Universidade Federal Fluminense

On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

Reillon Oriel Carvalho Santos

On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

Reillon Oriel Carvalho Santos

> Tese submetida ao Programa de Pós-
> Graduação em Matemática da Universidade
> Federal Fluminense como requisito parcial para a obtenção do grau de Doutor em Matemática.

Orientador: Rodrigo Salomão
Coorientador: João Hélder Olmedo Rodrigues

Niterói

Ficha catalográfica automática - SDC/BIME Gerada com informações fornecidas pelo autor

```
S237o Santos, Reillon Oriel Carvalho
            On the classification of fibrations by genus two singular
        curves via fibrations by elliptic curves on surfaces / Reillon
        Oriel Carvalho Santos. - 2022
    70 f.
    Orientador: Rodrigo Salomão.
    Coorientador: João Hélder Olmedo Rodrigues.
    Tese (doutorado)-Universidade Federal Fluminense, Instituto
de Matemática e Estatística, Niterói, 2022.
    1. Fibrations by non-smooth curves. 2. Rational elliptic
surfaces. 3. Produção intelectual. I. Salomão, Rodrigo,
orientador. II. Rodrigues, João Hélder Olmedo, coorientador.
III. Universidade Federal Fluminense. Instituto de Matemática
e Estatística. IV. Título.
```


Tese de Doutorado da Universidade Federal Fluminense

por

Reillon Oriel Carvalho Santos

apresentada ao Programa de Pós-Graduação em Matemática como requesito parcial para a obtenção do grau de

Doutor em Matemática

On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

Defendida publicamente em 18 de Novembro de 2022.

Diante da banca examinadora composta por:

Rodrigo Salomão	UFF	Orientador
João Hélder Olmedo Rodrigues	UFF	Coorientador
Abramo Hefez	UFF	Examinador
Andre Luis Contiero	UFMG	Examinador
Cecília Salgado Guimarães da Silva	UFRJ/University of Groningen-Holanda	Examinadora
Karl-Otto Stöhr	IMPA	Examinador

DECLARAÇÃO DE CIÊNCIA E CONCORDÂNCIA DO(A) ORIENTADOR(A)

Autor da Tese: Reillon Oriel Carvalho Santos

Data da defesa: 18/11/2022
Orientador: Rodrigo Salomão

Para os devidos fins, declaro estar ciente do conteúdo desta versão corrigida elaborada em atenção às sugestões dos membros da banca examinadora na sessão de defesa do trabalho, manifestando-me favoravelmente ao seu encaminhamento e publicação no Repositório Institucional da UFF.

Niterói, 18/11/2022.

AGRADECIMENTOS

Agradeço a meus pais e irmãos por todo amor, apoio e incentivo.
Agradeço aos meus orientadores Rodrigo e João não só pela dedicação, parceria e paciência, mas principalmente por sempre conseguirem encontrar outro ponto de vista para os problemas que tentamos resolver quando chegávamos a um impasse.

Agradeço aos membros da banca, os professores Abramo, Andre, Cecília e Karl-Otto por terem aceitado o covinte, pelos comentários e sugestões.

Agradeço aos colegas da UFF, pela boa convivência.
Agradeço a Ageu, Genyle e Sally que se tornaram minha família longe de casa.
Agradeço aos amigos que a pandemia colocou em minha vida, em especial, Gabriel, Ítalo e Laíze que me fizeram companhia durante muitas madrugadas em claro.

Agradeço a Marco, Matheus e Raphael pelos anos de bom convívio.
Agradeço aos professores e funcionários da PGMAT-UFF.
O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

RESUMO

Em 1944 Zariski descobriu que o teorema de Bertini sobre pontos singulares variáveis não é mais verdadeiro quando passamos de um corpo de característica zero para um corpo de característica positiva. Em outras palavras, ele encontrou fibrações por curvas singulares, que só existem em característica positiva. Tais fibrações estão conectadas com muitos fenômenos interessantes. Por exemplo, a extensão da classificação de Enriques de superfícies para características positivas (Bombieri e Mumford em 1976), os contraexemplos do teorema do anulamento de Kodaira (Mukai em 2013 e Zheng em 2016) e as singularidades isoladas com número de Milnor infinito (Hefez, Rodrigues e Salomão em 2019). Neste trabalho vamos mostrar que o processo de suavização introduzido por Shimada em 1991 pode ser usado para classificar o conjunto de fibrações por curvas singulares de gênero dois - a menos de isomorfismos entre suas fibras genéricas - de modo que suas suavizações sejam fibrações elípticas em superfícies racionais. Além disso, também descreveremos os campos de vetores que podem ser usados para recuperar tais fibrações por curvas singulares via o quociente de superfícies elípticas racionais.

Abstract

In 1944 Zariski discovered that Bertini's theorem on variable singular points is no longer true when we pass from a field of characteristic zero to a field of positive characteristic. In other words, he found fibrations by singular curves, which only exist in positive characteristic. Such fibrations are connected with many interesting phenomena. For instance, the extension of Enrique's classification of surfaces to positive characteristic (Bombieri and Mumford in 1976), the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019). In this work we are going to show that the smoothing process introduced by Shimada in 1991 can be used to classify the set of fibrations by genus two singular curves, up to isomorphism among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces. Moreover we will also describe the vector fields that can be used to recover such fibrations by singular curves via quotient of rational elliptic surfaces.

List of Figures

4.1 Resolution of Λ_{1} 31
4.2 Resolution of Λ_{1} 32
4.3 Resolution of Λ_{2} 32
4.4 Resolution of Λ_{1} 33
4.5 Resolution of Λ_{2} 33
4.6 Resolution of Λ_{1} 35
4.7 Resolution of Λ_{2} 36
4.8 Resolution of Λ_{3} 36
4.9 Resolution of Λ_{4} 36
4.10 Resolution of Λ_{1} 39
4.11 Resolution of Λ_{2} 39
4.12 Resolution of Λ_{3} 39
4.13 Resolution of Λ_{4} 40
4.14 Resolution of Λ_{1} 42
4.15 Resolution of Λ_{2} 43
4.16 Resolution of Λ_{3} 43
4.17 Resolution of Λ_{4} 43
4.18 Resolution of Λ_{5} 43
4.19 Resolution of Λ_{1} 48
4.20 Resolution of Λ_{2} 48
4.21 Resolution of Λ_{3} 48
4.22 Resolution of Λ_{1} 51
4.23 Resolution of Λ_{3} 52
4.24 Resolution of Λ_{4} 52
4.25 Resolution of Λ_{6} 52

List of Tables

4.1 Root Lattices, special fibers and numbers of components 26
4.2 Root Orders of Δ 27
4.3 Contractions 31

Contents

List of Figures 10
List of Tables 11
1 Introduction 13
2 Smoothing and classification of fibration by singular curves 16
3 Absolutely elliptic regular curves of genus two 19
4 Rational elliptic surfaces with Mordell-Weil rank zero 25
5 Vector fields on the projective plane inducing fibrations by singular curves 56
A Blow-ups of smooth surfaces 60
B Codes 66
Bibliography 69

Chapter

Introduction

In 1944 Zariski discovered in $[\mathbf{Z}]$ that Bertini's theorem on variable singular points may fail in positive characteristic. In other words, he found fibrations $f: X \rightarrow Y$ by non-smooth algebraic curves between smooth (irreducible) algebraic varieties over an algebraically closed field k of characteristic $p>0$. According to Mumford [Mum], that was Zariski's main motivation to interpret generic fibers as curves over $k(Y)$, the function field of the target, and to develop two different notions of simple points on varieties defined over non-algebraically closed fields: regular in the sense of having a regular local ring and smooth meaning that the usual Jacobian criterion is satisfied.

