

We denote by e0(I) the Hilbert-Samuel multiplicity of an m-primary ideal I. This

is always a non-negative integer. We put e0(I) = ∞ if
√
I ( m.

The next well known proposition describes, in arbitrary characteristic, the effect

of the condition f ∈ J(f).

Proposition 2.2.8 ([N-R] and [R]). Let f ∈ m ⊂ R. The following conditions are

equivalent:

(i) f ∈ J(f);

(ii) J(f) is a reduction of T (f).

Furthermore, if τ(f) <∞, the two preceding conditions are equivalent to

(iii) J(f) is a minimal reduction of T (f);

(iv) e0(T (f)) = e0(J(f)).

Sketch of Proof: (i) ⇔ (ii): Exactly the same as the proof of 2.2.4.

Now assume that τ(f) <∞.

(iii) ⇐ (iv): This is a hard result proved originally by D. Rees in [R], Theorem

3.2 and we omit the proof. Another reference for this point (with an easier proof) is

Theorem 11.3.1 in [H-S]. Notice that R is a formally equidimensional Noetherian local

ring (or a level local ring in the terminology of Rees), that is, their minimal prime ideals

have the same dimension.

(iii) ⇒ (iv) Let I = T (f) and J = J(f). Since J is a reduction of I, by the

assumption, we get, for some s > 0,

Is+1 = IsJ.

João Hélder Olmedo Rodrigues 12 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

This, in turn, implies that

Is+m = IsJm, ∀ m > 0.

Hence, from J ⊆ I we get

dim(R/Jm+s) > dim(R/Im+s) > dim(R/JmIs) > dim(R/Jm), ∀m.

Since the Hilbert-Samuel multiplicity is the leading coefficient (normalized by 1/n!) of the

Hilbert-Samuel polynomial of the ideal we get e0(I) = e0(J).

(iii) ⇒ (ii) is clear;

(ii) ⇒ (iii) Because if τ(f) <∞, J(f) is a parameter ideal (see Proposition 2.1.1)

and therefore n = dimR = dimk

(

J(f)/mJ(f)
)

. This in turn implies that J(f) is a

minimal reduction of T (f) (see for example [H-S], Corollary 8.3.5).

Corollary 2.2.9. Let f ∈ m be such that τ(f) < ∞. Then f ∈ J(f) if, and only if,

µ(f) = e0(T (f)).

Proof: From Proposition 2.2.8 one has that f ∈ J(f) if and only if e0(J(f)) = e0(T (f)).

In this situation, one has that J(f) is a parameter ideal. Since R is a Cohen-Macaulay

ring it follows that µ(f) = e0(J(f)) (cf [Ma], Theorem 17.11), which gives the result.

Corollary 2.2.10. Let k be a field of characteristic zero and f ∈ m. Then µ(f) is

invariant under contact equivalence.

Proof: If τ(f) = ∞ then µ(g) = ∞, for every g in the same contact equivalence class

and we are done. So we are restricted to the case τ(f) < ∞. Since changing coordinates

obviously does not change µ, we only need to show that µ(f) = µ(uf) for every unit

u ∈ R. However, it is easy to see that T (f) = T (uf), for every such u. In characteristic

zero, both J(f) and J(uf) are reductions of T (f), according to the previous proposition

and Theorem 2.2.5. On the other hand, R is a regular (hence Cohen-Macaulay) local

ring. Since J(f) is a parameter ideal (Remark 2.2.6) we have µ(f) = e0(J(f)) (cf. [Ma],

Theorem 17.11). Therefore,

µ(f) = e0(J(f)) = e0(T (f)) = e0(T (uf)) = e0(J(uf)) = µ(uf).
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Remark 2.2.11. In arbitrary characteristic the inclusion J(f) ⊂ T (f) implies that

e0(T (f)) 6 e0(J(f)) (cf. [Ma], Formula 14.4), then

e0(T (f)) 6 e0(J(f)) = µ(f).

The inequality in the above remark may be strict, even if µ(f) < ∞, as shows

the following example.

Example 2.2.12. Let chark = p > 2 and f = Xp+Xp+2+ Y p+2 ∈ k[[X, Y ]]. As J(f) =

〈Xp+1, Y p+1〉, we have that µ(f) = (p + 1)2 and τ(f) = p(p + 1) < ∞. If g = (1 +X)f ,

then an easy calculation with intersection indices shows that µ(g) = I(gX , gY ) = p(p+1),

so

e0(T (f)) = e0(T (g)) 6 µ(g) = p(p+ 1) < (p+ 1)2 = µ(f).

It follows from the preceding discussion that the importance of the Jacobian ideal

of a hypersurface singularity in characteristic zero is due to the fact that it is a reduction

of the Tjurina ideal, which is the ideal that carries all the information about the singular

point. In this situation, one has that e0(T (f)) = µ(f) (we do not exclude the case in

which the singularity is non-isolated accordingly to our convention that e0(I) = ∞ if I

is not m-primary), and this is why Milnor’s number is full of meanings in characteristic

zero.

This leads us to consider the Milnor number of a hypersurface O = Of as

µ(O) = e0(T (f)).

Observe that this is an invariant of the algebroid hypersurface O and it is always finite if

the singularity is isolated. Notice also that in characteristic zero one always has µ(O) =

µ(f), for any equation f for O.

Remark 2.2.13. Proposition 2.2.8 gives a numerical criterion for testing whether f be-

longs or not to J(f) when the singularity is isolated. Example 2.2.12 shows that one may

have f ∈
√

J(f) with f 6∈ J(f), since in this case µ(f) > e0(T (f)) = µ(Of ).

João Hélder Olmedo Rodrigues 14 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

2.3 Variation of µ(uf) and computation of µ(O)

We have seen that in characteristic zero, specially in the case of an isolated

singularityO = Of , that the multiplicity e0(T (f)) may be computed as the codimension of

J(f) in R because, in that situation, J(f) is a minimal reduction of T (f) (see Proposition

2.2.8, Theorem 2.2.5 and Corollary 2.2.10). On the other hand, this is not always the case

if the ground field has positive characteristic. Therefore, we are led to investigate whether

J(f) is a minimal reduction of T (f) or, equivalently, whether f ∈ J(f) when τ(f) <∞.

As a consequence of our discussion we will analyse the variation of µ(uf) when u varies

in R∗ and obtain a method for computing µ(O). More generally, we will search for (non

necessarily minimal) reductions of T (f).

Let 0 6= f ∈ m ⊂ R and let ℓ(T (f)) = dimFT (f)(R) denote the Krull dimension

of the special fiber ring associated to to the blow-up of SpecR along T (f):

FT (f)(R) :=
⊕

s>0

T (f)s

mT (f)s
.

This graded ring is called the fiber cone of T (f). The integer ℓ(T (f)) is called the analytic

spread of the ideal T (f) and it is known (see [H-S], Corollary 8.3.9) that

height T (f) 6 ℓ(T (f)) 6 dimR = n. (2.2)

A special case of this is when T (f) is m-primary: in this case clearly one has ℓ(T (f)) =

dimR = n.

Since R is a local ring with infinite residue field k and taking into account the

bound (2.2), above, it is well known that for a fixed set of generators, not necessarily

minimal, f, fX1 , . . . , fXn
of T (f), if we take sufficiently general linear combinations

gi = h0,i f +

n∑

j=1

hj,i fXj
, where hj,i ∈ R, i = 1, . . . , n, (2.3)

then the ideal in R generated by g1, . . . , gn is a reduction of the ideal T (f) (see [H-S]

Theorem 8.6.6).

To make precise the preceding statement about the conditions on the hj,i to be

sufficiently general, we will need the notion of null-forms.

A null-form (cf. [Ma], proof of Theorem 14.14) for the ideal T (f) is a homogeneous

polynomial ϕ ∈ k[Y0, . . . , Yn] of some degree s such that there exists F ∈ R[Y0, . . . , Yn]

João Hélder Olmedo Rodrigues 15 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

homogeneous of degree s for which

F ≡ ϕ mod mR[Y0, . . . , Yn]

and F (f, fX1, . . . , fXn
) ∈ mT (f)s. We denote byNT (f) the homogeneous ideal in k[Y0, . . . , Yn]

generated by all null-forms of T (f).

Remark 2.3.1. The ideal NT (f) depends upon the generators f, fX1 , . . . , fXn
of T (f).

Nevertheless, as k-algebras one has from the construction that

k[Y0, . . . , Yn]

NT (f)
≃
⊕

s>0

T (f)s

mT (f)s
= FT (f)(R).

This implies that the projective zero set Z(NT (f)) in Pn
k is of dimension ℓ(T (f))−1 6 n−1.

In particular, NT (f) 6= 〈0〉.

Example 2.3.2. Recall Example 1.1.1, where f = Y p +Xp+1 ∈ k[[X, Y ]] and chark = p.

Since the polynomial Y2 ∈ k[Y0, Y1, Y2] vanishes when evaluated at (f, fX , fY ), we have

that Y2 ∈ NT (f). So, Z(NT (f)) ⊂ Z(Y2), and since dim(Z(NT (f))) = dim(Z(Y2)) and

Z(Y2) is irreducible, we have that Z(NT (f)) = Z(Y2). But this last equality, together with

Y2 ∈ NT (f), imply that NT (f) = 〈Y2〉.

Example 2.3.3. Going back to Example 1.1.3, if f = X2Y + Y 2X ∈ k[[X, Y ]], where

chark = 3, we have that Y0(Y1 + Y2) ∈ NT (f), since

f(fX + fY ) = −XY (Y +X)(Y −X)2 = (Y +X)fXfY ∈ mT (f)2.

Now, because Y0, Y1 + Y2 6∈ NT (f), it follows that NT (f) is not a prime ideal.

Remark 2.3.4. For a computational routine to test whether a homogeneous polynomial

is or not a null-form of T (f) with worked examples see the Appendix A.

Given f ∈ m, in order to have e0(T (f)) = µ(uf), for some unit u, we must find

u ∈ R∗ such that uf ∈ J(uf). We will show in what follows that this is so for general

units.

We will need the following result due to Northcott and Rees (cf. [N-R], or [H-S],

proof of Theorem 8.6.6):

The ideal 〈g1, . . . , gn〉, where the gi’s are as in (2.3) is a reduction of the ideal

João Hélder Olmedo Rodrigues 16 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

T (f) if and only if the linear forms

ℓi =

n∑

j=0

aj,iYj, i = 1, . . . , n,

where aj,i ∈ k and aj,i ≡ hj,i mod m, are such that the ideal NT (f) + 〈ℓ1, . . . , ℓn〉 is

〈Y0, . . . , Yn〉-primary, that is, Z(NT (f) + 〈ℓ1, . . . , ℓn〉) = {0} ⊂ An+1
k .

Theorem 2.3.5. Let f ∈ m and u = α0 + α1X1 + · · · + αnXn + hot, with α0 6= 0 be

a unit in R∗. We have that uf ∈ J(uf) if and only if there exists G ∈ NT (f) such that

G(α0,−α1, . . . ,−αn) 6= 0. In particular, this holds for a generic (α0 : · · · : αn) ∈ Pn
k .

Proof: If g = uf , then

gXi
= uXi

f + ufXi
, i = 1, . . . , n,

with associated linear forms

ℓi = αiY0 + α0Yi, i = 1, . . . , n.

We then have

Z(NT (f) + 〈ℓ1, . . . , ℓn〉) =

Z

(〈(
Y0
α0

)deg(G)
G(α0,−α1, . . . ,−αn), α1Y0 + α0Y1, . . . , αnY0 + α0Yn; G ∈ NT (f) \ {0}

〉)

.

Since uf ∈ J(uf) if and only if J(uf) = 〈gX1, . . . , gXn
〉 is a reduction of T (uf) =

T (f), then from the Northcott and Rees Theorem above mentioned, this happens if and

only if Z(NT (f) + 〈ℓ1, . . . , ℓn〉) = {0}. This, in turn, happens if and only if for some

G ∈ NT (f), one has G(α0,−α1, . . . ,−αn) 6= 0.

The above theorem shows that if u is a general unit, in the sense that it has a

general linear term, then J(uf) is a reduction of T (uf), and so, uf ∈ J(uf), which in

turn implies that

µ(uf) = e0(T (uf)) = µ(Of).

Remark 2.3.6. In arbitrary characteristic, the fact that R is a regular local ring implies

that if I ⊂ R is an ideal generated by ℓ elements then, for all m > 0,

Im+ℓ ⊆ Im+1.
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For a proof of this result we refer the reader to [H-S], Theorem 13.3.3 (or [L-S].)

If f ∈ J(f), this implies that J(f) = T (f) and, consequently, J(f) a = T (f) a, ∀ a > 0

(see [H-S], Corollary 1.2.5, for instance). Consequently, using the preceding result we

obtain, ∀m > 0,

T (f)n+m = J(f)n+m ⊂ J(f)m+1.

For m = 0 this gives

fn ∈ T (f)n ⊂ T (f)n ⊂ J(f).

This is a famous theorem of Briançon and Skoda (see [BS]).

Theorem 2.3.5 also allows us to give the following interpretation for µ(O).

Corollary 2.3.7. Let f ∈ m be such that τ(f) <∞. Then µ(Of) = min{µ(uf), u ∈ R∗}
and µ(f) = µ(Of ) if and only if f ∈ J(f).

Proof: From Remark 2.2.11 we know that µ(Of) = µ(Ouf ) 6 µ(uf), for all u ∈ R∗. Ac-

cording to the last theorem there is a unit v such that vf ∈ J(vf), hence µ(Of) = µ(vf),

proving the first assertion. The second assertion follows immediately from Proposition

2.2.8.

Example 2.3.8. Remark 2.3.6 shows that

f ∈ J(f) =⇒ fn ∈ J(f)

but the preceding Corollary allows one to see that in characteristic p > 0 the converse is

false.

Indeed, consider f = Y 3+X7+X6Y ∈ k[[X, Y ]] = R where k is an algebraically

closed field of characteristic p = 7. A computation shows that τ(f) = 12 and µ(f) = 16,

but µ(Of ) = 14 as one can check observing that Y 2
1 ∈ NT (f) \ 0. Therefore f 6∈ J(f).

However f 2 ∈ J(f) because

f 2 ≡ Y 6 +X14 ≡ (5Y 4 +X8)fY mod fX .

We also have the following result.

Theorem 2.3.9. Let f ∈ m be such that τ(f) < ∞. The following three statements are

equivalent.

(i) µ(uf) = µ(Of) for every unit u ∈ R;
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(ii) Z(NT (f)) = Z(Y0);

(iii) f ℓ ∈ mT (f)ℓ, for some ℓ > 1.

Proof: (i ⇒ ii) If µ(uf) = µ(Of) for every unit u, then Z(NT (f)) ∩ {Y0 6= 0} = ∅.
Otherwise, if (1 : β1 : · · · : βn) is in this set, then we would have G(1, β1, . . . , βn) = 0, for

every G ∈ NT (f), hence u = 1 − β1X1 − · · · − βnXn would be such that µ(uf) > µ(Of),

contradicting the hypothesis.

Therefore, Z(NT (f)) ⊆ Z(Y0), which implies the equality by comparing dimen-

sions and by the irreducibility of Z(Y0).

(ii ⇒ iii) If Z(NT (f)) = Z(Y0) then
√
NT (f) =

√

〈Y0〉 = 〈Y0〉. Hence, there exists a

positive integer ℓ such that G = Y ℓ
0 ∈ NT (f). In other words, f ℓ ∈ mT (f)ℓ.

(iii ⇒ i) If for some ℓ, one has f ℓ ∈ mT (f)ℓ, then G = Y ℓ
0 ∈ NT (f) \ {0}. Let u =

α0 + α1X1 + · · ·+ αnXn + hot be a unit, then G(α0,−α1, . . . ,−αn) = αℓ
0 6= 0. It follows

that uf ∈ J(uf) and, therefore, µ(uf) = µ(Of).

Remark 2.3.10. Without the assumption τ(f) <∞ we have the following weaker result:

Z(NT (f)) ⊆ Z(Y0) ⇐⇒ f ℓ ∈ mT (f)ℓ, for some ℓ > 1.

The proof follows the same lines of the proof of the preceding result.

Corollary 2.3.11. Suppose p = chark = 0 and let f ∈ m \ {0} with τ(f) < ∞. Then

there exists ℓ > 1 such that f ℓ ∈ mT (f)ℓ.

Proof: For p = 0 we know that µ(Of) = µ(f) = µ(uf) for every invertible u, hence we

may use the preceding theorem.

Remark 2.3.12 (cf. [Ga]). The preceding corollary can be derived (without the assump-

tion τ(f) < ∞) from the fact that f ∈ m J(f), when p = 0, as we have already seen (see

Theorem 2.2.5). Indeed, consider an equation of integral dependence of f over m J(f):

f ℓ + a1f
ℓ−1 + · · ·+ aℓ = 0,

with ai ∈ (m J(f))i. Hence, for each i > 1,

f ℓ−iai ∈ m
i f ℓ−i J(f)i ⊂ m

i T (f)ℓ ⊂ mT (f)ℓ

and we conclude since f ℓ = −∑i aif
ℓ−i.

João Hélder Olmedo Rodrigues 19 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

However, if p > 0, one may try to produce an example of a power series f which

satisfies the equivalent conditions of Theorem 2.3.9, but such that f 6∈ m J(f). We were

not able to give explicitly this example with our methods. Therefore, this remains an open

point.

If f is such that µ(uf) is independent of the unit u, that is, when µ(f) is invariant

under contact equivalence, we will say that Of is µ-stable. Of course this concept is

relevant only in the case that τ(f) < ∞ because otherwise µ(uf) = ∞ for every unit

u ∈ R and Of is µ-stable trivially.

The third condition in Theorem 2.3.9 may help to decide whether a given hyper-

surface singularity O is or not µ-stable as we can see in the following examples. However,

in order to have this condition as a computational method, we need to bound ℓ and this

seems to be hard to do.

Example 2.3.13. Let f ∈ k[X1, . . . , Xn] be a quasi-homogeneous polynomial of degree d

and chark = p > 0. If p ∤ d, then Of is µ-stable. Indeed, there are integers d1, . . . , dn

such that

df = d1X1fX1 + · · ·+ dnXnfXn
,

which, since p ∤ d, implies that f ∈ mT (f), so by Theorem 2.3.9, Of is µ-stable.

Proposition 2.3.14. Let f = Gp
1 + h.o.t. ∈ m ⊂ R, where G1 is a homogeneous

polynomial and chark = p. If Of is isolated then it is not µ-stable.

Proof: We will show that f ℓ 6∈ mT (f)ℓ, for all ℓ ∈ N.

Suppose degG1 = a. We can write f = Gp
1 + H , where H ∈ m

ap+1. It follows

that fXi
= HXi

and mult(fXi
) = mult(HXi

) > ap, for all i = 1, . . . , n. Now, we have

T (f)ℓ = 〈fα0fα1
X1

· · · fαn

Xn
, α0 + · · ·+ αn = ℓ〉,

and

mult(fα0fα1
X1

· · · fαn

Xn
) = mult(fα0Hα1

X1
· · ·Hαn

Xn
) >

n∑

i=0

αi a p = ℓ a p.

This implies that mult(h) > ℓap+1, for all h ∈ mT (f)ℓ; and since mult(f ℓ) = ℓap,

it follows that f ℓ 6∈ mT (f)ℓ, for all ℓ ∈ N.

The above proposition has the following corollary:

Corollary 2.3.15. For f ∈ k[[X, Y ]] irreducible, where chark = p, one has

Of is µ− stable ⇒ p ∤ mult(f).
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Proof: This is a consequence of the fact that such an irreducible f has the form

f = Lmult(f) + h.o.t.

where L is a linear form. This is, in turn, an easy consequence of Hensel’s Lemma.

Applying the preceding proposition we get the result.

The converse of the above corollary is not true, as one may see from the following

example:

Example 2.3.16. Let f = Y 3 −X11 where chark = 11. Then p ∤ mult(f) but Of is not

µ-stable, since µ(f) = ∞ and µ((1 +X)f) = 22.

Notice that whether Of is µ-stable, or not, depends upon the characteristic p of

the ground field. For example, when p = 5 the same f as above is quasi-homogeneous of

degree d = 33 which is not divisible by p. Hence it defines a µ-stable singularity Of .

Remark 2.3.17. For all f ∈ m \m2, that is, for all smooth hypersurface germs, one has

µ-stability since in this case T (f) = R so that f ∈ mT (f). Alternatively, in such case

one has µ(f) = µ(Of) = 0.

Also, we give an example to show that µ-stability is not preserved by blowing-up.

Example 2.3.18. Let chark = 2, and f = Y 3 + X5 ∈ k[[X, Y ]]. We have that f is µ-

stable, since f is quasi-homogeneous of degree 15, not divisible by 2, but its strict transform

f (1) = v3 + u2 is not µ-stable (cf. Proposition 2.3.14).

2.4 Levinson’s Preparation Lemma

The Weierstrass Preparation Theorem plays an important role in the study of

hypersurface singularities, since it transforms a power series into a polynomial in one of

the variables. This process is not appropriate for studying Milnor’s number in positive

characteristic, since it involves the multiplication of the power series by a unit and this

affects the Milnor number. So, we will need a preparation that involves only coordinate

changes and this will be done using a result due to N. Levinson (cf. [Le]) over C, which

we adapt over arbitrary algebraically closed fields.
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Theorem 2.4.1. Let 0 6= f(X) ∈ m ⊂ R = k[[X1, . . . , Xn]] = k[[X ]], where k is an

algebraically closed field of characteristic p ≥ 0. Write

f =
∑

I

αIX
I

where I = (i1, . . . , in) ∈ Nn, and suppose that f contains for some integer r > 1 a

monomial Xr
n with nonzero coefficient. If r is minimal with this property and p does not

divide r, then there exists a change of coordinates ϕ preserving k[[X ′]] = k[[X1, . . . , Xn−1]]

induced by Xn 7→ Xn +X2
nG(X), (for some element G(X) ∈ R) which transforms f into

ϕ(f) = Ar(X
′)Xr

n + Ar−1(X
′)Xr−1

n + · · ·+ A1(X
′)Xn + A0(X

′),

where Ai(X
′) ∈ k[[X ′]] for every i and

Ar−1(0) = · · · = A1(0) = A0(0) = 0, Ar(0) 6= 0.

Proof: Since the announced ϕ does not change X ′ and since we can always take A0(X
′) =

f(X ′, 0) there is no loss of generality in assuming f(X ′, 0) = 0 ∈ k[[X ′]]. Also, after

dividing by a constant we can assume α(0,...,r) = 1. Set Y = Xn. Therefore we have a

writing

f(X ′, Y ) =
n−1∑

ℓ=1

Xaℓ
ℓ

( r∑

j=1

bj,ℓ(X
′) Y j

)

+ Y r + Y r+1φ0(X
′, Y ),

where, from the minimality of r, a1, . . . , an−1 are positive integers and φ0 ∈ R. The rough

idea of the proof is to eliminate the term Y r+1φ0(X
′, Y ) using a (convergent) sequence of

coordinate changes.

Since p ∤ r we can set

Y1 := Y (1 + Y φ0)
1/r = Y

(

1 +
1

r
Y φ0 + · · ·

)

.

We see that X ′ and Y1 have k-linearly independent principal parts so that the change

given by Y 7→ Y1 and which is the identity in k[[X ′]], is an invertible one. It allows us to

write

Y = Y1 + Y 2
1 ψ1(X

′, Y1)

for some ψ1 ∈ k[[X ′, Y1]] = k[[X ′, Y ]] = k[[X ]] = R.
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By the definition of Y1 we have

f(X ′, Y ) =

n−1∑

ℓ=1

Xaℓ
ℓ

( r∑

j=1

bj,ℓ(X
′) (Y1 + Y 2

1 ψ1)
j
)

+ Y r
1

=
n−1∑

ℓ=1

Xaℓ
ℓ

( r∑

j=1

b
(1)
j,ℓ (X

′) Y j
1

)

+ Y r
1 + Y r+1

1

( n−1∑

ℓ=1

Xaℓ
ℓ ξ1,ℓ(X

′, Y1)
)

= f1(X
′, Y1),

for some ξ1,ℓ, b
(1)
1,ℓ ∈ R obtained after expanding the powers (Y1 + Y 2

1 ψ1)
j and collecting

out terms according to the powers of Y1. Denote φ1 =
∑n−1

ℓ=1 X
aℓ
ℓ ξ1,ℓ(X

′, Y1) and observe

that multφ1 > 0.

The idea now is to iterate this procedure: set

Y2 := Y1 (1 + Y1φ1)
1/r.

By the same argument there is an inverse and we have

Y1 = Y2 + Y 2
2 ψ2(X

′, Y2)

for some ψ2 ∈ k[[X ′, Y2]] = k[[X ′, Y1]] = k[[X ]] = R. Observe that after raising the two

preceding expressions to the power r we get

−Y r+1
1 φ1 = −Y r

2 + Y r
1 = ψ2

(

rY 2
2 Y

r−1
2 + · · ·+ Y 2r

2 ψr−1
2

)

and after cancelling Y r+1
1 we see that ψ2 and φ1 are associate elements in R, because

r ∈ k∗. Hence multψ2 = mult φ1 > 0. Substituting Y2 in the expression of f1(X
′, Y1) we

get

f1(X
′, Y1) =

n−1∑

ℓ=1

Xaℓ
ℓ

( r∑

j=1

b
(1)
j,ℓ (X

′) (Y2 + Y 2
2 ψ2)

j
)

+ Y r
2

=

n−1∑

ℓ=1

Xaℓ
ℓ

( r∑

j=1

b
(2)
j,ℓ (X

′) Y j
2

)

+ Y r
2 + Y r+1

2

( n−1∑

ℓ=1

Xaℓ
ℓ ξ2,ℓ(X

′, Y2)
)

= f2(X
′, Y2),
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for some ξ2,ℓ, b
(2)
2,ℓ ∈ R again obtained after expanding the powers (Y2 + Y 2

2 ψ2)
j and

collecting out terms according to the powers of Y2. It follows that if we denote φ2 =
∑n−1

ℓ=1 X
aℓ
ℓ ξ2,ℓ(X

′, Y2), then multφ2 > mult φ1 = multψ2, because ψ2 divides φ2.

In the next step

Y3 := Y2 (1 + Y2φ2)
1/r

and so on. At the N -th step we deduce that

mult
(

φN(X
′, YN)

)

> mult
(

φN−1(X
′, YN−1)

)

.

Hence the sequence φN(X
′, YN) → 0. Notice that at the N -th stage

Y r
2 = Y r

1 + Y r+1
1 φ1

Y r
3 = Y r

2 + Y r+1
2 φ2

... =
...

Y r
N = Y r

N−1 + Y r+1
N−1φN−1.

Hence Y r
N = Y r

1 + (Y r+1
1 φ1 + · · ·+ Y r+1

N−1φN−1). Observe that, as N → ∞,

Y r+1
1 φ1 + · · ·+ Y r+1

N−1φN−1 → φ ∈ R

because mult φi > multφi−1 for all i. Hence, Y∞ := limYN = (Y r
1 + φ)1/r induces a

coordinate change ϕ that does the job. It follows that ϕ(f) has the sought form.

João Hélder Olmedo Rodrigues 24 Universidade Federal Fluminense



CHAPTER 3

Irreducible plane curves

3.1 A fundamental formula

Let O be an irreducible singular and plane algebroid curve with maximal ideal

m. Consider the integral closure O of O in its field of fractions. We define the conductor

ideal C(O) := (O : O). This is the largest common ideal of O and O. As an ideal of O
we have

tcO = C(O) (3.1)

for some c ∈ N. This number c = c(O) is an invariant of O called the degree of the

conductor.

Choose generators x, y of m and a uniformizing parameter t ∈ O such that the

images x(t) and y(t) in O ≃ k[[t]] are a primitive parametrization for any equation f of

O determined by the kernel of the epimorphism R → O given by X 7→ x and Y 7→ y,

that is k((x(t), y(t))) = k((t)). We say that z ∈ m is a transversal parameter for O if

v(z) = min{v(w) |w ∈ m} where v = ordt is the natural valuation of O, which coincides

with the intersection index with f , in the sense that v(g) = I(f,G), where G ∈ R is any

representative of the residual class g ∈ O. This minimum is called the multiplicity of O
and is denoted mult(O). We also say that z is a separable parameter with respect to t if

z′(t) = dz
dt

6= 0. For h ∈ R, we will write hx for hX(x, y) ∈ O and similarly for hy.

25
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The following fundamental formula is classical and the oldest proof we have found

of it is due to D. Gorenstein, which we present below.

Theorem 3.1.1. ([Go], Theorem 12) Let O be a plane, irreducible, algebroid curve. If

x, y is any system of generators of m ⊂ O and f is any equation corresponding to the

embedding determined by x and y, then

v(fy) = c+ v(x′).

Proof: We treat first the case in which x is both a transversal and separable parameter

and the tangent line is Y . We will prove this by induction in the number of blowing-ups

necessary to dessingularize the branch O. If O is already non-singular then the result is

obvious.

Since in this coordinate system the tangent cone of an equation f is Y n (n =

multO) then, if f (1) is the induced equation of the strict transform, we have

Xnf (1)(X,Z) = f(X, Y )

where Y = XZ. Differentiation with respect to Z in the last relation leads to

Xnf
(1)
Z (X,Z) = XfY (X, Y ).

This relation modulo 〈f〉 gives, after cancelling x,

xn−1f (1)
z = fy.

Hence

v(fy) = v(xn−1) + v(f (1)
z ) = n(n− 1) + v(f (1)

z ).

By the induction hypothesis v(f
(1)
z ) = v(x′) + c(1). According to a well known formula

(see for instance [He], formula (6.10)), c = c(1) +n(n− 1) and that concludes the proof in

this case.