Fibrations by non-smooth varieties are related and encode several interesting characteristic p phenomena in algebraic geometry and singularity theory. With no intention to provide an exhaustive list, we mention that: fibrations by cuspidal curves arose in the characterization of quasi-hyperelliptic case that appeared in the extension of Enriques' classification of minimal surfaces to positive characteristic (see $[\mathbf{B M}]$); interesting connections with counterexamples of Kodaira vanishing theorem were pointed out by Mukai in $[\mathbf{M u k}]$ and by Zheng in $[\mathbf{Z h}]$, where they showed that Kodaira vanishing theorem does not work over a surface if and only if it admits a fibration by singular curves. There is also a connection with a class of isolated hypersurfaces singularities which includes those having infinity Milnor number that appeared in [HRS]. The existence of these fibrations by non-smooth varieties also enables us to find other geometrical constructions that never occur in characteristic zero, for instance, a covering of \mathbb{P}^{2} with a family of singular, strange and non-classical curves, as observed in [Sa1] Example 1.1.

Several papers studied the classification of fibrations by singular curves from the birational perspective as $[\mathbf{S 2}],[\mathbf{S 3}],[\mathbf{S a 1}],[\mathbf{S a 2}]$ and $[\mathbf{C S}]$. All of them used the well known strategy - that in this context appeared at first in the work of Stöhr (see [S2]) and - which we outline below.

Let us consider $f: X \rightarrow Y$ a fibration by curves between smooth integral varieties over the algebraically closed field k. We avoid trivial situations assuming that f is a proper and dominant morphism, so that almost all of its fibers are complete and integral curves. A divisor dominating Y via f is called an horizontal divisor for f. It turns out that horizontal prime divisors correspond bijectively to closed points of the generic fiber X_{η} of f, a complete and geometrically integral algebraic curve over $k(Y)$. By means of this correspondence, the horizontal prime divisors contained in the non-smooth locus of f correspond to the non-smooth closed points of X_{η}, which is, in turn, a regular curve over $k(Y)$. Therefore, f is a fibration by non-smooth curves if and only if its generic fiber X_{η} is a regular but non-smooth curve over $k(Y)$. In this way, it is equivalent to study proper fibrations by non-smooth curves and to study their generic fibers, that is, regular but non-smooth curves that are complete and geometrically integral.

This work is devoted less to the problem of classification of generic fibers mentioned above and more to the study of an alternative approach to the classification of fibrations by singular curves using the technique of quotient by p-closed vector fields. This point of view was taken by Bombieri and Mumford, locally, in their extension of Enriques' classification of surfaces to positive characteristic. It also appeared as a central tool used by Takeda [Ta] in his construction of counterexamples of Kodaira vanishing theorem, and by Shimada [$\mathbf{S h}$] in the description of the phenomenon of supercuspidal families of curves on surfaces. We will give more details on this technique of quotients by vector fields in Chapter2. Here, we give an idea of how it goes, providing an example which illustrates the relationship between vector fields and fibrations by singular curves.

Example 1.1. Let k denote an algebraically closed field of characteristic $p>0, X=\mathbb{A}^{2}=\operatorname{Spec} k[x, y]$, $Y=\mathbb{A}^{1}=\operatorname{Spec} k[t]$ and $f: X \rightarrow Y$ be the fibration by curves induced by $f(x, y)=y^{2}+x^{p}$. The fiber of f over each closed point $t_{0} \in Y$ is the plane curve defined by the polynomial $y^{2}+x^{p}-t_{0}$, which has $\left(t_{0}^{1 / p}, 0\right)$ as its unique singular point.

If we consider new variables Z, W and T over k related to the others by $Z=x, W^{p}=y$ and $T^{p}=t$, we can define $X_{1}=\mathbb{A}^{2}=\operatorname{Spec} k[Z, W], Y_{1}=\mathbb{A}^{1}=\operatorname{Spec} k[T]$. Moreover, the natural morphisms $\pi: X_{1} \rightarrow X, F: Y_{1} \rightarrow Y$ and $f_{1}: X_{1} \rightarrow Y_{1}$ defined by $\pi(Z, W)=\left(Z, W^{p}\right), F(T)=T^{p}$ and $f_{1}(Z, W)=W^{2}+Z$, respectively, make the following diagram commutative.

The important part to observe in this example is that $\mathcal{O}_{X}(X)=k[x, y]$ coincides with the kernel of the vector field or, equivalently, the derivation $D_{1}=\frac{\partial}{\partial W}$ of $\mathcal{O}_{X_{1}}\left(X_{1}\right)=k[Z, W]$. Furthermore, the pre-image by π of the horizontal locus $V(y)$ of f, containing the singularities of the general fiber of f, is $V(W)$; it is characterized by the following geometric property: for each closed point $T_{0} \in Y_{1}$ we have $\left(T_{0}, 0\right) \in V(W)$ as a point of tangency between the fiber $f_{1}^{-1}\left(T_{0}\right)$ and the curve $V\left(Z-T_{0}\right)$, which is an invariant curve of D_{1}. Notice also that in this example the fibration f_{1} is generically smooth and can be considered as a smoothing of f.

Shimada in [Sh] related fibrations by singular curves and fibrations by smooth curves on surfaces using vector fields and Frobenius morphisms of the base curves. More precisely, he proved that after applying finitely many times a process analogous to the one in above example, we can achieve this kind of smoothing for any given singular fibration on surfaces. We will use Shimada's smoothing process (cf. Proposition 2.2 as a tool to classify certain fibrations by singular curves.

In what follows we describe the contents of this thesis. In Chapter 2 we collect the main definitions and invariants (particularly we introduce our notion of equivalence of fibrations and recall the definition of the arithmetic genus of the general fiber) together with results of Shimada [$\mathbf{S h}$], Tate [$\mathbf{T}]$ and others that we shall use in our study of fibrations by singular curves. In the same Chapter 2 we place ourselves in the setting in which we could obtain our main results, namely, that of fibrations by singular curves of arithmetic genus two on surfaces over fields of characteristic three with Shimada's smoothing providing a rational elliptic surface. To this end we will rely heavily on unpublished results of Borges Neto [BN] that establishes a connection between the classification of such fibrations and the classification of some
fibrations by elliptic curves. By lack of a widely accessible reference we decided to present his results which constitutes the core of the function fields machinery we will use - in considerable detail in Chapter 3. Building on the results obtained in Chapter 3. in Chapter 4 we present our main results. Namely, we use a well-known result of Cossec and Dolgachev [CD] to reduce the study of equivalence classes of fibrations by singular curves of arithmetic genus two over fields of characteristic three with Shimada's smoothing providing a rational elliptic surface to the study of equivalence classes of fibrations obtained by blowing-up base points of certain pencils of plane cubic curves. Since the Mordell-Weil group of rational points of an elliptic surface is a birational invariant, we use it to stratify the equivalence classes of such fibrations. Under the additional assumption that the rational elliptic surface has a Mordell-Weil group of rank zero, and through a careful analysis of resolution of base points, we succeeded to provide the geometric configurations to the pairs of generators of the referred pencils of plane cubics (cf. Theorem 4.6). It turns out that the restriction obtained in the case of Mordell-Weil rank zero is surprisingly strong: they allowed us to deduce that the corresponding stratum has dimension zero. Indeed we prove that every fibration by singular curves of arithmetic genus two over fields of characteristic three with Shimada's smoothing being a rational elliptic surface of rank zero possess as smoothing a fibration obtained by resolving base points of a unique and explicit pencil of plane cubics, up to our equivalence relation (cf. Theorem 4.7). For the sake of completeness we include an example (see Example 4.9) showing that the same phenomenon does not propagate to the case where the Mordell-Weil rank of the rational elliptic surface is one. As a result of the description of Theorem4.7, mixing with results on function fields, we obtain an explicit 3-closed vector field on the projective plane - with the prescribed tangency divisor with the general member of such pencils - whose quotients produce our fibrations by singular curves of arithmetic genus two.

Smoothing and classification of fibration by singular curves

In this chapter we recall the fundamentals of Shimada's work [$\mathbf{S h}$] which are going to play an essential role in our approach, as explained in the Introduction.

Unless mentioned otherwise, we always work with varieties, surfaces and curves being integral k schemes of finite type over an algebraically closed field k of characteristic $p>0$. In particular, morphisms are k-morphisms. By technical reasons we will mean by a fibration by (non-smooth or singular) curves $f: X \rightarrow Y$ a dominant morphism between integral and complete varieties such that the general fiber is a smooth (non-smooth or singular) integral curve though the total space X is smooth after eventually restricting the base to a dense open subset.

Definition 2.1. Two fibrations $f: X \rightarrow Y$ and $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ are said to be equivalent when there are birational maps $\sigma: Y \rightarrow Y^{\prime}$ and $\varphi: X \rightarrow X^{\prime}$ such that the following natural diagram commutes.

If this is the case we denote $f \sim f^{\prime}$.
If η and η^{\prime} are the generic points of Y and Y^{\prime} respectively, then the generic fibers X_{η} and $X_{\eta^{\prime}}^{\prime}$ of f and f^{\prime}, respectively, are complete and regular algebraic curves over the fields $k(Y)$ and $k\left(Y^{\prime}\right)$ respectively. We notice that $f: X \rightarrow Y$ and $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ are equivalent if and only if their generic fibers X_{η} and $X_{\eta^{\prime}}^{\prime}$ are isomorphic curves, that is, the field extensions $k(X) \mid k(Y)$ and $k\left(X^{\prime}\right) \mid k\left(Y^{\prime}\right)$ are isomorphic over k.

Let us consider $f_{1}: S_{1} \rightarrow C_{1}$ be a fibration by curves from a surface S_{1} onto a curve C_{1}. Let D_{1} be a rational vector field on S_{1}, that is, a k-derivation of the field $k\left(S_{1}\right)$ of rational functions on S_{1}. We say that another vector field D on S_{1} is equivalent to D_{1} when $D=h D_{1}$ for some $h \in k\left(S_{1}\right) \backslash\{0\}$. It is possible to see that the composition $D_{1}^{p}=D_{1} \circ \cdots \circ D_{1}$ of D_{1} with itself p-times is also a vector field on S_{1}. We assume that D_{1} is p-closed, that is, $D_{1}^{p}=h D_{1}$ for some $h \in k\left(S_{1}\right)$.

The variety $S_{1}^{D_{1}}$, which is equal to S_{1} as a topological space, with the new structure sheaf

$$
\mathcal{O}_{S_{1}^{D_{1}}}(U)=\left\{g \in \mathcal{O}_{S_{1}}(U) \mid D_{1}(g)=0\right\}
$$

where U runs over the open subsets of S_{1}, is called the quotient of S_{1} by the vector field D_{1}. It is not difficult to prove that $S_{1}^{D_{1}}$ is normal if S_{1} is so. The inclusions $\mathcal{O}_{S_{1}^{D_{1}}}(U) \subset \mathcal{O}_{S_{1}}(U)$ induce a map

$$
\pi^{D_{1}}: S_{1} \rightarrow S_{1}^{D_{1}}
$$

which is purely inseparable of degree p, since it is an homeomorphism of surfaces and $k\left(S_{1}\right)$ is a purely inseparable field extension of $k\left(S_{1}^{D_{1}}\right)=k\left(S_{1}\right)^{D_{1}}:=\left\{g \in k\left(S_{1}\right) \mid D_{1}(g)=0\right\}$ of degree p.

If we consider $\left\{x_{P}, y_{P}\right\}$ a local coordinate system at each smooth point P at S_{1}, we can write

$$
D_{1}=h_{P}\left(f_{P} \frac{\partial}{\partial x_{P}}+g_{P} \frac{\partial}{\partial y_{P}}\right)
$$

where $h_{P} \in k\left(S_{1}\right)$ and f_{P}, g_{P} are relatively prime elements in $\mathcal{O}_{S_{1}, P}$. The divisor $\left(D_{1}\right)$ associated to D_{1} is defined by the functions $\left\{h_{P}\right\}_{P \in S_{1}}$. We say that P is an isolated singularity of D_{1} when $f_{P}(P)=g_{P}(P)=0$ and, otherwise, we say that D_{1} has only divisorial singularities in a neighborhood of P. When D_{1} has only divisorial singularities at any point of S_{1} we say that D_{1} has only divisorial singularities. We say that a curve B on S_{1} is invariant by D_{1} if $D_{1}(f) \in f \cdot \mathcal{O}_{S_{1}, P}$ for any point $P \in B$, where f is a local equation of B at P.

Proposition 2.2 (Shimada). Let us consider k an algebraically closed field of characteristic $p>0$ and $f: S \rightarrow C$ be a fibration by singular curves, where S is a normal surface and C is a smooth curve over k. If S_{1} is the normalization of $S \times_{C} C^{(1 / p)}$, then there exists a p-closed vector field D_{1} - uniquely determined up to equivalence - on S_{1} such that the diagram
commutes, where $C_{1}=C^{(1 / p)}$ and $F_{C^{(1 / p), k}}$ is the relative Frobenius map of $C^{(1 / p)}$. Moreover, after applying this process finitely many times we obtain a commutative diagram
such that $f_{n}: S_{n} \rightarrow C_{n}$ is a fibration by (generically smooth) curves.
Definition 2.3. Given a fibration $f: S \rightarrow C$ in the setting of the Proposition 2.2 we say that $f_{n}: S_{n} \rightarrow C_{n}$ is the Shimada's smoothing of f when n is the first integer such that f_{n} is a fibration by (generically smooth) curves.

The previous result suggests the following problem: "Is it possible to use Shimada's process of smoothing to classify fibrations by singular curves?". With this problem in mind we observe that since Shimada's process is intrinsic, equivalent fibrations must have equivalent smoothings. Hence a possible stratification would be by discrete data which are invariant under our equivalence relation, the most prominent being the arithmetic genus p_{a} of the generic fiber.

Since the normalization of $\left(S_{i}\right)_{\eta_{i}} \otimes_{k\left(C_{i}\right)} k\left(C_{i}\right)^{1 / p}$ is equal to $\left(S_{i+1}\right)_{\eta_{i+1}}$ where η_{i} is the generic point of C_{i}, we can apply Corollary 3.2 in [$\mathbf{S 1}$] and a result due to Rosenlicht in [R] pg. 182 to obtain that $p_{a}\left(\left(S_{i+1}\right)_{\eta_{i+1}}\right)>p_{a}\left(\left(S_{i}\right)_{\eta_{i}}\right)$ if and only if f_{i} is a fibration by singular curves.

For simplicity we will study the case where $f_{1}: S_{1} \rightarrow C_{1}$ is already the smoothing of the fibration by singular curves $f: S \rightarrow C$. This can be thought as if we are going from h_{n-1} to h_{n}, where h_{n} is the Shimada's smoothing of a fibration by singular curves h. The simplest case with this setup is when the arithmetic genera g and g_{1} of the generic fibers of f and f_{1}, respectively, are equal to 1 and 0 . However, the equivalence class of f_{1} does not determine the equivalence class of f, as we can see in [Q] Proposition 2(4). Indeed, Queen has shown in [Q] that there are non-isomorphic regular and non-smooth curves with $g=1$ and $g_{1}=0$, whose smoothings have a rational point, that is they are isomorphic to the projective line. On the other hand, $[\mathbf{B N}]$ Corollary 2 pg. 34 or Chapter 3 Proposition 3.12, shows that the simplest case where we obtain a correspondence between the equivalence classes is when $g=2, g_{1}=1$ and the characteristic of k is 3 . Fibrations with this feature will be called absolutely elliptic fibrations by singular curves of arithmetic genus 2 .