In the remaining case, that is, when x, y is an arbitrary set of generators of m, it

is clear that there exists a system of generators z, w of m such that

x = az + bw, y = cz + dw

where a, b, c, d ∈ k with D = ad − bc 6= 0 and, say, z is both a transversal and separable

parameter of O and w is the tangent line. Then, for any equation g ∈ R corresponding
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to the embedding determined by z and w, we get

gw = fxb+ fyd.

It follows that

fyDz
′ = (dx′ − by′)fy = dx′fy + bx′fx = x′gw

and, therefore, v(x′)+ v(gw) = v(z′)+ v(fy). Since by the preceding case we have v(gw) =

c+ v(z′) this leads to v(fy) = c+ v(x′) in this general case.

Remark 3.1.2. Zariski gave in [Za] a different proof for the preceding formula when

chark = 0 using Puiseux expansions. Maybe for this reason this formula is known as

Zariski’s (or Teissier’s) formula. We thank Karl-Otto Stöhr for pointing out to us the con-

nection between Zariski’s and Gorenstein’s formulas, the latter given originally in terms

of the value of the meromorphic differential dx
fy
.

Remark 3.1.3. Observe, in the case of plane curves singularities defined by a power

series f , the following equality:

µ(O) = e0(T (f)) = min{I(g, h) | g, h ∈ T (f)}.

Indeed, if g, h ∈ T (f) we have that 〈g, h〉 ⊆ T (f) so that e0(T (f)) 6 e0(〈g, h〉) = I(g, h).

On the other hand, say by Theorem 2.3.5, there are elements g, h ∈ T (f) such that

e0(T (f)) = I(g, h).

Remark 3.1.4. Proposition 3.1.1 also allows us to bound the number of wild vanishing

cycles of O = Of , that is, the difference between the Milnor number µ(O) of an algebroid

irreducible plane curve and its conductor degree c as follows: first, from Deligne’s results

in [De] [Théorème 2.4](see also [MH-W]) one always has µ(f) > c. Then, according to

our preceding Remark,

µ(O) = min{I(g, h) | g, h ∈ T (f)} 6 I(f, fY ) = v(x′) + c.

Hence, we get

0 6 µ(O)− c 6 v(x′).

Of course, this is useful only if x is separable parameter of O. In particular, if chark ∤

n = multO and x is transversal then 0 6 µ(O)− c 6 multO − 1. This upper bound can

be attained: see Example 2.3.8, for instance.
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Example 3.1.5. For plane irreducible curves with semigroup of values 〈3, 11〉 the conduc-
tor is c = 20. For the curves with equations f = Y 3−X11+X8Y and h = Y 3−X11+X9Y

in characteristic p = 3 we find

I(f, fY )− c = 4 6= n− 1

and

I(h, hY )− c = 7 6= n− 1.

We will need another formulation for Theorem 3.1.1, that is quoted in the liter-

ature as Delgado’s Formula (cf. [Ca] (Proposition 7.4.1)), proved over C, which extends

naturally to arbitrary algebraically closed fields.

To begin with, let O be an algebroid irreducible plane curve. Choose an equation

so that O = Of . For g ∈ Of , take a representative G ∈ R of g and define

[f, g] := fxGy − fyGx ∈ O and g′(t) :=
d

dt
g(x(t), y(t)).

Notice that [f, g] is well defined since it does not depend on the representative G of g.

With these notations we have

Corollary 3.1.6. Let O be the local ring of a plane irreducible algebroid curve and fix t

a uniformizing parameter for O. Then, for every g ∈ O, one has

v([f, g]) = c+ v(g′(t)).

Proof: Let y(t) be such that (x(t), y(t)) is local a parametrization of O.

From f(x(t), y(t)) = 0 we obtain fX(x(t), y(t))x
′ + fY (x(t), y(t))y

′ = 0, hence it is easy

to check the following identity

x′(fY gX − fXgY )(x(t), y(t)) = fY (x(t), y(t))(g
′(x(t), y(t))).

We deduce the result computing the orders and using Proposition 3.1.1.

Remark 3.1.7. Since v(fx) = c + v(y′) > c and v(fy) = c+ v(x′) > c, we conclude that

j = 〈fx, fy〉 ⊂ C(O).

This in turn implies, in particular, that δ 6 τ(O).
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Corollary 3.1.8. If p = chark, then

v([f, g]) > c+ v(g)− 1,

with equality holding if and only if p ∤ v(g).

Proof: Since v(g) = v
(

g(x(t), y(t))
)

, we have

v(g)− 1 6 v
(

g′(t)
)

,

with equality if and only if p ∤ v(g). The preceding Corollary gives, therefore,

v([f, g]) = c+ v(g′(t))

> c+ v(g)− 1,

where equality holds if and only if p ∤ v(g).

3.2 Milnor number for plane branches

For the definitions and notation used in this section we refer to [He] where these

notions are characteristic free. Let f ∈ m ⊂ k[[X, Y ]] be an irreducible power series,

where k is an algebraically closed field of characteristic p > 0. In most of this and the

next section we will work with the equation f instead of the local ring Of by convenience

of notation, though the results are valid for the algebroid curve O. Let us denote, for

instance, by S(f) = 〈v0, . . . , vg〉 the semigroup of values of the branch Of , represented by

its minimal set of generators. These semigroups have many special properties which we

will use throughout this section and describe them briefly below.

Let us define e0 = v0 and denote by ei = gcd{v0, . . . , vi} and by ni = ei−1/ei,

i = 1, . . . , g. The semigroup S(f) is strongly increasing, which means that vi+1 > nivi,

for i = 0, . . . , g− 1, (cf. [He], (6.5)). This implies that the the sequence v0, . . . , vg is nice,

which means that nivi ∈ 〈v0, . . . , vi−1〉, for i = 1, . . . , g, (cf. [He], Proposition 7.9). This,

in turn, implies that the semigroup S(f) has a conductor, denoted by c(f), which is the

integer characterized by the following property: c(f) − 1 6∈ S(f) and x ∈ S(f), for all

x > c(f) (of course c(f) is exactly the degree c of the conductor as defined in (3.1)), and

João Hélder Olmedo Rodrigues 29 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

it is given by the formula (cf. [He], (7.1))

c(f) =

g
∑

i=1

(ni − 1)vi − v0 + 1.

The semigroup S(f) is also symmetric (cf. [He] Proposition 7.7), that is,

∀z ∈ N, z ∈ S(f) ⇐⇒ c− 1− z 6∈ S(f).

To deal with the positive characteristic situation, we introduce the following

definition:

We call S(f) a tame semigroup if p does not divide vi for all i ∈ {0, . . . , g}.
Recall that two plane branches over the complex numbers are equisingular if their

semigroups of values coincide. We will keep this terminology even in the case of positive

characteristic.

The following example will show that µ(Of) may be not constant in an equisin-

gularity class of plane branches.

Example 3.2.1. The curves given by f = Y 3 − X11 and h = Y 3 − X11 + X8Y are

equisingular with semigroup of values S = 〈3, 11〉, but in characteristic 3, one has µ(Of ) =

µ((1+Y )f) = 30, because Y2 ∈ NT (f) and µ(Oh) = µ((1+X)h) = 24, because Y 3
1 ∈ NT (h).

Notice that in this case S is not tame.

Remark 3.2.2. For the above h one has µ(h) = ∞, µ(Oh) = 24 and τ(h) = 22. This

shows that there is no isomorphism ϕ of k[[X, Y ]] and no H ∈ k[[X, Y ]] such that ϕ(h) =

H(X, Y 3), because, otherwise, we would get the contradiction

24 = µ(Oh) = µ(Oϕ(h)) = µ(OH(X,Y 3)) = τ(H(X, Y 3)) = τ(h) = 22.

For a characterization of those f ∈ R = k[[X, Y ]] for which there exists an isomorphism

ϕ of R such that ϕ(f) ∈ k[[X, Y p]] see Appendix B.

The following is an example which shows that the µ-stability is not a character

of an equisingularity class.

Example 3.2.3. Let S = 〈4, 6, 25〉 be a strongly increasing semigroup with conductor

c = 28. Consider the equisingularity class determined by S over a field of characteristic

p = 5. If f = (Y 2 −X3)2 − Y X11, which belongs to this equisinsingularity class, we have

that µ(f) = 41 and µ(Of) = 30, hence Of is not µ-stable. But the equisingular curve Oh
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where h = (Y 2 −X3 +X2Y )2 − Y X11 is µ-stable, since Y 3
0 ∈ NT (h). In this case one has

µ(h) = µ(Oh) = 29. Notice that here, again, S is not tame.

The aim of this part of the thesis is to prove the following result:

Theorem 3.2.4 (Main Theorem). If f ∈ m
2 is a plane branch singularity with S(f)

tame, then µ(f) = µ(Of ) = c(f). In particular, Of is µ-stable.

The proof we give of this theorem is based on the following theorem which was

stated without a proof over the complex numbers in [Ja1], but proved in the unpublished

work [Ja2]. Our proof, in arbitrary characteristic, is inspired by that work, which we

suitably modified in order to make it work in the more general context we are considering.

Theorem 3.2.5 (Key Theorem). Let f ∈ m2 be an irreducible Weierstrass polynomial

such that S(f) is tame. Then any family F of elements inside k[[X ]][Y ] of degree in Y

less than mult(f) such that

{I(f, h); h ∈ F} = S(f) \ (S(f) + c(f)− 1)

is a representative set of generators of the k-vector space R/J(f).

We postpone the proof of this theorem until the next section, since it is long and

quite technical.

For the moment we observe here the following refinement of Theorem 2.4.1 for

the case of plane branches.

Corollary 3.2.6. Let f ∈ k[[X, Y ]] be irreducible where k is algebraically closed of char-

acteristic p. If p ∤ n := mult(f), then there exists an automorphism ϕ of k[[X, Y ]] such

that

ϕ(f) = Y n +Bn−1(X)Y n−1 + · · ·+B1(X)Y +B0(X),

where Bi(X) ∈ k[[X ]] and mult(Bn−i) > i, for all i = 1, . . . , n.

Proof: Since f is irreducible, we have that f = Ln + hot, where L is a linear form in

X and Y . By changing coordinates, we may assume that f is as in the conclusion of

Theorem 2.4.1. Now, since p ∤ n, we take an n-th root of An(X) and perform the change

of coordinates Y 7→ Y A
1
n
n and X 7→ X . So, after only changes of coordinates ϕ, we have

that

ϕ(f) = Y n +B1(X)Y n−1 + · · ·+Bn−1(X)Y +Bn(X),
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is a Weierstrass polynomial, that is, mult(Bn−i(X)) > i, for i = 1, . . . , n.

Remark 3.2.7. The above corollary is similar to the Weierstrass Preparation Theorem,

but without multiplication by units.

Proof of Theorem 3.2.4: From Deligne’s results in [De] (see also [MH-W]) one always

has µ(f) > c(f).

Now, after a change of coordinates, that does not affect the result, we may assume

that f is a Weierstrass polynomial. For every α ∈ S(f)\(S(f)+c(f)−1), take an element

g ∈ k[[X, Y ]] such that I(f, g) = α and after dividing it by f by means of the Weierstrass

Division Theorem, we get in this way a family F as in Theorem 3.2.5.

Theorem 3.2.5 asserts that the residue classes of the elements in F generate

k[[X, Y ]]/J(f), hence µ(f) 6 #(S(f) \ (S(f) + c(f)− 1)). The result will then follow

from the next lemma that asserts that the number in the right hand side of the inequality

is just c(f).

The µ-stability follows from the fact that for every invertible element u in k[[X, Y ]],

both power series f and uf can be individually prepared to Weierstrass form by means

of a change of coordinates that does not alter the semigroup, nor the Milnor numbers.

Hence, µ(f) = c(f) = µ(uf).

Lemma 3.2.8. #(S(f) \ (S(f) + c(f)− 1)) = c(f).

Proof: In fact, to every i ∈ {0, 1, . . . , c(f)−1} we associate si ∈ S(f)\ (S(f)+ c(f)−1)

in the following way:

si =

{

i, if i ∈ S(f)

i+ c(f)− 1, if i 6∈ S(f).

The map i 7→ si is injective since S(f) is a symmetric semigroup. On the other

hand, the map is surjective, because, given j ∈ S(f) \ (S(f) + c(f)− 1), we have j = sj

if j 6 c(f)− 1; otherwise, if j = i+ c(f)− 1 for some i > 0, then again by the symmetry

of S(f), it follows that j does not belong to S(f) and therefore j = si.

We believe that the converse of Theorem 3.2.4 is true, in the sense that if µ(f) =

c(f), then S(f) is a tame semigroup, or, equivalently, if p divides any of the minimal

generators of S(f), then µ(f) > c(f). If this is so, we would conclude from our result

that if µ(f) = c(f), then Of is µ-stable.

To reinforce our conjecture, observe that the result of [GB-P] proves it when

mult(O) = mult(f) < p. For another evidence of the validity of that converse we refer to
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Appendix C of this work. The following example is a situation where the converse holds

and is not covered by the result in [GB-P].

Example 3.2.9. Let p be any prime number and n and m two relatively prime natural

numbers such that p ∤ n, then all curves given by f(X, Y ) = Y n −Xmp do not satisfy the

condition µ(f) = c(f), since µ(f) = ∞ and c(f) = (n − 1)(mp − 1). So, for all p < n,

we have examples for the converse of our result not covered by [GB-P].

Anyway, the other possible converse of 3.2.4, namely, if f is µ-stable then S(f)

is tame, is not true, as one may see from the following example.

Example 3.2.10. Let f = (Y 2 − X3 + X2Y )2 − X11Y ∈ k[[X, Y ]], where chark = 5.

Since f 3 ∈ mT (f)3 (verified with Singular), then Of is µ-stable, but its semigroup of

values S(f) = 〈4, 6, 25〉 is not tame.

3.3 Proof of the Key Theorem

We start with an auxiliary result. Let f ∈ R be an irreducible Weierstrass

polynomial in Y of degree n = v0, where S(f) = 〈v0, . . . , vg〉, I(f,X) = v0 and I(f, Y ) =

v1.

Consider the k[[X ]]-submodule Vn−1 of k[[X, Y ]] generated by 1, Y, . . . , Y n−1, and

let h0 = 1, h1, . . . , hn−1 be polynomials in Y such that

Vn−1 = k[[X ]]⊕ k[[X ]]h1 ⊕ · · · ⊕ k[[X ]]hn−1,

and their residual classes yi are the Apéry generators of Of as a free k[[X ]]-module (cf.

[He] Proposition 6.18).

The natural numbers ai = v(yi) = I(f, hi), i = 0, . . . , n − 1, form the Apéry

sequence of S(f), so they are such that 0 = a0 < a1 < · · · < an−1 and ai 6≡ aj mod n for

i 6= j (cf. [He] Proposition 6.21).

We have the following result.

Proposition 3.3.1. Let I be an m-primary ideal of R and h ∈ Vn−1. If I(f, h) >> 0 then

h ∈ I.