In this work we will start to describe the set of equivalence classes of absolutely elliptic fibrations by singular curves of genus 2 , over an algebraically closed fields of characteristic 3 . Actually we are going to study fibrations by singular curves $f: S \rightarrow C$ such that the total spaces S_{1} of the smoothings f_{1} in Shimada's diagram are rational surfaces. Therefore, C and C_{1} are the projective lines and, locally, they are the affine lines $\mathbb{A}_{t}^{1}=\operatorname{Spec} k[t]$ and $\mathbb{A}_{T}^{1}=\operatorname{Spec} k[T]$, respectively, with $T^{3}=t$. Summing up, we are interested in describing the set \mathscr{H} of equivalence classes of absolutely elliptic fibrations by singular curves of genus 2 with the prescribed restrictions.

Absolutely elliptic regular curves of genus two

In this chapter we will study the generic fiber of absolutely elliptic fibrations by singular curves of genus two. As we will be concerned with birational invariants of these curves, we will actually study them with a function fields point of view. Actually, most results presented here are not ours and were obtained originally by Borges Neto in his unpublished PhD Thesis [BN]. For the sake of completeness we will present proofs.

Let us consider K a non-algebraically closed field of positive characteristic p and C be a regular complete and geometrically integral algebraic curve over K. Hence, K is algebraically closed in $K(C)$ and $K(C) \mid K$ is separably generated. By definition C is said to be non-smooth when $\bar{C}:=C \otimes_{K} \bar{K}$ is a non-regular curve over \bar{K}. Since the arithmetic genus is invariant under base field extensions, it follows that C is non-smooth if and only if $p_{g}(C)=p_{a}(C)=p_{a}(\bar{C})>p_{g}(\bar{C})$, where p_{a} and p_{g} stand by the arithmetic and geometric genera of the indicated curves, respectively. We recall that

$$
\begin{equation*}
p_{a}(\bar{C})-p_{g}(\bar{C})=\sum \delta_{P} \tag{3.1}
\end{equation*}
$$

where $\delta_{P}=\operatorname{dim}_{\bar{K}} \frac{\widetilde{\mathcal{O}_{\bar{C}}, P}}{}, P$ runs over the points of \bar{C} and $\widetilde{\mathcal{O}_{\bar{C}, P}}$ is the integral closure of $\mathcal{O}_{\bar{C}, P}$ in $\bar{K}(\bar{C})$.
In this chapter we will study regular curves C with $p_{a}(C)=2$ and $p_{g}(\bar{C})=1$. Such curves are called absolutely elliptic regular curves of genus two. It follows by Tate's upper bound (see [T]) that $p \leq 2 p_{a}(C)+1=5$. Therefore such phenomenon can occur only when we are working over fields of characteristic two, three or five. More precisely, it is shown in [BN] and [CS] that absolutely elliptic curves can occur only in characteristic two or three. In this work we will focus only in the case of characteristic three.

Since genus two curves are hyperelliptic curves, it follows from Lemma 3.6.1 and Corollary 3.6.3 in [G] that a genus two curve C over K is birationally equivalent to an affine plane curve over K given by the equation

$$
Y^{2}=f(X)
$$

where $f(X)$ is a square free polynomial in $K[X]$ of degree 5 or 6 . Both degrees can be obtained from one another by means of isomorphisms of $K(C) \mid K$. From now on we will describe polynomials $f(X)$ with degree 6 for which the corresponding curves are absolutely elliptic.

We notice that $f(X)$ is a separable polynomial in $\bar{K}[X]$ if and only if the affine plane curve over \bar{K} given by $Y^{2}=f(X)$ is regular. This is, in turn, equivalent to the smoothness of the affine plane curve over K given by $Y^{2}=f(X)$. Therefore, regular but non-smooth curves C of genus two over K are birationally equivalent to an affine plane curve over K given by the equation $Y^{2}=f(X)$ where $f(X)$ is a square free polynomial in $K[X]$ of degree 6 and is inseparable as a polynomial in $\bar{K}[X]$.

Proposition 3.1. Let us consider K be a field of characteristic three and C be a genus two regular and geometrically integral curve over K. Then, C is absolutely elliptic if and only if it is birationally equivalent to an affine plane curve given by $Y^{2}-f(X)$, where $f(X)=\left(a_{0} X^{3}-a_{1}\right)\left(b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}\right)$ with $a_{0}, a_{1}, b_{0}, b_{1}, b_{2}, b_{3} \in K, a_{0} b_{0} \neq 0, \frac{a_{1}}{a_{0}} \notin K^{3}$ and $b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ separable.
Proof. If $f^{\prime}(X)=0$, then $f(X)=a_{0} X^{6}+a_{1} X^{3}+a_{2}$ with $a_{0}, a_{1}, a_{2} \in K$ and $a_{0} \neq 0$. Hence, in $\bar{K}[X], f(X)$ can be factorized as $a(X-b)^{3}(X-c)^{3}$. We notice that $b \neq c$ because, otherwise, $f(X)$ would not be a square free polynomial in $K[X]$. In this case \bar{C} has two singular points and, from (3.1), $p_{g}(\bar{C})=0$. Therefore, we can restrict ourselves to the case $f^{\prime}(X) \neq 0$.

We notice firstly that $f(X)$ can not be irreducible, because otherwise, $f(X)$ would be separable implying the smoothness of C. Hence $f(X)=g(X) h(X)$ with $g(X)$ and $h(X)$ having $\operatorname{gcd}(g(X), h(X))=1$ in $K[X]$. We consider $q(X)$ being an irreducible common factor of $f(X)$ and $f^{\prime}(X)$. Since $f(X)$ is square free, we may assume without loss of generality that $g(X)=q(X)$. From $f^{\prime}(X)=q^{\prime}(X) h(X)+$ $q(X) h^{\prime}(X)$ we obtain that $q(X)$ also divides $q^{\prime}(X)$. Hence $q^{\prime}(X)=0$ or equivalently $q(X) \in K\left[X^{3}\right]$. Therefore, $f(X)=\left(a_{0} X^{3}+a_{1}\right)\left(b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}\right)$ with $a_{0}, a_{1}, b_{0}, b_{1}, b_{2}, b_{3} \in K, a_{0} b_{0} \neq 0$. We also have $\frac{a_{1}}{a_{0}} \notin K^{3}$ since $a_{0} X^{3}+a_{1}=q(X)$ is irreducible. To finish the proof, we notice that $f^{\prime}(X) \neq 0$ implies that $\left(b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}\right)^{\prime} \neq 0$, that is, $b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ has no triple root in \bar{K}. It is not difficult to prove that if $b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ has a double root a and a simple root b, both in \bar{K}, then they must belong to K. However, in this case $f(X)$ would not be a square free polynomial. Therefore, $b_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ must be a separable polynomial.

It is possible to use the previous result to give a normal form for absolutely elliptic genus two regular curves C over a field K of characteristic three, as we will do below. Notice that C is birationally equivalent to an affine plane curve given by

$$
\begin{equation*}
Y^{2}-\left(X^{3}-\alpha\right)\left(f_{0} X^{3}+f_{1} X^{2}+f_{2} X+f_{3}\right) \tag{3.2}
\end{equation*}
$$

with $\alpha, f_{0}, f_{1}, f_{2}, f_{3} \in K, \alpha \notin K^{3}$ and $f_{0} X^{3}+f_{1} X^{2}+f_{2} X+f_{3}$ separable. In this way $K(C)=K(x, y)$ where x and y are the residue classes of X and Y modulo $Y^{2}-\left(X^{3}-\alpha\right)\left(f_{0} X^{3}+f_{1} X^{2}+f_{2} X+f_{3}\right)$, respectively.