Proof: Since the ideal I is m-primary, there exists a natural number l such that ml ⊂ I.

Now, write h = b0 + b1h1 + · · · + bn−1hn−1, with bi ∈ k[[X ]], for all i. Since

I(f, bi) ≡ 0 mod n, I(f, hi) = ai and ai 6≡ aj mod n, for i, j = 0, . . . , n− 1, with i 6= j, we
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have that

I(f, h) = min
i
{I(f, bi) + ai} 6 min

i
{I(f, bi)}+ an−1.

Hence, I(f, h) >> 0 implies that for a given natural number l we have that minj{I(f, bj)} >
lv0, hence, h ∈ ml ⊂ I, as we wanted to show.

Remark 3.3.2. If f is a Weierstrass polynomial in Y of degree v0 and p ∤ v0, we proved

in Corollary 3.1.6 that

I(f, [f, g]) > I(f, g) + c(f)− 1,

with equality if and only if p ∤ I(f, g), where here [f, g] := fXgY − fY gX .

Now, under the assumptions that f is a Weierstrass polynomial in Y with S(f) =

〈v0, . . . , vg〉 and p ∤ v0, one may associate the Abhyankar-Moh approximate roots (cf.

[A-M], paragraphs 6 or 7), which are irreducible Weierstrass polynomials f−1 = X, f0 =

Y, . . . , fg = f such that, for each j, one has S(fj) = 〈 v0
ej
, . . . ,

vj
ej
〉 and I(f, fj) = vj+1,

satisfying a relation, where deg stands for degree as polynomial in Y ,

fj = f
nj

j−1 −
nj−2
∑

i=0

aijf
i
j−1,

where aij are polynomials in Y of degree less than deg(fj−1) = v0/ej−1 for j = 0, . . . , g.

So, from Remark 3.3.2 we have that

I(f, [f, fj−1]) > vj + c(f)− 1, with equality if and only if p ∤ vj . (3.2)

This implies that if p ∤ v0v1 · · · vg, then S(f)∗+c(f)−1 ⊂ ν(J(f)) := {I(f, h) | h ∈ J(f)},
where S(f)∗ = S(f) \ {0}.

The key result to prove Theorem 3.2.5 is Proposition 3.3.3 below that will allow

us to construct elements in J(f) ∩ Vn−1 whose intersection multiplicity with f sweep the

set S(f)∗ + c(f)− 1.

Proposition 3.3.3. Let f ∈ k[[X, Y ]] be an irreducible Weierstrass polynomial in Y of

degree v0, where k is an algebraically closed field of characteristic p > 0. Let S(f) =

〈v0, . . . , vg〉 and suppose that p ∤ v0v1 · · · vg. Given s ∈ S(f)∗, there exists qs ∈ J(f),

polynomial in Y , satisfying

(i) deg qs < deg f = v0;

(ii) I(f, qs) = s+ c(f)− 1.
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Proof: The proof will be by induction on the genus g of f . We will construct step by

step the polynomial qs which will be of the form qs = qf,s =
∑

i Pi[f, fji] (an infinite sum,

possibly) where each fji is an approximate root of f and the Pi are monomials in the

approximate roots of f satisfying the following conditions:







I(f, P1fj1) = s;

I(f, Pifji) > s, if i 6= 1;

deg fjiPi < deg f, for all i.

(3.3)

If g = 0, we have f = Y , so J(f) = R. Given s ∈ N∗ = S(f)∗, set

qf,s := Xs−1[f,X ].

It is easy to check that qf,s satisfies (3.3) and the conclusion of the proposition.

Inductively, we assume that the construction was carried on for branches of genus

g − 1. Consider the approximate root fg−1 of f of genus g − 1. Since eg−1 = ng and

ngvg ∈ 〈v0, . . . , vg−1〉, we have

S(f) = 〈v0, . . . , vg〉 ⊂
〈 v0
ng
, . . . ,

vg−1

ng

〉

= S(fg−1).

For t ∈ S(fg−1)
∗, the inductive hypothesis guarantees the existence of a Y -

polynomial

qfg−1,t =
∑

i

Pi[fg−1, fji],

where each fji is one of the approximate roots f−1, f0, . . . , fg−2 and Pi are monomials in

these approximate roots satisfying (3.3) and the conclusion of the proposition, with fg−1

and v0/eg−1 replacing f and v0, respectively. Using this qfg−1,t we introduce the following

auxiliary polynomial

q̃fg−1,t :=
∑

i

Pi[f, fji].

To begin with, we will estimate the degree in Y of these polynomials. The inductive

hypothesis gives deg qfg−1,t < deg fg−1 and degPi 6 degPifji < deg fg−1, for all i. On the

other hand, the Abhyankar-Moh’s relation f = f
ng

g−1−G, where G = ang−2f
ng−2
g−1 + · · ·+a0

and deg ai < deg fg−1, gives the inequality degG < (ng − 1) deg fg−1 = deg f − deg fg−1.
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We also have deg [G, fji] = deg (GXfji,Y −GY fji,X) 6 degG+ deg fji − 1. Therefore,

degPi[G, fji] 6 degPi + degG+ deg fji − 1

< degPifji + deg f − deg fg−1 − 1

< deg fg−1 + deg f − deg fg−1 = deg f,

which together with the identity

q̃fg−1,t =
∑

i

Pi[f
ng

g−1 −G, fji] = ngf
ng−1
g−1 qfg−1,t −

∑

i

Pi[G, fji],

give the estimate

deg q̃fg−1,t < deg f, ∀t ∈ S(fg−1)
∗.

Claim 1: For t ∈ S(fg−1)
∗ we have I(f, q̃fg−1,t) = c(f)− 1 + ngt.

Indeed, since no generator of S(f) is multiple of p, we have from (3.2)

I(f, Pi[f, fji]) = I(f, Pi) + I(f, [f, fji])

= I(f, Pi) + I(f, fji) + c(f)− 1

= I(f, Pifji) + c(f)− 1.

On the other hand, since the Pifji are products of approximate roots of fg−1 (so, also of

f), and I(fg−1, P1fj1) = t, it follows that I(f, P1fj1) = ngt. Now, since from (3.3), the

intersection number I(f, Pifji) assumes its minimum value once for i = 1, when it is equal

to t, we have

I(f, q̃fg−1,t) = I(f,
∑

i

Pi[f, fji])

= I(f, P1fj1) + c(f)− 1

= ngt+ c(f)− 1.

The family of polynomials {q̃fg−1,t; t ∈ S(fg−1)
∗} just introduced will be used in

the construction of the family {qf,s; s ∈ S(f)∗} as announced in the proposition.
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To this end, observe that each element s of S(f)∗ decomposes uniquely as

s = ngt+ wvg, with t ∈ S(fg−1), w ∈ {0, 1, . . . , ng − 1}.

Now, we break up the analysis in three cases.

Case 1: s = ngt. From Claim 1, we have

s+ c(f)− 1 = ngt+ c(f)− 1 = I(f, q̃fg−1,t).

The estimate on the degree of q̃fg−1,t, made just before Claim 1, allows us to deduce that

the series

qf,s := q̃fg−1,t

has all the required properties, which proves the proposition in this case.

Case 2: s = vg. In this case qf,vg := [f, fg−1] works because, since p ∤ vg, we have from

Remark 3.3.2 that I(f, qf,vg) = vg+ c(f)−1.Moreover, using the preceding notations and

estimates we get

deg qf,vg = deg [f
ng

g−1 −G, fg−1]

= deg [fg−1, G]

6 degG+ deg fg−1 − 1

< (deg f − deg fg−1) + deg fg−1 − 1

< deg f.

Case 3: s > vg and w > 0. Notice that from the conductor formula one gets that

c(f) − 1 = ng(c(fg−1) − 1) + (ng − 1)vg, and since nivi < vi+1, it follows that s > vg >

ng(c(fg−1)− 1). On the other hand, since gcd(vg, ng) = 1, we have that ng ∤ s.

The proposition, in this case, will be established by using the following result

that gives a method to reduce degree while preserving intersection multiplicities with f

and residual classes modulo J(f).

Claim 2: Let s ∈ N∗ be such that ng ∤ s and s > ng(c(fg−1)− 1). Suppose that we have a

Y -polynomial h such that

deg h < deg f and I(f, h) = c(f)− 1 + s,
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then there exists a Y -polynomial h′, such that

deg h′ < deg f − deg fg−1, I(f, h′) = I(f, h),

and

h− h′ =
∑

j

αj q̃fg−1,uj
, αj ∈ k, uj ∈ S(fg−1), nguj > s, ∀j.

Indeed we begin by dividing h by f
ng−1
g−1 . Then we get h = f

ng−1
g−1 h′′0 + h′0 where

deg h′0 < deg f
ng−1
g−1 = deg f−deg fg−1. The rough idea of the proof is to eliminate the term

f
ng−1
g−1 h′′0 in the preceding relation using the polynomials q̃fg−1,u where u ∈ S(fg−1)

∗. This

will be done iteratively, in possibly infinitely many steps, with the help of the following

auxiliary result.

Claim 3: With the same conditions as above, we have I(f, h′′0) = ngI(fg−1, h
′′
0) and

I(f, h′′0f
ng−1
g−1 ) 6= I(f, h′0).

We will prove this claim after the conclusion of the proof of Claim 2, given below.

Using the formula c(f)− 1 = ng(c(fg−1)− 1) + (ng − 1)vg and Claim 3, we get

I(f, h′′0f
ng−1
g−1 )− (c(f)− 1) = ng[I(fg−1, h

′′
0)− c(fg−1) + 1].

On the other hand, since I(f, h)− (c(f)− 1) = s and ng ∤ s, it follows that

I(f, h′0) = I(f, h) < I(f, f
ng−1
g−1 h′′0).

So, from the first part of Claim 3 and the above inequality, we get

ngI(fg−1, h
′′
0) = I(f, h′′0) > I(f, h)− I(f, f

ng−1
g−1 ) = s+ c(f)− 1− (ng − 1)vg.

Defining u1 = I(fg−1, h
′′
0)− c(fg−1) + 1, it follows that

c(fg−1)− 1 + u1 = I(fg−1, h
′′
0) >

s

ng
+ c(fg−1)− 1 > 2(c(fg−1)− 1),

allowing us to conclude that u1 ∈ S(fg−1)
∗.

The inductive hypothesis guarantees the existence of a polynomial qfg−1,u1 satis-

fying all requirements in (3.3) and the conclusion in Proposition 3.3.3.
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From Claim 1, we have

I(f, q̃fg−1,u1) = c(f)− 1 + ngu1 = I(f, h′′0f
ng−1
g−1 ).

So, after multiplication by a suitable α1 ∈ k∗, we get that h1 = h′′0f
ng−1
g−1 − α1q̃fg−1,u1

satisfies the inequality

I(f, h1) > I(f, h′′0f
ng−1
g−1 ) > I(f, h) (= c(f)− 1 + s). (3.4)

This allows us to write

h = h1 + α1q̃fg−1,u1 + h′0, with I(f, h1) > I(f, h) and I(f, h′0) = I(f, h).

From (3.4) we have that there exists s1 ∈ N∗ such that

I(f, h1) = c(f)− 1 + s1 > c(f)− 1 + ngu1 > c(f)− 1 + s.

So, s1 > s and ngu1 > s.

In the next step we proceed differently according to the divisibility of s1 by ng.

Suppose ng | s1, say s1 = ngu2. In this case, by the above inequality we have

2(c(fg−1)− 1) < c(fg−1)− 1 + u1 < c(fg−1)− 1 + u2.

So, it follows that u2 ∈ S(fg−1)
∗. Hence, there exists a polynomial qfg−1,u2 such that

I(f, h1) = I(f, q̃fg−1,u2)

and again we may choose α2 ∈ k in such a way that if h2 = h1 − α2q̃fg−1,u2 , we have

I(f, h2) > I(f, h1). Hence, we get h = h2+α1q̃fg−1,u1 +h′0+α2q̃fg−1,u2 +h′1, where h
′
1 = 0,

in this case. Notice that ngu2 > ngu1 > s.

If, however, ng ∤ s1, we are in position to repeat the preceding process of division

by f
ng−1
g−1 using, this time, h1 instead of h. So h1 = f

ng−1
g−1 h′′1 + h′1. Again, we deduce

that there exist α2 ∈ k and u2 ∈ S(fg−1)
∗, with ngu2 > s1 > s, such that if we define

h2 = h′′1f
ng−1
g−1 − α2q̃fg−1,u2, then we have

I(f, h2) > I(f, h1) > I(f, h).
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So, by repeating this process we get

h = hj +

j
∑

i=1

αiq̃fg−1,ui
+

j−1
∑

i=0

h′i,

with I(f, h′i) < I(f, h′i+1), if h
′
i 6= 0, and I(f, hi) < I(f, hi+1). Since all power series

appearing in the above sum have degree less than deg f , it follows, in view of Proposition

3.3.1, that hj → 0 in the m-adic topology of R and the family {h′i}i∈N is summable.

Taking h′ =
∑

j h
′
j we get Claim 2.

Finally it remains to prove Claim 3. If f is any irreducible Weierstrass polynomial

of degree n, then it is easy to see from Proposition 3.3.1 that the set Vn−1 of all polynomials

in Y of degree less than n with coefficients in k[[X ]] is a free k[[X ]]-module with basis

{

fJ = f j0
0 f

j1
1 · · · f jg−1

g−1 ; J = (j0, . . . , jg−1), 0 6 ji < ni+1, i = 0, . . . , g − 1
}

.

So, every element h ∈ Vn−1 may be written uniquely as

h =
∑

J

aJ(X)fJ = f
ng−1
g−1 h′′ + h′, aJ(X) ∈ k[[X ]],

where

h′′ =
∑

jg−1=ng−1

aJ(X)f j0
0 · · · f jg−2

g−2 , h′ =
∑

jg−16ng−2

aJ(X)f j0
0 · · ·f jg−1

g−1 .

First of all we will check that I(f, h′) 6= I(f, f
ng−1
g−1 h′′). In fact, in h′ there is a

unique term such that

I(f, h′) = I(f, aJ(X)f j0
0 · · · f jg−1

g−1 ) =

g−1∑

i=−1

jivi+1,

where j−1 = ordXaJ(X). Also, in f
ng−1
g−1 h′′ there is a unique term satisfying

I(f, f
ng−1
g−1 h′′) = I(f, aL(X)f l0

0 · · ·f lg−2

g−2 f
ng−1
g−1 ) =

g−2
∑

i=−1

livi+1 + (ng − 1)vg,

where l−1 = ordX(aL(X)).

Since each element in S(f) is written in a unique way as
∑g−1

i=−1 jivi with j−1 ∈ N
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and 0 6 ji 6 ni+1 − 1, the inequality follows.

Also, it is clear from the way we wrote h′′ that I(f, h′′) = ngI(fg−1, h
′′) ∈

ngS(fg−1).