Let us consider $L=K(\beta)$ where $\beta \in \bar{K}$ is such that $\beta^{3}=\alpha$. We can write

$$
y^{2}=(x-\beta)^{3}\left(f_{0}(x-\beta)^{3}+f_{1}(x-\beta)^{2}+\left(f_{2}-\beta f_{1}\right)(x-\beta)+\left(f_{3}+f_{2} \beta+f_{1} \beta^{2}+f_{0} \beta^{3}\right)\right)
$$

in $L\left(C \otimes_{K} L\right)=L \cdot K(C)=L(x, y)$. By considering $z=1 /(x-\beta)$ and $w=z^{3} y$ we obtain that $L\left(C \otimes_{K} L\right)=L(z, w)$ with z and w satisfying the identity

$$
\begin{equation*}
w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6} \tag{3.3}
\end{equation*}
$$

where $a_{0}=f_{3}+f_{2} \beta+f_{1} \beta^{2}+f_{0} \beta^{3}, a_{2}=f_{2}-\beta f_{1}, a_{4}=f_{1}$ and $a_{6}=f_{0}$. Therefore, $C \otimes_{K} L$ is an elliptic curve over L with Weierstrass form given by the above relation between z and w. We refer
the reader to [$\mathbf{S i} \mathbf{i}]$ and $[\mathbf{L a}]$ for results about elliptic curves over non-algebraically closed fields. The discriminant associated to the Weierstrass form (3.3) is

$$
\Delta=-a_{0} a_{4}^{3}+a_{2}^{2} a_{4}^{2}-a_{2}^{3} a_{6}=-f_{3} f_{1}^{3}+f_{2}^{2} f_{1}^{2}-f_{2}^{3} f_{0}
$$

which is the discriminant of the separable polynomial $f_{0} X^{3}+f_{1} X^{2}+f_{2} X+f_{3}$. Hence it is nonzero and the elliptic curve is smooth.

In the following we derive useful properties about some coefficients of the Weierstrass form (3.3) and its j-invariant.

Lemma 3.2. If $w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6}$ is a Weierstrass form obtained as in (3.3), then $a_{2} \neq 0$ and $a_{0} \in L \backslash K$.

Proof. By construction we have that L is a K-vector space with base $\left\{1, \beta, \beta^{2}\right\}$. Since $f_{3}+f_{0} \beta^{3} \in K$ it follows that $f_{3}+f_{2} \beta+f_{1} \beta^{2}+f_{0} \beta^{3} \in K$ if and only if there exists $g \in K$ such that $g+f_{2} \beta+f_{1} \beta^{2}=0$, which is possible only when $g=f_{2}=f_{1}=0$. By the same reason we have $a_{2}=f_{2}-f_{1} \beta=0$ only when $f_{2}=f_{1}=0$. But this is not possible because, otherwise, $f_{0} X^{3}+f_{1} X^{2}+f_{2} X+f_{3}=f_{0} X^{3}+f_{3}$ would not be separable.

The j-invariant associated to the Weierstrass form (3.3) is given by

$$
j=\frac{a_{2}^{6}}{a_{0}^{2} \Delta}=\frac{\left(f_{2}^{3}-f_{1}^{3} \beta^{3}\right)^{2}}{\left(f_{3}+f_{2} \beta+f_{1} \beta^{2}+f_{0} \beta^{3}\right)^{2}\left(-f_{3} f_{1}^{3}+f_{2}^{2} f_{1}^{2}-f_{2}^{3} f_{0}\right)} \in L
$$

Hence we have the following consequence of the last lemma.
Corollary 3.3. If $w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6}$ is a Weierstrass form obtained as in 3.3), then $j \in L \backslash K$ and $L=K(j)$.

Proof. Since $j=a_{2}^{6} / a_{0}^{2} \Delta$ and $a_{2}^{6}, \Delta \in K$, then $j \in K$ would imply that $a_{0}^{2} \in K$. In this case, $\left[K\left(a_{0}\right): K\right]$ would be a common divisor between 2 and $[L: K]=3$, that is, $\left[K\left(a_{0}\right): K\right]=1$. But this is not possible by the previous lemma. Since $j \in L \backslash K$ it follows immediately that $L=K(j)$.

Remark 3.4. Since $[L: K]=3$, it follows from the previous corollary that $K(\beta)=L=K(j)$. We can write j with respect to the base $\left\{1, \beta, \beta^{2}\right\}$ as follows.

$$
j=\frac{a_{2}^{6}}{a_{0}^{2} \Delta}=\frac{a_{2}^{6}}{a_{0}^{3} \Delta} a_{0}=g\left(f_{3}+f_{0} \beta^{3}\right)+g f_{2} \beta+g f_{1} \beta^{2}
$$

where $g=\frac{a_{2}^{6}}{a_{0}^{3} \Delta} \in K \backslash\{0\}$.
We notice that we can write $j=\frac{a \beta+b}{c \beta+d}$ where $a d-b c \neq 0$. Indeed, this is possible if and only if $\left(g\left(f_{3}+f_{0} \beta^{3}\right)+g f_{2} \beta+g f_{1} \beta^{2}\right)(c \beta+d)=a \beta+b$, or equivalently, if and only if a, b, c and d form a solution for the system

$$
\left\{\begin{array}{ccc}
-a+c_{0} c+c_{1} d & = & 0 \\
-b+c_{2} \beta^{3} c+c_{0} d & =0 \\
c_{1} c+c_{2} d & =0
\end{array}\right.
$$

where $c_{0}=g\left(f_{3}+f_{0} \beta^{3}\right), c_{1}=g f_{2}$ and $c_{2}=g f_{1}$. Such system admits $a=c_{0} c_{2}-c_{1}^{2}, b=c_{2}^{2} \alpha-c_{0} c_{1}$, $c=c_{2}$ and $d=-c_{1}$ as solution. Moreover, $a d-b c=c_{1}^{3}-c_{2}^{3} \beta^{3}=g^{3} a_{2}^{3} \neq 0$ from the last lemma .

Now we present a normal form for absolutely elliptic curves of genus two.
Proposition 3.5 (Borges Neto). Let C be a regular, complete and geometrically integral curve of genus two over a field K, of characteristic 3, birational to an affine plane curve given by (3.2). Then it is birational to the affine plane curve given by the polynomial

$$
Y^{2}-h\left(X^{3}-j^{3}\right)\left(X^{3}-j^{3} X-j^{3}\right)
$$

in $K[X, Y]$, with $h=\left(\alpha f_{1}^{3}-f_{2}^{3}\right) \Delta \in K, j \in K^{1 / 3} \backslash K$ where Δ and j being the discriminant and j-invariant of the Weierstrass form (3.3), respectively. In this case, if we denote $L=K(j)$, then $C \otimes_{K} L$ is birational to the affine smooth elliptic curve defined by the polynomial

$$
W^{2}+h\left(j^{4} Z^{3}+j^{3} Z^{2}-1\right)
$$

in $L[Z, W]$, which admits a rational point at infinity.
Proof. As we have already seen $K(C)=K(x, y)$ where $y^{2}=\left(x^{3}-\alpha\right)\left(f_{0} x^{3}+f_{1} x^{2}+f_{2} x+f_{3}\right)$. If we extend the base field K to L, then we will get an elliptic curve with Weierstrass form $w^{2}=$ $a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6}$ where $a_{0}=f_{3}+f_{2} \beta+f_{1} \beta^{2}+f_{0} \beta^{3}, a_{2}=f_{2}-\beta f_{1}, a_{4}=f_{1}$ and $a_{6}=f_{0}$. It follows from Corollary 3.3 that $j \neq 0$.