Now, to finish the proof of Claim 3 we only need to check that h′′ and h′ are

indeed the quotient and the remainder, respectively, of the division of h by f
ng−1
g−1 . We

will do this by estimating the degree of h′ and , hence, conclude by the uniqueness of the

remainder and the quotient in the euclidean algorithm. Indeed, for every summand in h′

we have deg (aJ (X)f j0
0 · · · f jg−1

g−1 ) < deg f
ng−1
g−1 , which shows that deg h′ < deg f

ng−1
g−1 .

Now we return to the construction of the polynomial qf,s in the remaining Case

3, that is, when s = ngt+ vgw with s > vg and w > 0.

Observe that if t = 0 and w = 1, then from Case 2 we have qf,vg = [f, fg−1].

Now, we apply Claim 2 to h = qf,vg in order to find h′ = (qf,vg)
′ with degree less than

deg f − deg fg−1 satisfying

I(f, (qf,vg)
′) = I(f, qvg,f) = c(f)− 1 + vg

and

(qf,vg)
′ = qf,vg +

∑

j

αj q̃fg−1,uj
.

Using this, we define qf,2vg := fg−1(qf,vg)
′. Clearly, we have deg qf,2vg < deg f and

I(f, qf,2vg) = c(f) − 1 + 2vg. Hence, it remains to show that qf,2vg satisfies (3.3) in

order to make possible our inductive process.

We have

qf,2vg = fg−1[f, fg−1] +
∑

j

αjfg−1q̃fg−1,uj
=
∑

i

Pi[f, fji].

This shows that qf,2vg has the required format. Finally, we need to check the statement

about intersection indices. We are going to show that P1 = fj1 = fg−1. In order to do so,

it is enough to show that for each index j in the above sum, the polynomial

q̃fg−1,uj
=
∑

l

P ′
l [f, fjl],

where fjl is one of the approximate roots f−1, f0, . . . , fg−2 and the P ′
l are monomials in

these approximate roots, is such that I(f, fg−1P
′
ifji) > 2vg. Indeed, from the inductive
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hypothesis we have

I(f, fg−1P
′
l fjl) = vg + I(f, P ′

l fjl) = vg + ngI(fg−1, P
′
l fjl) > vg + ngu1 > 2vg,

where the last strict inequality is justified by the fact that from Claim 2 one has ngu1 > vg.

We apply again Claim 2 to obtain (qf,2vg)
′ which multiplied by fg−1 produces qf,3vg .

Now, we repeat this procedure until we get the polynomial qf,wvg = fg−1(qf,(w−1)vg)
′, sat-

isfying the proposition for wvg ∈ S(f)∗. Since s = ngt+wvg, we consider the polynomial

qfg−1,t =
∑
P ′′
i [fg−1, fmi

] and collect P ′′
1 , fm1 so that I(fg−1, P

′′
1 fm1) = t. Finally, define

qf,s := P ′′
1 fm1(qf,wvg)

′.

It is now immediate to verify that qf,s satisfies (3.3) and the conclusion of the proposition,

finishing its proof.

With these tools at hands, we may conclude the proof of Theorem 3.2.5.

Proof of the Theorem 3.2.5: Choose F with minimal number of elements, so from

Lemma 3.2.8 it follows that #F = c(f). We will show that the set F generates R/J(f)
as a k-vector space. In particular, this will show also that µ(f) 6 c(f) when S(f) is tame.

In order to do this it is enough to show that there exists a decomposition R = 〈F〉+J(f),
where 〈F〉 denotes the k-vector space spanned by the elements of F = {ϕ1, . . . , ϕc(f)}.

Given any element h ∈ R we can divide it by the partial derivative fY which,

under our assumptions, is a Y -polynomial of degree v0−1. The remainder of the division

is a Y -polynomial h′ of degree less than v0 − 1 and it is sufficient to show that h′ belongs

to 〈F〉+ J(f).

If I(f, h′) ∈ S(f) \ (S(f) + c(f)− 1) then, according to the definition of F , there

is an element ϕis0
such that s0 := I(f, h′) = I(f, ϕis0

). Hence, there is a constant αs0 ∈ k

such that

I(f, h′ − αs0ϕis0
) =: s1 > s0.

If, otherwise I(f, h′) = s0 = s′0 + c(f) − 1 ∈ S(f)∗ + c(f) − 1, then choose an

element qf,s′0 in J(f) polynomial in Y of degree less then deg f , such that s0 = I(f, qf,s′0).

Hence, there is a constant βs0 ∈ k such that

I(f, h′ − βs0qf,s′0) =: s1 > s0.
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We carry on this process that increases intersection indices to eventually achieve

sr = I(f, h′ −
∑

s

βsqf,s′ −
∑

s

αsϕis) ∈ S(f)∗ + c(f)− 1, ∀r > N.

Since the elements in S(f)∗ + c(f)− 1 may be realized as intersections indices of f with

elements in J(f) ∩ Vn−1 (cf. Proposition 3.3.3), we produce an element

h′ −
∑

s

αsϕis −
∑

j

βsqf,s′

whose intersection multiplicity with f is big enough and whose degree is less than deg f ,

hence from Proposition 3.3.1 it belongs to the Jacobian ideal J(f).

The classical Milnor’s Formula for plane curves singularities states that if f =

f1 · · · fr ∈ C[[X, Y ]] is a possibly many branched and reduced power series over C then

µ(f) = 2δ(f) + 1− r. A first possible tentative to extend the result obtained in Theorem

3.2.4 is:

If all branches f1, · · · , fr have tame semigroups then the preceding formula continues to

hold.

We include here some examples to show that this is NOT true.

Let f = (Y 2−X3)2−X11Y and g = (Y 2−X3+X2Y )2−X11Y . Then I(f, g) = 28

and S(f) = S(g) = 〈4, 6, 25〉. Here one can compute

δ(fg) = δ(f) + δ(g) + I(f, g) = 14 + 14 + 28 = 56.

Hence 2δ(fg)+ 1− r = 111. The behaviour of the reduced 2-branched plane curve singu-

larity defined by the equation fg with respect to µ-stability and the value of e0(T (fg)) =

µ(Ofg) according to the characteristic p of the ground field is described below. All com-

putations are performed using the software Singular, [DGPS]. See the Appendix A for

explanations about the procedures.

Example 3.3.4. (p = 7) Here (fg)4 ∈ mT (fg)4 so that fg is µ-stable. Computation

shows that µ(Ofg) = µ(fg) = 112 > 111 so that Milnor’s Formula does not hold. Notice

that the semigroups of the branches are tame in characteristic p = 7, but p | I(f, g).
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Example 3.3.5. (p = 5) Here (fg)3 ∈ mT (fg)3 so that again fg is µ-stable. Computa-

tion now shows that µ(Ofg) = µ(fg) = 111 and Milnor’s Formula does hold. Notice that

the semigroups of the branches are wild in characteristic p = 5.

Example 3.3.6. (p = 13) Here computation shows that µ(fg) = 124 and

µ((1 +X)fg) = 114 so that fg is not µ-stable. Computation also suggests that µ(Ofg) =

µ(fg) = 114 and Milnor’s Formula does not hold. Notice that the semigroups of the

branches are tame in characteristic p = 13 and p ∤ I(f, g).
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CHAPTER 4

Differentials

4.1 The module of differentials of a plane curve

Let O be an algebroid singular plane curve over an algebraically closed field k

of characteristic p ≥ 0. Consider the O-module Ω = Ωk(O) of Kähler differentials of O
over k and let d : O → Ωk(O) be the universal derivation. Choose an embedding of O
by means of an epimorphism ϕ : R → O, where R = k[[X, Y ]], whose kernel is an ideal

A = 〈f〉. This epimorphism induces the conormal exact sequence

A/A2 → O ⊗k Ωk(R) → Ω → 0,

which gives us an isomorphism

Ω ≃ OdX ⊕OdY
(fXdX + fY dY )O .

For h ∈ R, we will write hx for hX(x, y) ∈ O and similarly for hy. In view of the

relation fxdx+ fydy = 0, for any differential ω = adx+ bdy ∈ Ω we have

fyω = fy(adx+ bdy) = (afy − bfx)dx,

so we have an O-modules isomorphism

fyΩ ≃ (Ofx +Ofy)dx.

45
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A differential ω ∈ Ω will be called an exact differential, if there exists h ∈ O such

that ω = dh = hxdx + hydy. These differentials form a k-vector subspace of Ω that will

be denoted by dO.

A differential ω will be called a torsion differential if there exists a nonzero divisor

ξ ∈ O such that ξω = 0. These differentials form an O-submodule of Ω denoted by T .

Since O is noetherian and Ω is a finitely generated O-module, it follows that Ω is

a noetherian module, hence T is a finitely generated submodule ([AM] pp. 75,76). Now,

since T is finitely generated and all its elements are torsion elements, it follows that the

annihilator of T contains a nonzero divisor ξ.

We now show that theO-module T has finite length. For this, it is enough to show

that all the prime ideals that contain the annihilator of T are maximal (cf. [Eisenbud],

Corollary 2.17). In fact, since dimO = 1 and the annihilator of T contains a nonzero

divisor ξ, it follows that ξ does not belong to any of the minimal primes of (0), so the

only prime that contains ξ is the maximal ideal m.

In the sequel we will prove in greater generality a result that is found in [Za2] in

the zero characteristic and irreducible context that relates the length ℓO(T ) of the torsion

submodule T as an O-module and the Tjurina number τ(O). Before, we will need a

couple of lemmas.

Lemma 4.1.1. Let g ∈ R without multiple factors and let h be an irreducible factor of

g. Then the set {(c : d) ∈ P1
k; h | cgX + dgY } is finite.

Proof: Suppose that g = hg′ with h, g′ ∈ R coprime. We then have

cgX + dgY = h(cg′X + dg′Y ) + g′(chX + dhY ).

So,

h | cgX + dgY ⇐⇒ h | g′(chX + dhY ) ⇐⇒ I(h, chX + dhY ) = ∞.

We now analyze this last intersection multiplicity.

If IX = I(h, hX) 6= I(h, hY ) = IY , then for general (c : d) ∈ P1
k, one has

I(h, chX + dhY ) = min{I(h, hX), I(h, hY )} <∞.

If IX = IY = I, then I 6= ∞, because otherwise, we would have h | hX and h | hY ,
hence h = 0 or h is not reduced, which is a contradiction (cf. [Bou]).

João Hélder Olmedo Rodrigues 46 Universidade Federal Fluminense



Hypersurface singularities in arbitrary characteristic

So, since I 6= ∞, there is a unique (c : d) ∈ P1
k such that

I(h, chX + dhY ) > I, hence for a general element (c : d) in P1
k one has I(h, chX +

dhY ) = I <∞.

Lemma 4.1.2. Let g ∈ R be reduced. Then for a general linear automorphism ϕ(X, Y ) =

(aX + bY, cX + dY ) of R one has that f = g ◦ ϕ is such that I(f, fY ) <∞.

Proof: Let f1 be an irreducible component of f , then f1 = h ◦ ϕ for some irreducible

component h of g. We have that

f1 | fY ⇐⇒ h ◦ ϕ | cgX ◦ ϕ+ dgY ◦ ϕ.

Since cgX ◦ ϕ+ dgY ◦ ϕ = (cgX + dgY ) ◦ ϕ, it follows that

f1 ∤ fY ⇐⇒ h ∤ cgX + dgY .

From Lemma 4.1.1 this occurs for a general point (c : d) in P1
k. So, for a general

ϕ no irreducible factor of f will divide fY .

Theorem 4.1.3. If O is an algebroid plane curve with an isolated singularity, then

ℓO(T ) = τ(O).

Proof: (cf. [Za2]) From Lemma 4.1.2 we may choose an equation f for O such that

I(f, fY ) 6= ∞, so the image fy of fY in O is not a zero divisor.

Consider the ideal B = {B ∈ O |B fx ∈ fy O} of O and let ϕ : B → Ω the

homomorphism of O-modules defined by B 7→ B fx
fy
dx + B dy. First, we are going to

show that

(i) ϕ(B) = T and

(ii) kerϕ = O fy.

Indeed, let ω = B fx
fy
dx+B dy ∈ ϕ(B). We have that

fy ω = B fx dx+B fy dy = B (fx dx+ fy dy) = 0.

Hence ω ∈ T , because fy is not a zero divisor in O.
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Conversely, if ω = a dx + b dy ∈ T , we have 0 = ξ ω = ξ a dx + ξ b dy, for some

nonzero divisor ξ. Hence there is some η ∈ O such that ξ a dx+ ξ b dy = η (fx dx+ fy dy),

so that ξ a = η fx and ξ b = η fy. This implies that ξ a fy = ξ b fx, hence a fy = b fx, so

a ∈ B and ϕ(a) = ω. This proves (i). The verification of (ii) follows the same lines.

Hence we have the following O-modules isomorphism:

T ≃ B/O fy. (4.1)

Consider the following sequence of natural O-epimorphisms

O → O fx → O fx/(O fx ∩ O fy) ≃ (O fx +O fy)/O fy = j/O fy

and let ψ be the composite map O → j/O fy → 0.

We have

ξ ∈ kerψ ⇔ fx ξ ∈ O fy ⇔ ξ ∈ B

and, therefore,

O/B ≃ j/O fy. (4.2)

Since O fy ⊂ j ⊂ O, O fy ⊂ A ⊂ O and ℓO

(

O/O fy

)

= I(f, fY ) <∞,

we have

ℓO

(

O/O fy

)

= ℓO

(

O/j
)

+ ℓO

(

j/O fy

)

and

ℓO

(

O/O fy

)

= ℓO

(

O/B
)

+ ℓO

(

B/O fy

)

.

This gives, in view of (4.1) and (4.2), that

ℓO

(

T
)

= ℓO

(

B/O fy

)

= ℓO

(

O/j
)

= τ(O).

Example 4.1.4. Let f = Y p − Xp+1 ∈ k[[X, Y ]], where p = chark and define O = Of .

Since 0 = fxdx+ fydy = −xpdx, it follows that xiyjdx with 0 ≤ i, j ≤ p− 1 are linearly
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independent torsion differentials. Since ℓ(T ) = τ(O) = p2, it follows that these differen-

tials form a basis for T . Observe that the differentials dxi, for i = 0, . . . , p− 1 are exact

torsion differentials, which is a phenomenon that only occurs in positive characteristic

since if p = 0 there are no other exact torsion differentials than 0.

Notice that when if O is irreducible and when the semigroup S(O) is tame, one

has that µ(O) = c(O) = c, hence

ℓO(T ) = τ(O) 6 µ(O) = c.

This may fail when the semigroup of O is not tame, as shows the following

example:

Example 4.1.5. Suppose that the characteristic of k is p = 3 and consider the plane

branch O defined by the equation f = Y 3 −X11. The semigroup of O is 〈3, 11〉, hence it

is not tame and its conductor c is 20. An easy computation shows that τ(O) = 30, so, in

this example, one has τ(O) > c.