By Theorem 3.6.4 in [G], $K(x)$ is the unique subfield of $K(x, y)$ of index 2 . In this way we will produce an automorphism of $K(x, y)$ induced by an automorphism of $K(x)$. Let us consider the automorphism φ of $K(x)$ defined by $\varphi(x)=\frac{A x+B}{C x+D}$ where $A=d, B=-b, C=-c, D=a$ and a, b, c and d are defined as in the previous remark. By applying φ on $\left(x^{3}-\alpha\right)\left(f_{0} x^{3}+f_{1} x^{2}+f_{2} x+f_{3}\right)$ we obtain

$$
\frac{\left(A^{3}-\alpha C^{3}\right) \Delta g^{3}}{(C x+D)^{6}}\left(x^{3}-j^{3}\right)\left(x^{3}-j^{3} x-j^{3}\right)=\frac{\left(\alpha f_{1}^{3}-f_{2}^{3}\right) \Delta g^{6}}{(C x+D)^{6}}\left(x^{3}-j^{3}\right)\left(x^{3}-j^{3} x-j^{3}\right)
$$

where $g=\left(\frac{-\Delta}{a_{2}^{5}}\right)^{3}$. Therefore, we have $K(x, y)=K\left(x, y^{\prime}\right)$ where $y^{\prime}=(C x+D)^{3} y / g^{3}$ satisfies

$$
y^{\prime 2}=h\left(x^{3}-j^{3}\right)\left(x^{3}-j^{3} x-j^{3}\right)
$$

with $h=\left(\alpha f_{1}^{3}-f_{2}^{3}\right) \Delta$.
Now we are going to study the relation between birational classes of absolutely elliptic regular curves of genus two and those of corresponding elliptic curves. In contrast with the general case, it is shown by Borges Neto in [BN] that the birational class of a regular but non-smooth curve is determined by that of its smoothing.

Remark 3.6. Let us consider E and E_{1} two elliptic curves over a field F of characteristic three given, respectively, by the Weierstrass forms

$$
\begin{equation*}
w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6} \text { and } w_{1}^{2}=b_{0} z_{1}^{3}+b_{2} z_{1}^{2}+b_{4} z_{1}+b_{6} \tag{3.4}
\end{equation*}
$$

with $a_{2} b_{2} \neq 0$. If we apply the isomorphism of E given by $z=\frac{z_{2}}{a_{0}}+\frac{a_{4}}{a_{2}}, w=\frac{w_{2}}{a_{0}}$ then we can normalize $a_{4}=0$ and $a_{0}=1$. After doing the same kind of normalization for E_{1} we can use the isomorphism described in paragraph 2, pg. 301, of [La] to obtain that E and E_{1} are isomorphic if and only if $j=j_{1}$ and $\frac{a_{2}}{b_{2}}=u^{2} \in F^{2}$. Moreover, the isomorphism between E and E_{1} is induced by $\varphi: F(z, w) \rightarrow F\left(z_{1}, w_{1}\right)$ given by

$$
\varphi(z)=u^{2} z_{1} \text { and } \varphi(w)=u^{3} w_{1} .
$$

In the particular case where the above Weierstrass forms are as in Proposition 3.5 we can simplify the isomorphisms between the elliptic curves as follows.

Remark 3.7. Let us consider E and E_{1} two elliptic curves over a field F of characteristic three given, respectively, by the Weierstrass forms

$$
\begin{equation*}
w^{2}=-h\left(j^{4} z^{3}+j^{3} z^{2}-1\right) \text { and } w_{1}^{2}=-h_{1}\left(j_{1}^{4} z_{1}^{3}+j_{1}^{3} z_{1}^{2}-1\right) \tag{3.5}
\end{equation*}
$$

with $h, h_{1}, j, j_{1} \in F \backslash\{0\}$. By the above remark we obtain that E and E_{1} are isomorphic if and only if $j=j_{1}$ and $\frac{h}{h_{1}}=u^{2} \in F^{2}$. Moreover, the isomorphism between E and E_{1} is induced by $\varphi: F(z, w) \rightarrow F\left(z_{1}, w_{1}\right)$ given by

$$
\varphi(z)=z_{1} \text { and } \varphi(w)=u w_{1}
$$

The following proposition characterizes when two absolutely elliptic genus two curves are isomorphic in terms of their normal forms given in Proposition 3.5 .

Proposition 3.8 (Borges Neto). Let us consider C and C_{1} two absolutely elliptic curves of genus two over a field K, of characteristic three, with normal forms $Y^{2}-h\left(X^{3}-j^{3}\right)\left(X^{3}-j^{3} X-j^{3}\right)$ and $Y_{1}^{2}-h_{1}\left(X_{1}^{3}-j_{1}^{3}\right)\left(X_{1}^{3}-j_{1}^{3} X_{1}-j_{1}^{3}\right)$, respectively, with $j, j_{1} \in K^{1 / 3} \backslash K$. Then C and C_{1} are isomorphic if and only if $j=j_{1}$ and $\frac{h}{h_{1}} \in K^{2}$. In particular, C and C_{1} are isomorphic if and only if the elliptic curves obtained from their respective base extensions, as in Proposition 3.5 are isomorphic.

Proof. If C and C_{1} are isomorphic then the elliptic curves $C \otimes_{K} K^{1 / 3}$ and $C_{1} \otimes_{K} K^{1 / 3}$ are also isomorphic. From Remark 3.7 we obtain $j=j_{1}$ and $\frac{h}{h_{1}} \in\left(K^{1 / 3}\right)^{2} \cap K=K^{2}$.

Conversely, if $j=j_{1}$ and $\frac{h}{h_{1}}=u^{2} \in K^{2}$, then $\varphi: K(x, y) \rightarrow K\left(x_{1}, y_{1}\right)$ given by

$$
\varphi(x)=x_{1} \text { and } \varphi(y)=u y_{1}
$$

is the required isomorphism of function fields.

In order to identify generic fibers of fibrations we will need a slightly more flexible notion of isomorphisms of curves naturally adapted from the notion of equivalent fibrations, where we need to allow automorphisms of targets (see Definition 2.1). The facts presented from now on reflect such flexibility that was not needed in [BN].

Definition 3.9. We say that two regular, complete and geometrically integral curves $C \mid K$ and $C_{1} \mid K_{1}$, over the fields K and K_{1} respectively, are isomorphic when their function fields $K(C) \mid K$ and $K_{1}\left(C_{1}\right) \mid K_{1}$ are isomorphic. In other words, when there are isomorphisms of fields $\sigma: K \rightarrow K_{1}$ and $\widetilde{\sigma}: K(C) \rightarrow K_{1}\left(C_{1}\right)$ commuting the following diagram.

We notice that the above proposition and the last two remarks remain working with the following modification.

Remark 3.10. Two elliptic curves $E \mid F$ and $E_{1} \mid F_{1}$ over fields of characteristic three given, respectively, by the Weierstrass forms as in 3.4 (with $a_{i} \in F, b_{j} \in F_{1}$ and $a_{2} b_{2} \neq 0$) are isomorphic if and only if there exists an isomorphism $\sigma: F \rightarrow F_{1}$ such that $\sigma(j)=j_{1}$ and $\frac{\sigma\left(a_{2}\right)}{b_{2}}=u^{2} \in F_{1}^{2}$. Moreover, the isomorphism $\widetilde{\sigma}: F(E) \rightarrow F_{1}\left(E_{1}\right)$ is given by $\widetilde{\sigma}(z)=u^{2} z_{1}$ and $\widetilde{\sigma}(w)=u^{3} w_{1}$.

Remark 3.11. Two elliptic curves $E \mid F$ and $E_{1} \mid F_{1}$ over fields of characteristic three given, respectively, by the Weierstrass forms as in 3.5 (with $h, j \in F \backslash\{0\}, h_{1}, j_{1} \in F_{1} \backslash\{0\}$ are isomorphic if and only if there exists an isomorphism $\sigma: F \rightarrow F_{1}$ such that $\sigma(j)=j_{1}$ and $\frac{\sigma(h)}{h_{1}}=u^{2} \in F_{1}^{2}$. Moreover, the isomorphism $\widetilde{\sigma}: F(E) \rightarrow F_{1}\left(E_{1}\right)$ is given by $\widetilde{\sigma}(z)=z_{1}$ and $\widetilde{\sigma}(w)=u w_{1}$.