4.2 Values of differentials of branches

Let O be a plane branch with an equation f . Given an embedding ψ : O →֒
O ≃ k[[t]], we obtain a parametrization x = x(t), y = y(t) for f . We assume from now

on that this parametrization is primitive, that is, the field of quotients of ψ(O) coincides

with that of k[[t]]. From f(x(t), y(t)) = 0 we get

fx x
′ + fy y

′ = 0 (4.3)

where x′ = dx
dt

and similarly for y′.

In terms of differentials, the embedding ψ induces a natural map (denoted with

the same symbol) ψ : Ω −→ Ωk(O) ≃ k[[t]] dt, given by

ψ(a dx+ b dy) = (a(x(t), y(t)) x′(t) + b(x(t), y(t)) y′(t)) dt

For simplicity we will use the notation Ωk(O) = Ω. The above O-module ho-

momorphism ψ induces on Ω the structure of an O-module and its kernel is exactly T .

Hence it induces an exact sequence

0 → T → Ω → ψ(Ω) → 0.
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We may characterize the exact torsion differentials as follows. If h ∈ O is such

that d h ∈ T , then 0 = ψ(d h) and this in turn implies that hx(x, y) x
′+hy(x, y) y

′ = dh
dt

=

0. So, we have

dO ∩ T = {d h | h ∈ k} = {0}, if p = 0 and

dO ∩ T = {d h | h ∈ O ∩Op}, if p > 0.

(4.4)

Example 4.2.1. Consider f = Y 4 − X9 and suppose that p = 13. Then O = Of has a

parametrization x = t4, y = t9. Consider the element xy. We have that d(xy) is exact

and belongs to T \ {0}. Indeed, we have that ψ(xy) = t13, so ψ(d(xy)) = dt13

dt
= 0, hence

d(xy) ∈ T . This example shows that even if the semigroup of O is tame, one may have

dO ∩ T 6= {0}.

Example 4.2.2. Suppose chark = p > 0 and let f = Y p −Xp+1 ∈ R. In O = R/〈f〉 we
have the relation yp = xp+1 so that

O = k[[x]]⊕ k[[x]] y ⊕ · · · ⊕ k[[x]] yp−1

and we see that any element of O is a k-linear combination of elements of the form xi yj

with 0 6 j 6 p− 1 and i ∈ N. Parametrizing O with x = tp, y = tp+1 we see that such a

monomial lies in Op
= k[[t]]p = k[[x]] if and only if j = 0. It follows that 0, d x, . . . , d xp−1

are distinct exact torsion differentials.

We will define the value of a non-torsion differential as follows:

If ω = adx+ bdy ∈ Ω, we set

v(ω) = ordt(a(x(t), y(t)) x
′(t) + b(x(t), y(t)) y′(t)) + 1,

and then define

Λ(O) = {v(ω); ω ∈ Ω \ T }.

This set is called the set of values of differentials.

If p = 0, it is known that S(O)∗ ⊆ Λ(O). Indeed, in this case one has

S(O)∗ = v(dO \ {0}) ⊂ Λ(O),
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since for all h ∈ m

v(dh) = ordth
′(x(t), y(t)) + 1 = ordth(x(t), y(t))− 1 + 1 = v(h).

If p > 0, even in the tame case, the equality S(O)∗ = v(dO \ {0}) may fail as

shows the following example.

Example 4.2.3. Let p = 11 and consider f = Y 4−X7. Put O = Of . Here S(O) = 〈4, 7〉
is tame, but, as it is easy to see, 11 = 4 + 7 ∈ S(O)∗ is not the value of any exact

differential.

So, in this case, S(O)∗ 6⊂ v(dO \ {0}).

One can easily check that, in general,

S(O) \ pN ⊂ v(dO \ {0}),

but the other inclusion, v(dO \ {0}) ⊂ S(O)∗ may fail, as well as the inclusion

S(O)∗ ⊂ Λ(O), as will be shown in Example 4.2.4 below.

Let ω = a dx+ b dy, then

ψ(fyω) = fy(x(t), y(t)) ·
(

a(x(t), y(t)) x′(t) + b(x(t), y(t)) y′(t)
)

dt

= ψ(a fy − b fx) x
′ dt.

Since v(fy) = c + v(x′) (see Theorem 3.1.1) and v(a fy − b fx) ∈ ν(J(f)∗) =

ν(T (f)∗), it follows that

ν(T (f)∗) = ν(J(f)∗) = Λ(O) + c− 1.

Example 4.2.4. Let p = 7 and consider O = Of , where f = Y 3 +X7 +X5Y ∈ R. We

have that S(O) = 〈3, 7〉, which is not tame and c = 12. So, v([f, f−1]) = 14 = v(d x)+11

and v([f, f0]) = 19 = v(d y)+ 11. Hence v(d x) = 3 and v(d y) = 8 ∈ v(dO) \ S(O). This

shows that the inclusion v(dO \ {0}) ⊂ S(O) may fail.

In this example the inclusion S(O)∗ ⊂ Λ(O) also fails. Indeed, we have that 7 ∈
S(O)\Λ(O) because if 7 ∈ Λ(O) there might exist a differential form ω = a d x+b d y such

that 7 = v(ω) = v(a fy−b fx)−11. Hence 18 = v(a fy−b fx) > min{v(a)+14, v(b)+19}.
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The only possibility is that 18 = v(a) + 14, so v(a) = 4. This is impossible because

4 6∈ S(O).

However, it is remarkable that in the tame case we still have S(O)∗ ⊆ Λ(O), not

because S(O)∗ = v(d(O \ {0})), but for a completely different reason.

Indeed, in general, if S(O) = 〈v0, . . . , vg〉, then

S(O)∗ =

g−1
⋃

i=−1

(

vi+1 + S(O)
)

.

Hence if S(O) is tame and if we choose elements h−1, h0, . . . , hg−1 ∈ O such that v(hi) =

vi+1, then Remark 3.3.2 implies that

v([f, hi]) = c+ v(h′i) = vi+1 − 1 + c = v(d fi) + c− 1.

This gives

S(O)∗ + c− 1 ⊆ Λ(O) + c− 1,

so we still conclude in the tame case that S(O)∗ ⊆ Λ(O).

In the next section we will discuss in characteristic p > 0 some properties of plane

branches known to hold in characteristic zero. To do this, we will need a result due to

Berger in [Be] whose proof we borrowed from Assi and Sathaye ([A-S]).

Let us recall the differential operator defined on O by

Df(g) = [f, g] = fxgy − fygx,

where f ∈ R is irreducible. Df may be extended in a natural way into a differential

operator on the field of fractions K of O in the following way:

Df

(g

h

)

=
[

f,
g

h

]

:=
hDf(g)− gDf(h)

h2
=
h[f, g]− g[f, h]

h2
.

We have Df(O) ⊂ O, where O is the integral closure of O in K ≃ k((t)). Indeed,
g
h
∈ O if and only if v(g) > v(h). Then, using Corollary 3.1.6,
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v
(

Df

(g

h

))

> min{v([f, g])− v(h), v([f, h]) + v(g)− 2v(h)}

= −v(h) + min{v([f, g]), v([f, h]) + v
(g

h

)

}
> −v(h) + min{v(g) + c− 1, v(g) + c− 1}
= v

(g

h

)

+ c− 1 > c− 1 > 0

so that Df(O) ⊂ O.

Using the relation fxdx+ fydy = 0, one can easily show that for any u ∈ K one

has

fydu = −[f, u]dx and fxdu = −[f, u]dy (4.5)

Hence, since x or y is separable, it follows that [f, u] = 0 if and only if u′ = 0, that

is u ∈ k((tp)). This also shows that if u 6∈ k((tp)), then the differential ω = du
[f,u]

∈ Ωk(K)

is independent of u and is equal to either −dx
fy

or dy
fx

and these two differentials coincide

when both are defined.

Let u ∈ K is such that the differential ω = du
[f,u]

is well defined then if we compute

the values in both sides of (4.5), we get that v([f, u]) = c + v(u′) which is the same as

v(ω) = −c.
Recall that we defined the conductor ideal of O in O as being

C(O) = {h ∈ O; hO ⊂ O}.

Let us define the ideal I∗ of O as the ideal generated by all the elements [f, u],

where u sweeps O, that is,

I∗ = {[f, u]; u ∈ O}O.

If we denote by j the image of J(f) or of T (f) in O, then we have the following

result:

Lemma 4.2.5. One has that

i) I∗ = C(O);

ii) The multiplication map mω : O → Ωk(K), h 7→ ψ(h)ω is an injective homomorphism

of O-modules;
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iii) mω(C(O)) = Ω;

iv) mω(j) = ψ(Ω).

Proof: i) Since v([f, t]) = c+ v(t′), then v([f, t]) = c, which implies easily the result.

ii) This is obvious because ψ : O → O is injective and Ωk(K) ≃ k((t))dt is free.

iii) Since v(ω) = −c,
and for all h ∈ O, one has v(h) ≥ c if and only if h ∈ C(O), and since 0 6= ρ ∈ Ω ⊂ Ωk(K)

if and only if v(ρ) > 0, the result follows immediately.

iv) This immediately follows from the identity

ψ(afx − bfy)ω = ψ(adx+ bdy).

Theorem 4.2.6 ([Be], Corollary 2, p.349). Let O be a plane branch. Then one has

τ(O) = ℓO

( O
C(O)

)

+ ℓO

(
Ω

ψ(Ω)

)

.

Proof: Let f be an equation for O. Since j = 〈fx, fy〉 ⊂ C(O), one has

τ(O) = ℓO

(O
j

)

= ℓO

( O
C(O)

)

+ ℓO

(C(O)

j

)

.

Now, from Lemma 4.2.5 one has that

ℓO

(C(O)

j

)

= ℓO

(
mω(C(O))

mω(j)

)

= ℓO

(
Ω

ψ(Ω)

)

,

which implies the result.

We will also need the following simple result from Linear Algebra (cf. [Az],

Proposition 6, Chapter I):

Lemma 4.2.7. Suppose N ⊆ M be k-vector subspaces of k[[t]] such that N contains

all elements in k[[t]] of sufficiently high order. Then v(M) \ v(N ) is a finite set; say

v(M) \ v(N ) = {α1, . . . , αs}. For each i = 1, . . . , s choose zi ∈ M such that v(zi) = αi.

We have

1. M = k z1 + · · ·+ k zs +N ;
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2. z1, . . . , zs are linearly independent over k modulo N .

In particular, dimk

(

M/N
)

= #
(

v(M) \ v(N )
)

.

Notice that Ω ≃ k[[t]] dt ≃ k[[t]] (as k-vector spaces). Following the notation

of the preceding Lemma, set M := Ω and N := ψ(Ω). Observe that N satisfies the

required hypothesis because since x′ dt ∈ ψ(Ω) we have C(O) x′ dt ⊆ ψ(Ω) where C(O) is

the conductor of O. Hence ψ(Ω) contains any element of order > c + v(x′) + 1. So the

Lemma implies that

dimk

(

Ω/ψ(Ω)
)

= #
(

N \ Λ(O)
)

(4.6)

As we have already seen above, in the tame case, we have S(O)∗ ⊆ Λ(O). Our

next purpose is to establish, as it is known in characteristic zero (see [Za]), that in the

tame case we still have

#
(

Λ(O) \ S(O)
)

= c− τ(O). (4.7)

Indeed, since S(O)∗ ⊆ Λ(O) ⊆ N∗ we have, using Theorem 4.2.6 and (4.6), that

#
(

Λ(O) \ S(O)
)

= #
(

Λ(O) \ S(O)∗
)

= #
(

N∗ \ S(O)∗
)

−#
(

N∗ \ Λ(O)
)

= #{ gaps of S(O) } − dimk

(

Ω/ψ(Ω)
)

= ℓO

( O
C(O)

)

− τ(O) + ℓO

( O
C(O)

)

= c− τ(O).

This in particular shows, in the tame case, as in characteristic zero, that

Λ(O) = S(O)∗ ⇐⇒ c = τ(O).

Example 4.2.8. Suppose p = chark > 0 and f = Y n − Xm with gcd{n,m} = 1 and

p ∤ nm. Put O = Of . It is easy to check that f ∈ J(f). Hence τ(O) = µ(f) = c =

(n− 1)(m− 1) because S(O) = 〈n, m〉 is tame. In particular we get Λ(O) = S(O)∗.
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4.3 About a result of Zariski

Our next goal is to discuss a result obtained by Zariski in the case of characteristic

zero (see Theorem 4 of [Za2]). We are going to show that the natural extension of Zariski’s

result:

If O is a plane branch with S(O) = 〈v0, v1, . . . , vg〉 where v0 = n and v1 = m are

such that p ∤ nm and Λ(O) \ S(O) = ∅, then O admits an equation of the form Y n −Xm

with gcd{n,m} = 1.

fails in positive characteristic.

Zariski’s strategy of the proof was to show that if O does not admit an equation

of the form Y n −Xm, then it is possible to exhibit a special differential ω0 ∈ Ω such that

v(ω0) ∈ Λ(O) \ S(O). To build such a differential, choose a basis {x, y} for the maximal

ideal m of O such that x is a transversal parameter. This choice determines, modulo

a unit, an equation f ∈ R, which in turn induces on O a discrete valuation v, so that

S(O) = v(O∗). Let c be the conductor of S(O), then following Zariski in [Za2] or in [Za],

Lemma 2.6, we may assume that after a suitable choice of the parameters x and y one

gets a special short parametrization for O:

x = tn, y = tm +

c/2
∑

α=1

bαt
λα, λα > m and λα,∈ N \ S(O), λα + n 6∈ nN+mN. (4.8)

So, if O has no equation of the form Y n −Xm, then O has a parametrization of

the form (4.8) such that b1 6= 0 and λ1 + n 6∈ S(O) (cf. [Za2], Lemma 5)

All this remains true in positive characteristic under the assumption p ∤ nm.

Now, if we define the differential

ω0 = my dx− nx dy ∈ Ω,

a direct computation shows that, in characteristic zero, v(ω0) = λ1 + n which is in

Λ(O) \ S(O), as desired. The trouble is that in positive characteristic it may happen

that v(ω0) > λ1 + n and v(ω0) ∈ S(O), or worse, ω0 may vanish, which ruins Zariski’s

argument in this situation.

As a matter of fact, that result of Zariski is not true in positive characteristic as

shows the following example.

Example 4.3.1. Let f = Y 4 − X7 − X5Y 2 − X10 − X13. This is an irreducible curve

of genus one. Over a field of characteristic p = 3 it has a primitive parametrization
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given by x(t) = t4 and y(t) = t7 + t13. Its semigroup is equal to 〈4, 7〉 (so it is tame)

and a direct computation shows that τ(Of ) = c(Of) = 18. Now we claim that Of is not

quasi-homogeneous, that is, it is not isomorphic to Of̃ where f̃ = Y 4 −X7.

Otherwise, there would exist a change of coordinates

ϕ(X, Y ) = (aX + bY + g , cX + dY + h)

such that

fu = f̃ ◦ ϕ.

where u is a unit, a, b, c, d ∈ k are such that ac− bd 6= 0 and mult(g),mult(h) ≥ 2. If this

is the case, evaluating the preceding parametrization on the above identity we would get

E :=
(

ct4 + d(t7 + t13) + h
)4

−
(

at4 + b(t7 + t13) + g
)7

= 0 ∈ k[[t]].