Proposition 3.12. Two absolutely elliptic curves $C \mid K$ and $C_{1} \mid K_{1}$ of genus two over the fields of characteristic three K and K_{1}, respectively, are isomorphic if and only if the elliptic curves obtained from their respective base extensions, as in Proposition 3.5 are isomorphic.

Next results characterize elliptic curves that are smoothings of regular but non-smooth curves of genus two.

Lemma 3.13. Let F be a field of characteristic three and let $E \mid F$ be a smooth elliptic curve with Weierstrass form $w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6}$ where $j=\frac{a_{2}^{6}}{a_{0}^{2} \Delta} \neq 0$. Then E is isomorphic to the elliptic curve $E_{1} \mid F$ given by the Weierstrass form

$$
w_{1}^{2}=-g\left(j^{4} z_{1}^{3}+j^{3} z_{1}^{2}-1\right)
$$

where $g=-\frac{a_{2}^{3}}{j^{3} a_{0}^{6}}=\left(\frac{-\Delta}{a_{2}^{5}}\right)^{3}$.
Proof. Indeed we just need to consider the isomorphism $E_{1} \xrightarrow{\sim} E$ induced by $\varphi: F(z, w) \rightarrow F\left(z_{1}, w_{1}\right)$ such that $\varphi(z)=a+b z_{1}$ and $\varphi(w)=e w_{1}$, where $a=\frac{a_{4}}{a_{2}}, b=j \frac{a_{2}}{a_{0}}$ and $e=a_{0}^{2} j$.

Proposition 3.14. Let F be a field of characteristic three and let $E \mid F$ be a smooth elliptic curve with Weierstrass form $w^{2}=a_{0} z^{3}+a_{2} z^{2}+a_{4} z+a_{6}$ where $a_{0} \neq 0$. Then there exists an absolutely elliptic curve $C \mid F^{3}$ of genus two such that $C \otimes_{F^{3}} F$ is isomorphic to E if and only if the j-invariant of E belongs to $F \backslash F^{3}$.

Proof. If $j \in F \backslash F^{3}$, then by Lemma 3.13 we have that E is isomorphic to an elliptic curve with Weierstrass form given by $w_{1}^{2}=-g\left(j^{4} z_{1}^{3}+j^{3} z_{1}^{2}-1\right)$ where $g=\left(-\frac{\Delta}{a_{2}^{5}}\right)^{3} \in F^{3}$, that is, E is isomorphic to the extension of the plane affine curve given by the polynomial $Y^{2}-g\left(X^{3}-j^{3}\right)\left(X^{3}-j^{3} X-j^{3}\right)$ in $F^{3}[X, Y]$. This curve is regular but non-smooth of genus 2 since $j \in F \backslash F^{3}$.

Now if C is a regular but non-smooth curve over F^{3} then, by the above proposition, C is birational to an affine curve given by the polynomial $Y^{2}-h\left(X^{3}-j^{3}\right)\left(X^{3}-j^{3} X-j^{3}\right) \in F^{3}[X, Y]$ where $j \notin F^{3}$ is the j-invariant of the smooth elliptic curve $C \otimes_{F^{3}} F^{3}(j)$. Hence $C \otimes_{F^{3}} F$ is an elliptic curve whose Weierstrass forms are inherited from the Weierstrass forms of $C \otimes_{F^{3}} F^{3}(j)$ and so with the same j-invariant.

CHAPTER

Rational elliptic surfaces with Mordell-Weil rank zero

In this chapter we return to our main interest introduced in the end of Chapter 2, namely the description of the set \mathscr{H} of equivalence classes of absolutely elliptic fibrations by singular curves $f: S \rightarrow \mathbb{P}^{1}$ on surfaces S, such that the total spaces S_{1} of the Shimada's smoothings f_{1} are rational surfaces. Here we are considering the total space and the base of fibrations as varieties over an algebraically closed field k of characteristic three.

The Frobenius morphism $F_{\mathbb{P}^{1}, k}$ corresponds to the base field extension $k\left(\mathbb{P}^{1}\right)^{1 / 3}=k(t)^{1 / 3}=k(T)$ of $k(t)$, where $T^{3}=t$. Hence we can consider $K=k(t)$ and $L=k(T)$ in Proposition 3.5 in order to view the generic fibers of the fibrations involved in Shimada's process as the curves studied in Chapter 3 .

As we have seen in Proposition 3.12, the study of the generic fibers of fibrations by absolutely elliptic curves of genus two, is equivalent to the study of the generic fibers of their smoothings. In this way, by using Proposition 3.14, we can change our viewpoint from \mathscr{H} to \mathscr{E}, the set of equivalence classes of elliptic fibrations (see below) on rational surfaces whose j-invariants of their generic fibers are not cubic powers in $k(T)$.

Now we briefly recall some basic terminology on the theory of rational elliptic surfaces. Let \mathcal{E} be a smooth projective surface over k. We say that \mathcal{E} is a rational elliptic surface when \mathcal{E} is a rational surface and there is an elliptic fibration $\pi: \mathcal{E} \rightarrow \mathbb{P}^{1}$, that is, a fibration such that almost all fibers are elliptic curves and no fiber contains an exceptional curve of first kind. We assume that π has a global section O. For instance, the resolution of base points of a pencil of plane cubic curves gives rise to a rational elliptic surface. Actually, it follows, from [CD] Theorem 5.6.1, that any elliptic fibration on rational surfaces is equivalent to a fibration arising in this way.

Remark 4.1. Notice that each smoothing of absolutely elliptic fibration of genus two possesses a section induced by the rational point mentioned in Proposition 3.5

Our strategy to describe \mathscr{E} will use birational invariants of generic fibers of elliptic fibrations. To do this, we need to recall some basic information about elliptic curves.

Let E denote the generic fiber of π, which is an elliptic curve over the function field $k\left(\mathbb{P}^{1}\right)=k(T)$. It can be given by a Weierstrass equation

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{2}, a_{4}, a_{6} \in k[T]$ and $\operatorname{deg} a_{i} \leq i$ (see [Shi] p. 32). In this case the discriminant $\Delta=-a_{2}^{2}\left(a_{2} a_{6}-\right.$ $\left.a_{4}^{2}\right)-a_{4}^{3}$ is a polynomial of degree at most 12 .

The group $E(k(T))$ of $k(T)$-rational points of E is in a natural one-to-one correspondence with the sections of π and is called the Mordell-Weil group of E. From [Shi], Theorem 1.1 and Theorem 10.3, we know that $E(k(T))$ is a finitely generated abelian group with rank

$$
\begin{equation*}
\operatorname{rk} E(k(T))=8-\sum_{v \in R}\left(m_{v}-1\right) \tag{4.1}
\end{equation*}
$$

where $R=\left\{v \in \mathbb{P}^{1} \mid F_{v}:=\pi^{-1}(v)\right.$ is reducible $\}$ and m_{v} is the number of components of F_{v}. The possible special fibers, including the reducible fibers can be seen in the following table.

Kodaira Symbol	I_{1}	I_{m}	$I I$	$I I I$
Special fiber	¹/			

Kodaira Symbol	IV	I_{0}^{*}	I_{m}^{*}
Special fiber			

Kodaira Symbol	$I V^{*}$	III*	$I I^{*}$
Special fiber			

Remark 4.2. Recall that we have the following association among root lattices, special fibers and numbers of its components.