By analyzing the coefficients of E of order 16 and 28 we conclude that c = 0

and a7 = d4, respectively. Now, write h = h20X
2 + h02Y

2 + h11XY + h30X
3 + h03Y

3 +

h21X
2Y + h12XY

2 + hot (coefficients hij ∈ k) and analyzing the coefficients of order 29

of E we conclude that h20 = 0. We also get b = 0 looking at the terms of order 31.

Writing g = g20X
2+ g02Y

2 + g11XY + hot and analyzing the coefficients of order

32 we conclude that d3h11 = a6g20. Since ordtE > 33 we find that h30 = 0 and, finally,

d = 0 since ordtE > 34. All these constraints together imply a contradiction with the

condition ad− bc 6= 0.

A more dramatic counterexample to Zariski’s result in positive characteristic is

the following branch with semigroup of genus 2.

Example 4.3.2. Consider the branch O with the following parametrization

x = t4, y = t6 + t13.

in characteristic p = 7. We have that S(O) = 〈4, 6, 19〉 which is tame and has conductor

c = 22. This branch has f = (Y 2 −X3)2 − 4X8Y −X13 as an equation. A computation

with Singular shows that µ(f) = c = τ(f), that is, Λ(O) \ S(O) = ∅, while O has no

quasi-homogeneous equation, since S(O) has genus 2.

As a final remark, we observe that if we impose some restriction on the semigroup

S(O), as for instance, if the elements ℓ of N \ S(O) which are greater than m with
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ℓ + n 6∈ S(O) are such that ℓ 6≡ m mod p, then the condition Λ(O) \ S(O) = ∅ implies

that O has an equation of the form Y m −Xn with gcd(n,m) = 1.

Just to show that there are semigroups fulfilling the above condition, take the

semigroup 〈5, 7〉 and let p 6= 2, 3, 11. The gaps ℓ of the semigroup greater than 7 and such

that ℓ+ 5 6∈ 〈5, 7〉 are 8, 11, 13 and 18. All of them are such that ℓ 6≡ 7 mod p.
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Algorithm for testing null-forms

The aim of this section is to illustrate the usage of the software Singular ([DGPS])

to test whether a homogeneous polynomial G ∈ k[Y0, . . . , Yn] is a null-form for the Tjurina

ideal T (f) = 〈f, fX1, . . . , fXn
〉, where f ∈ R = k[[X1, . . . , Xn]]. We strongly emphasize

that there is no originality here in the sense that we are only using routines already im-

plemented by the developers and their collaborators.

With the interface of the program open, type

LIB ”hnoether.lib”;

This is a set of packages that you are telling Singular you will use. You need to

declare what is the ring that you will work at. Let’s say you want to work in characteristic

2, in four variables. Then type

ring r=2,(x,y,z,w),ds;

The last ds is the monomial ordering of power series. So, now, we introduce the

power series in study. For type

poly f=w3+x*y3+y*z3+z*x7;
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In order to check if f has or not an isolated singularity at the origin one can

compute the Tjurina number τ(f) as follows:

tjurina(f);

The answer given by Singular is τ(f) if f has an isolated singularity at the origin

and −1 otherwise. In this specific example we get τ(f) = 128. Likewise one can compute

the Milnor number of f :

milnor(f);

Again Singular computes µ(f) if it is finite and returns −1 otherwise. In our

example we get µ(f) = ∞. In order to compute a null-form for T (f) we first introduce

this ideal. For, let us first declare its generators.

poly g=diff(f,x);

poly h=diff(f,y);

poly i=diff(f,z);

poly j=diff(f,w);

Now we define T (f) as being the ideal generated by the power series f, g, h, i, j.

For this type

ideal T=std(f,g,h,i,j);

The command std tells Singular to compute the standard basis of 〈f, g, h, i, j〉 with re-

spect to the given monomial ordering ds. This will make forthcoming computations easier

and effective. Now we declare to Singular some of the ideals mT (f)s. In this case we put

first the ideal mT (f) as follows:

ideal mT=std(x*T+y*T+z*T+w*T);

In order to put mT (f)2 we type
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ideal mT2=std(mT*T);.

Likewise, we introduce mT (f)3, mT (f)4 and mT (f)5 step by step as

ideal mT3=std(mT2*T);

ideal mT4=std(mT3*T);

ideal mT5=std(mT4*T);.

Now, to test whether a given nonzero homogeneous polynomial

G ∈ k[Y0, Y1, Y2, Y3, Y4]

(of degree let’s say s) is or not a null for for T (f) we first evaluate G in the 5-tuple

f, g, h, i, j and tell Singular to test if the resulting power series belongs or not to the ideal

mT (f)s. For example, to check whether G = Y 5
3 is a null form of degree 5 we evaluate G

to obtain f 5
z = i5 = y5z10 + x7y4z8 + x28yz2 + x35 and ask Singular to test whether this

belongs to mT (f)5. For this type

reduce(i5,mT5);

The result is 0 if and only if i5 ∈ mT (f)5 or, the same, G ∈ NT (f). In this case we

get a result different from zero. Hence Y 5
3 is not a null-form. Nevertheless for G = Y0Y

4
1

we get f · f 4
x = f · g4 and this power series belong to mT (f)4. Therefore Y0Y

4
1 ∈ NT (f).

This implies in particular that the Milnor number µ(Of) can be computed as µ(f(1+αx))

for every α 6= 0. For instance, Singular can make this calculation:

milnor((1+x)*f);

The result is 140.

Example: Here we have some examples of series f ∈ k[[X, Y ]] of which we explicitly

compute a nonzero null-form of T (f) with the method above and therefore, using Theo-

rem 2.3.5, compute µ(Of).
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a. Suppose p = 3 and let f = Y 3−X11+X8Y . Then fX = X7(X3−Y ) and fY = X8, so

that µ(f) = ∞. We check that f 3
X ∈ mT (f)3 so that Y 3

1 ∈ NT (f) \ 0. It follows that every
unit of the form u = 1 + aX + bY with a 6= 0 is such that µ(uf) = µ(Of). For example,

µ(Of) = µ((1 + X)f) = 24. Here we have µ((1 + Y )f) = 29 > µ(Of), τ(f) = 22 and

Z(NT (f)) = Z(Y1).

b. Suppose p = 3 and let f = Y 3−X11+X7Y 2. Then fX = X6(X4+Y 2) and fY = −X7Y ,

so that µ(f) = ∞. We check that f 3
Y ∈ mT (f)3 so that Y 3

2 ∈ NT (f) \ 0. It follows that

every unit of the form u = 1 + aX + bY with b 6= 0 is such that µ(uf) = µ(Of). For

example, µ(Of ) = µ((1+Y )f) = 30. Here we have µ((1+X)f) = 31 > µ(Of), τ(f) = 24

and Z(NT (f)) = Z(Y2).

c. Suppose p = 3 and let f = Y 3−X11+X8Y 2. Then fX = X7(X3−Y 2) and fY = −X8Y ,

so that µ(f) = ∞. We check that f 3
Y ∈ mT (f)3 so that Y 3

2 ∈ NT (f) \ 0. It follows that

every unit of the form u = 1 + aX + bY with b 6= 0 is such that µ(uf) = µ(Of). For

example, µ(Of ) = µ((1+Y )f) = 30. Here we have µ((1+X)f) = 34 > µ(Of), τ(f) = 26

and Z(NT (f)) = Z(Y2).

d. Suppose p = 3 and let f = Y 3 −X11 +X9Y . Then fX = X10 and fY = X9, so that

µ(f) = ∞. We check that f 3
X ∈ mT (f)3 so that Y 3

1 ∈ NT (f) \ 0. It follows that every

unit of the form u = 1 + aX + bY with a 6= 0 is such that µ(uf) = µ(Of). For example,

µ(Of) = µ((1 +X)f) = 27 = τ(f). Here Z(NT (f)) = Z(Y1).

Another way for computing µ(Of) using Singular when you are not able to guess

what would be a null-form for T (f) is as follows. You declare to Singular that you want

to work in a greater field. For example, if you want to compute µ(Of) of a plane curve it

is convenient to work in k(a, b) where a, b are transcendental over k and have no relation

among them. It makes 1 + aX + bY a generic unit over k. However, to work in such

an extension is computationally hard and Singular sometimes spend much more time

performing the calculations. To use this type

LIB ”hnoether.lib”; declaring packages you will use

ring r=(13,a,b),(x,y),ds; base ring with large field of constants

poly f=((y2-x3)2-x11y)2-(y2-x3)x19; polynomial you want to study

poly u=1+ax+b*y; your generic unit
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milnor(u*f); computing µ(Of).
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APPENDIX B

A connection with vector fields

Another interesting connection with the phenomenon of the existence of isolated

hypersurface singularities Of for which µ(f) = ∞ is the classification of singularities

of vector fields. Since the aforementioned phenomenon is a particularity of the positive

characteristic setting we restrict ourselves to this case here. No attempt of originality or

completeness is made: we prefer to collect here known facts and establish the connection

with our approach. Moreover, all known results are about vector fields of smooth surfaces

so that the connections we are able to make are restricted to singularities of plane curves.

We recall some useful and general facts about vector fields over fields of positive

characteristic.

First of all, let us consider K be a field and D be a derivation of K, that is, a

function D : K −→ K satisfying, for all f, g ∈ K, that

D(f + g) = D(f) +D(g)

and

D(fg) = fD(g) + gD(f) (Leibniz rule).

Obviously the set of all derivations of K is a K-vector space which will be denoted DerK.

Note that the subset of K consisting of all elements killed by D

KD = {g ∈ K ; D(g) = 0}
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is a subfield of K. We have Kp ⊆ KD from the Leibniz rule. Hence the field extension

K/KD is purely inseparable.

Now let us fix a subfield L of K such that K/L is a purely inseparable extension

of degree p = charK and denote

DerLK = {D ∈ DerK ; L ⊆ KD}.

We claim first that DerLK is a K-vector space of dimension one. Indeed, being the

extension of prime degree p there is a primitive element x ∈ K \ L so that K = L[x].

Then each derivation D of K vanishing on L is such that D = D(x)Dx where Dx is

defined by Dx(g(x)) = g′(x) for g(x) ∈ L[x]. This concludes the proof of the claim.

In general, a power

Dn = D ◦D ◦ · · · ◦D
︸ ︷︷ ︸

n times

of a derivation D of K is not a derivation anymore since we do not have the Leibniz rule

for Dn: if f, g ∈ K then

Dn(fg) = fDn(g) +

n−1∑

i=1

(

n

i

)

Di(f)Dn−i(g) + gDn(f).

However if the power is n = p it also follows from the above identity that Dp is indeed a

derivation of K and certainly the kernel KDp

of Dp contains the kernel KD of D.

Hence, for each D ∈ DerLK, KDp

also contains L and being DerLK a K-vector

space of dimension one, we conclude that

Dp = hD

for some h ∈ K. Derivations satisfying this last property are called p-closed derivations.

Sending L 7−→ DerLK we construct a function

{

Subfields Kp ⊆ L ⊆ K

with [K : L] = p

}

−→
{

[D] ∈ P(DerK)

D is p-closed

}

.

Actually, it follows from the Galois correspondence for purely inseparable field

extensions due to Jacobson [J], that this is a bijection whose inverse is given by [D] 7−→
KD.

From now on, let us consider S be a smooth surface over an algebraically closed
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field k and D be a rational vector field on S, that is, a derivation of the field k(S) vanishing

on k. One clearly has that [k(S) : k(S)p] = p2 and, from the above bijection, D is a p-

closed derivation if and only if it does not have a trivial kernel, that is, k(S)p ( k(S)D (

k(S).

If P is a point of S and (x, y) are local coordinates of S at P we may write

D = hP

(

fP
∂

∂x
+ gP

∂

∂y

)

where hP ∈ k(S) and fP , gP ∈ OS,P are relatively prime. The functions {hP}P∈S de-

termine a divisor (D) in S called divisor of D. If fP , gP ∈ mP,S we say that D has an

isolated singularity at P and otherwise we say that D has only divisorial singularities in a

neighbourhood at P . We say that two p-closed vector fields D and D′ on S are equivalent,

writing D ∼ D′, if there is a rational function h ∈ k(S) such that D = hD′. An important

characterization of vector fields having only divisorial singularities in a neighbourhood at

a point is the following, due to Seshadri ([S]).

Proposition B.1.1. Let S be a smooth surface and D a p-closed vector field on S which

has only divisorial singularities in a neighbourhood of a point P ∈ S. Then in the com-

pletion ÔS,P of the local ring of the point P there exist local parameters x, y such that

D ∼ ∂/∂y.

Proof: See [S] §3, Proposition 6.

As an application of the preceding Proposition we have the following criterion.

Proposition B.1.2. Let f ∈ k[X, Y ] vanishing at the origin 0 ∈ A2
k with an isolated

singularity at the origin and µ0(f) = ∞, where k is an algebraically closed field of char-

acteristic p > 0. Set h = gcd(fX , fY ) ∈ m ⊂ R = k[[X, Y ]]. Then there exists a change

of coordinates ϕ of R such that ϕ(f) ∈ k[[X, Y p]] if and only if fX/h or fY /h does not

belong to m.

Proof: We consider the rational vector field of A2
k given by Df = fY

∂
∂X

− fX
∂
∂Y

.

In order to show that Df is a p-closed vector field it is enough, from the Galois corre-

spondence for purely inseparable field extensions, to see that

k(Xp, Y p) ( k(X, Y )Df ( k(X, Y ).

These strictly inclusions hold because since f has an isolated singularity in the origin,

then f 6∈ (k[X, Y ])p = k[Xp, Y p], that is, fX 6= 0 or fY 6= 0. Indeed, this implies that
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f ∈ k(X, Y )Df \k(Xp, Y p) andDf(X) 6= 0 orDf(Y ) 6= 0, that is, X ∈ k(X, Y )\k(X, Y )Df

or Y ∈ k(X, Y ) \ k(X, Y )Df .

Now, to apply Proposition B.1.1 and to prove the converse we just need to write

Df = h

(
fY
h

∂

∂X
− fX

h

∂

∂Y

)

where h = gcd(fX , fY ) in R to see that Df has only divisorial singularities in a neigh-

bourhood at the origin if and only if fX/h or fY /h does not belong to m. On the other

hand, if f ∈ k[[X, Y p]], then one clearly has fX/h = 1 6∈ m.

The above Corollary does not provide the complete classification of equations

having infinite Milnor number as we can see in the example below.

Example B.1.3. When p = 3 the polynomial f = X2Y +Y 2X has isolated singularity at

the origin since τ(f) = 4. We also have µ(f) = ∞, fX = Y (Y −X), fY = −X(Y −X)

and h = gcd(fX , fY ) = Y −X. Therefore, fX/h and fY /h belong to m and the p-closed

vector field Df on A2
k has the origin as an isolated singularity.

The above discussion shows that the classification of singularities of p-closed vec-

tor fields on A2
k can be related to the classification of algebroid plane curve singularities.

However there are very few cases classified of such vector fields singularities in the litera-

ture. For more information about this subject we refer to [H] and [RS].
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An example

As we mentioned before, we believe that the converse of Theorem 3.2.4 is true,

in the sense that if µ(f) = c(f), then S(f) is a tame semigroup, or, equivalently, if

p divides any of the minimal generators of S(f), then µ(f) > c(f). We include here

calculations which are not very enlightening though they show, by brute force calculations,

this converse for a special element of an equisingularity class of low genus (namely genus

1 and 2).

Here we include in a concise form some of the results obtained by Assi and Barile

in [A-B]. See also the references therein. We use here definitions and notation introduced

in the beginnings of section 3.2. In [A-B] one of the concerns of the authors was the

construction of a canonical plane branch associated to a numerical semigroup S ⊆ N

satisfying the following necessary (and sufficient) conditions to be the semigroup of values

of a plane branch over k, where k is an arbitrary algebraically closed field.

Conditions: suppose that S is minimally generated by 0 < v0 < · · · < vg, so that

S = 〈v0, . . . , vg〉. Then there exists a plane branch f over k such that S = S(f) if and

only if nivi < vi+1, for all i ∈ {1, . . . , g − 1}.

Remark C.1.1. We say that a sub-semigroup S = 〈v0, . . . , vg〉 of N satisfying nivi < vi+1,

for all i ∈ {1, . . . , g − 1} is a strongly increasing semigroup of genus g.
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According to the Remark 3.3 [loc.cit.], the construction of a canonical model of

branch fS associated to the semigroup S = 〈v0, . . . , vg〉 can be done inductively as follows:

1) Let 1 ≤ j ≤ g. We compute the (unique) j-tuple

θ(j) = (θ
(j)
0 , . . . , θ

(j)
j−1) ∈ Nj

satisfying 0 ≤ θ
(j)
i < ni, for i = 1, . . . , j − 1 and

vj
ej
nj = θ

(j)
0

v0
ek

+ · · ·+ θ
(j)
k−1

vj−1

ek
.

2) Let G0 := Y and for 1 ≤ j ≤ g,

Gj = G
nj

j−1 −Xθ
(j)
0 Y θ

(j)
1 · · ·Gθ

(j)
j−1

j−2 .

Remark C.1.2. The construction of [A-B] provides us with an irreducible and monic (in

Y ) polynomial fS = Gg which we will call the Assi-Barile curve of S. Moreover we have

that S(fS) = S by the construction and that fS belongs to Fp[X, Y ] if chark = p > 0 and

to Q[X, Y ] if chark = 0.

Example C.1.3. Let S = [6, 8, 65]. It is easy to check that (e0, e1, e2) = (6, 2, 1) and

(n1, n2) = (3, 2). Using the preceding conditions we see that S is the semigroup of values

of a plane branch. According to the above algorithm:

j=1: θ(1) = θ
(1)
0 and 8

2
3 = θ

(1)
0

6
2
. Hence θ

(1)
0 = 4 and

G1 = G3
0 −Xθ

(1)
0 = Y 3 −X4.

j=2: θ(2) = (θ
(2)
0 , θ

(2)
1 ) with 0 ≤ θ

(2)
1 < n1 = 3 and

65

1
2 = θ

(2)
0

6

1
+ θ

(2)
1

8

1
.
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It follows that θ(2) = (19, 2). Hence,

fS = G2 = G2
1 −Xθ

(2)
0 Y θ

(2)
1 = (Y 3 −X4)2 −X19Y 2.

g=1:

Let S = 〈v0, v1〉 = 〈n,m〉 be the semi-group. Then it is easy to see that the

Assi-Barile canonical curve is

fS = f = Y n −Xm.

Clearly this power series is µ-stable if and only if p does not divide n nor m and if it is

the case we have µ(f) = c(f) = (n− 1)(m− 1).

g=2:

Now we are going to explore the situation on which S = 〈v0, v1, v2〉 is a strongly

increasing semigroup of genus 2. In this case we know that there exists uniquely deter-

mined integers a ≥ 0 and 0 ≤ b < n1 such that

v2 = a
v0
e1

+ b
v1
e1
.

To begin with, let us say a bit more about these integers a and b.

If b = 0 then av0
e1

= v2 > n1v1 > n1v0 and we get a
e1
> n1. Hence a > n1v1 =

v0v1
e1

> v1
e1
> n1 > 1.

If b > 0 we also have a finer lower bound for a: suppose that v1
e1

≥ a. Then we

would have

n1v1 < v2 = a
v0
e1

+ b
v1
e1

≤ a
v1
e1

+ b
v1
e1

=
v1
e1

(v0
e1

+ b
)

.

Hence
e0
e1
v1 <

v1
e1

(v0
e1

+ b
)

and since b > 0, then e0 < n1 + b < 2n1 = 2 e0
e1
. Therefore we would have 1 < 2

e1
so that

2 > e1 = gcd{v0, v1} > 1 and this is clearly a contradiction. We conclude that a > v1
e1
.

It follows that 1 < n1 <
v1
e1
< a. We see that in any case we have a > v1

e1
> 1.

This will be useful in what follows.
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We are going to study the Milnor number of the Assi-Barile model of S, namely

f = fS = (Y
v0
e1 −X

v1
e1 )e1 −XaY b.

We denote g = Y
v0
e1 −X

v1
e1 . The following (already used) formula for the conductor of S

(or of f) will be of use:

c(f) = (n1 − 1)v1 + (n2 − 1)v2 + 1− v0. (C.1)

We will divide our analysis in many cases. Let p = chark.

Case I: p divides v0.

If p|v1 then

fX = e1g
e1−1gX − aXa−1Y b

and

fY = e1g
e1−1gY − bXaY b−1.

But in this case p|e1 so that the partial derivatives have X as a common factor (since

a > 1 as we have already seen). Hence µ(f) = ∞.

If p does not divide v1 we have

fY = −bXaY b−1

(so it is zero if b = 0) and, if b > 0,

fX = e1g
e1−1X

v1
e1

−1 − aXa−1Y b = X
v1
e1

−1
(−v1ge1−1 − aX

a−
v1
e1 Y b).

Again we get µ(f) = ∞, because X is a common factor.

Case II: p does NOT divide v0 NOR v1.

Subcase II.1: We treat first the situation in which p does not divide a nor b which

will demand more intricate calculations:
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µ(f) = (fX , v0g
e1−1Y

v0
e1

−1 − bXaY b−1)

= (fX , (v0g
e1−1Y

v0
e1

−b − bXa)Y b−1)

= (fX , Y b−1) + (fX , v0g
e1−1Y

v0
e1

−b − bXa)

= (b− 1)((e1 − 1)
v1
e1

+
v1
e1

− 1) + (v1g
e1−1X

v1
e1

−1
+ aXa−1Y b, v0g

e1−1Y
v0
e1

−b − bXa)

= (b− 1)(v1 − 1) + (h, h̃)

= (b− 1)(v1 − 1) + (X
v1
e1

−1
, h̃) + (v1g

e1−1 + aY bX
a−

v1
e1 , h̃)

= (b− 1)(v1 − 1) + (
v1
e1

− 1)((e1 − 1)
v0
e1

+
v0
e1

− b) + (v1g
e1−1 + aY bX

a−
v1
e1 , h̃)

= (b− 1)(v1 − 1) + (
v1
e1

− 1)(v0 − b) + (v1g
e1−1 + aY bX

a−
v1
e1 , h̃)

= (b− 1)(v1 − 1) + (
v1
e1

− 1)(v0 − b) + (v1g
e1−1 + aY bX

a−
v1
e1 , v0(−

a

v1
Y bX

a−
v1
e1 )Y

v0
e1

−b − bXa)

= (b− 1)(v1 − 1) + (
v1
e1

− 1)(v0 − b) + (v1g
e1−1 + aY bX

a−
v1
e1 , X

a−
v1
e1 (−av0

v1
Y

v0
e1 − bX

v1
e1 ))

= (b− 1)(v1 − 1) + (
v1
e1

− 1)(v0 − b) + (a− v1
e1
)(e1 − 1)(

v0
e1
)

+ (v1g
e1−1 + aY bX

a−
v1
e1 ,

av0
v1
Y

v0
e1 + bX

v1
e1 ).

Hence, to conclude, we are led to calculate this last intersection number

(

v1g
e1−1 + aY bX

a−
v1
e1 ,

av0
v1
Y

v0
e1 + bX

v1
e1

)

.

To do this we parametrize the right hand side curve by

X =
(

t
(av0
v1

) e1
v0

) v0
e1

and

Y =
(

t(−b)
e1
v1

) v1
e1

and the above intersection number can be interpreted as the order in the parameter t of

the power series

[v1t
v0v1
e21 {(−b)

v0
v1 −

(av0
v1

) v1
v0 }]e1−1 − a

(av0
v1

) e1
v0

(a−
v1
e1

)

(−b)
e1b
v1 t

(

a−
v1
e1

)
v0
e1

+b
v1
e1
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and this order is
v0v1
e1

− v0v1
e21

if and only if the coefficient

v1{(−b)
v0
v1 −

(av0
v1

) v1
v0 }

of the left hand part is non zero in k. Otherwise it would be n2 − v0v1
e21

because

v0v1
e1

− v0v1
e21

= n1v1 −
v0v1
e21

< v2 −
v0v1
e21

and the coefficient of this order term is certainly non zero in view of our hypothesis on a, b.

Notice that the mentioned coefficient appears when we substitute the parametrization of

q :=
av0
v1
Y

v0
e1 + bX

v1
e1

inside g. Therefore, a necessary and sufficient condition to have

v1

(

(−b)
v0
v1 −

(av0
v1

) v1
v0

)

= 0

is that q divides g. This is in turn equivalent to the existence of a nonzero c ∈ k such that

c
av0
v1

= 1

and

cb = −1.

Equivalently we would have

c
(

b+
av0
v1

)

= 0

or, the same, 0 = av0 + bv1 = n2v2 = e1v2 ∈ k which can only occur if p|v2. Thus we are

led to deal with two sub-cases.

First, if p|v2 we have

µ(f) = (b− 1)(v1 − 1) +
(v1
e1

− 1
)

(v0 − b) +
(

a− v1
e1

)

(e1 − 1)
(v0
e1

)

+ v2 −
v0v1
e21

= · · · = c(f) + v2 − n1v1 > c(f).
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However, if p does not divide v2

µ(f) = (b− 1)(v1 − 1) +
(v1
e1

− 1
)

(v0 − b) +
(

a− v1
e1

)

(e1 − 1)
(v0
e1

)

+ n1v1 −
v0v1
e21

= · · · = c(f).

Subcase II.2: We assume here that p|a. In this situation the equation v2 =

av0
e1

+ bv1
e1

tells us that p|v2 ⇔ p|b. If this is so, it implies that

µ(f) = (e1g
e1−1gX , e1g

e1−1gY ) = ∞.

On the contrary, if p does not divide b

µ(f) = (e1g
e1−1gX , e1g

e1−1gY − bXaY b−1)

= (e1 − 1)(g, e1g
e1−1gY − bXaY b−1) + (gX , e1g

e1−1gY − bXaY b−1)

= (e1 − 1)(g, XaY b−1) + (gX , e1g
e1−1gY − bXaY b−1)

= (e1 − 1)
(

a(g, X) + (b− 1)(g, Y )
)

+ (gX , e1g
e1−1gY − bXaY b−1)

= (e1 − 1)
(

a
v0
e1

+ (b− 1)
v1
e1

)

+
(v1
e1

− 1
)

(X, e1g
e1−1Y

v0
e1

−1 − bXaY b−1)

= (e1 − 1)
(

v2 − n1v1

)

+
(v1
e1

− 1
)

(X, ge1−1Y
v0
e1

−1
)

= (e1 − 1)
(

v2 − n1v1

)

+
(v1
e1

− 1
)(v0

e1
− 1 + (e1 − 1)

(v0
e1

))

= (e1 − 1)
(

v2 − n1v1

)

+
(v1
e1

− 1
)(

v0 − 1
)

= · · ·
= c(f).

Subcase II.3: We assume here that p|b. An entirely analogous argument here

shows that p|v2 ⇔ p|a and if this is so, again we have µ(f) = ∞. If p does not divide a

the same kind of calculation shows that µ(f) = c(f).

Case III: p does NOT divide v0 BUT p|v1. In this case we have

fX = −aXa−1Y b
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and

fY = v0g
e1−1Y

v0
e1

−1 − bXaY b−1 = Y b−1
(

v0g
e1−1Y

v0
e1

−b − bXa
)

,

being g as before. We treat first the easiest case, namely that one in which p|v2 as well.

The equation v2 = av0
e1

+ bv1
e1

together with the hypothesis p|v1 tells us that

p|v2 ⇔ p|a and this implies fX = 0 so that µ(f) = ∞ > c(f).

The remaining case, in which v2 is not a multiple of p, is treated as follows: we

have

µ(f) = (a− 1)(X, fY ) + b(Y, fY )

= (a− 1)
(

(e1 − 1)
(v0
e1

)

+
v0
e1

− 1
)

+







∞, if b ≥ 2

a, if b = 1

0, if b = 0.

If b ≥ 2 we are done.

If b = 1

µ(f) = (a− 1)(v0 − 1) + a = av0 − v0 + 1

and in this case

µ(f)− c(f) = av0 − v0 + 1−
(e0
e1

− 1
)

v1 −
(e1
1
− 1
)(av0

e1
+
v1
e1

)

+ v0 − 1

= av0 −
e0
e1
v1 + v1 −

(

av0 + v1 −
av0
e1

− v1
e1

)

= −e0
e1
v1 + a

v0
e1

+
v1
e1

= −n1v1 + v2 > 0

so that µ(f) > c(f).

If b = 0

µ(f) = (a− 1)(v0 − 1)
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and again we compute

µ(f)− c(f) = av0 − v0 + 1− a−
(e0
e1

− 1
)

v1 −
(e1
1
− 1
)(av0

e1
+
v1
e1

)

+ v0 − 1

= e1v2 − v0 + 1− a− n1v1 + v1 − e1v2 − 1 + v0

= −a+ v2 − n1v1 + v1

= − v2
n1

+ v2 − n1v1 + v1

= v2 − n1v1 −
v2 − n1v1

n1

=
(

v2 − n1v1

)(

1− 1

n1

)

> 0

so that again we get µ(f) > c(f).

Since the cases I, II and III exhaust all the possibilities we are in conditions to

state

Proposition C.1.4. Let S = 〈v0, v1, v2〉 a strongly increasing numerical semigroup of

genus 2 with conductor cS and let f = fS be its Assi-Barile canonical model. Then

µ(f) = c(f) = cS if and only if p ∤ v0v1v2.
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[Te] Teissier, B. - Cycles évanescents, sections planes et conditions de Whitney. Singu-
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