Root Lattice	$A_{m-1}(m \geq 4)$	D_{m+4}	E_{8}	E_{7}	E_{6}	A_{2}	A_{1}
Kodaira Symbol	I_{m}	I_{m}^{*}	$I I^{*}$	$I I I^{*}$	$I V^{*}$	I_{3} and $I V$	I_{2} and $I I I$
\sharp Components	m	$m+5$	9	8	7	3	2

Table 4.1: Root Lattices, special fibers and numbers of components

We also recall the correspondence below (cf. [JLRRSP] Table 1), among a special fiber $F_{v}=\pi^{-1}(v)$ and the order δ of v as a root of Δ.

Kodaira Symbol	I_{m}	$I I$	$I I I$	I_{0}^{*}	I_{1}^{*}	I_{2}^{*}	I_{4}^{*}	$I I I^{*}$	$I I^{*}$	$I V$
δ	m	≥ 3	3	6	7	8	10	9	11 or 12	$\geqslant 5$

Table 4.2: Root Orders of Δ

Denoting by T_{v} the root lattice associated to a reducible fibre F_{v}. In a elliptic surface the lattice $\mathcal{T}=\bigoplus_{v \in R} T_{v}$, called trivial lattice, determines the Mordell-Weil group. Indeed, Shioda shows in [Shi] that the Mordell-Weil group of an elliptic surface is isomorphic to its Néron-Severi group quotiented by its trivial lattice. In [OS] Oguiso and Shioda give all the possible structures for the Mordell-Weil group $E(k(T))$ of a rational elliptic surface.

Since the Mordell-Weil group is invariant under our notion of equivalence of fibrations, we may stratify the set

$$
\mathscr{E}=\bigsqcup_{i=0}^{8} \mathscr{E}_{i}
$$

where \mathscr{E}_{i} is the subset of \mathscr{E} of equivalence classes of elliptic fibrations with Mordell-Weil rank i. In this work we will be concerned with the part \mathscr{E}_{0}.

We state below only the rank zero information of Oguiso-Shioda's theorem.

Theorem 4.3. The trivial lattice \mathcal{T} and the Mordell-Weil lattice $E(k(T))$ of a rational elliptic surface with Mordell-Weil rank zero are given by the following list.

1. $\mathcal{T}=E_{8}$ and $E(k(T))=0$;
2. $\mathcal{T}=A_{8}$ and $E(k(T))=\mathbb{Z} / 3 \mathbb{Z}$;
3. $\mathcal{T}=D_{8}$ and $E(k(T))=\mathbb{Z} / 2 \mathbb{Z}$;
4. $\mathcal{T}=E_{7} \oplus A_{1}$ and $E(k(T))=\mathbb{Z} / 2 \mathbb{Z}$;
5. $\mathcal{T}=A_{5} \oplus A_{2} \oplus A_{1}$ and $E(k(T))=\mathbb{Z} / 6 \mathbb{Z}$;
6. $\mathcal{T}=A_{4}^{\oplus 2}$ and $E(k(T))=\mathbb{Z} / 5 \mathbb{Z}$;
7. $\mathcal{T}=A_{2}^{\oplus 4}$ and $E(k(T))=(\mathbb{Z} / 3 \mathbb{Z})^{2}$;
8. $\mathcal{T}=E_{6} \oplus A_{2}$ and $E(k(T))=\mathbb{Z} / 3 \mathbb{Z}$;
9. $\mathcal{T}=A_{7} \oplus A_{1}$ and $E(k(T))=\mathbb{Z} / 4 \mathbb{Z}$;
10. $\mathcal{T}=D_{6} \oplus A_{1}^{\oplus 2}$ and $E(k(T))=(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
11. $\mathcal{T}=D_{5} \oplus A_{3}$ and $E(k(T))=\mathbb{Z} / 4 \mathbb{Z}$;
12. $\mathcal{T}=D_{4}^{\oplus 2}$ and $E(k(T))=(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
13. $\mathcal{T}=\left(A_{3} \oplus A_{1}\right)^{\oplus 2}$ and $E(k(T))=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$;

Using the previous remark we can remove from this list the cases arising from fibrations whose generic fibers have cubic j-invariant. More precisely:

Lemma 4.4. Over an algebraically closed field k of characteristic 3 we have the following possibilities for special fibers of rational elliptic surfaces with Mordell-Weil rank 0 and j-invariant in $k(T) \backslash k(T)^{3}$.

1. $I I^{*}, I_{1}$ when $\mathcal{T}=E_{8}$;
2. $I_{4}^{*}, 2 I_{1}$ when $\mathcal{T}=D_{8}$;
3. $I I I^{*}, I_{2}, I_{1}$ when $\mathcal{T}=E_{7} \oplus A_{1}$;
4. $2 I_{5}, 2 I_{1}$ when $\mathcal{T}=A_{4}^{\oplus 2}$;
5. $I_{8}, I_{2}, 2 I_{1}$ when $\mathcal{T}=A_{7} \oplus A_{1}$;
6. $I_{2}^{*}, 2 I_{2}$ when $\mathcal{T}=D_{6} \oplus A_{1}^{\oplus 2}$;
7. I_{1}^{*}, I_{4}, I_{1} when $\mathcal{T}=D_{5} \oplus A_{3}$;
8. $2 I_{4}, 2 I_{2}$ when $\mathcal{T}=\left(A_{3} \oplus A_{1}\right)^{\oplus 2}$.

Proof. To begin with we eliminate the cases of Theorem 4.3 having cubic j-invariant. Notice that the cases $2,5,7$ and 8 admit at least two points of order dividing 3 . On the other hand these points correspond to flex points in a Weierstrass equation. From [La] (2.6) pg. 302, an elliptic curve over a field of characteristic 3, with j-invariant different from zero, admits a Weierstrass equation of the form $y^{2} z=x^{3}+a_{2} x^{2} z+a_{6} z^{3}$ with $\Delta=-a_{2}^{3} a_{6}$ and $j=-a_{2}^{3} / a_{6}$. Hence its flex points are $(0: 1: 0),\left(-a_{6}^{1 / 3}: a_{2}^{1 / 2}: 1\right)$ and $\left(-a_{6}^{1 / 3}:-a_{2}^{1 / 2}: 1\right)$, over $\overline{k(T)}$, and we may conclude that elliptic curves E with at least two order three points in $E(k(T))$ must have j-invariant in $k(T)^{3}$. Indeed, the points $\left(-a_{6}^{1 / 3}: a_{2}^{1 / 2}: 1\right)$ and $\left(-a_{6}^{1 / 3}:-a_{2}^{1 / 2}: 1\right)$ will be the two order three points in $E(k(T))$, so $a_{6} \in k(T)^{3}$. We do not need to consider case 12 either, since each D_{4} is associated to a special fiber of type I_{0}^{*} and, from the second table of previous remark, we deduce that Δ and consequently j belongs to $k(T)^{3}$.

For all root lattices appearing in the statement of this lemma, but item 5 , if we compare special fibers and their possible orders δ as roots of Δ (summing up to 12), together with 4.1), we obtain, when j is not a cubic power, that the special fibers are necessarily as described. At last, for the case 5 this analysis provides the two possibilities $I_{8}, I_{2}, 2 I_{1}$ and $I_{8}, I I I, I_{1}$ as special fibers when $\mathcal{T}=A_{7} \oplus A_{1}$. However a rational elliptic surface with special fibers $I_{8}, I I I, I_{1}$ does not exist, from [JLRRSP] 4.2.7(28).

Under the same assumptions as in the previous lemma we have:
Corollary 4.5. Mordell-Weil rank zero elliptic fibrations with distinct root lattices can not be equivalent.
Proof. Since the Mordell-Weil group is invariant under birational equivalence we may restrict our attention to the cases with same group. Besides, since automorphisms of \mathbb{P}^{1} preserve root orders of the discriminant Δ, Lemma 4.4 and Table 4.2 say that fibrations with $\mathcal{T}=D_{8}$ and $\mathcal{T}=E_{7} \oplus A_{1}$ (respectively $\mathcal{T}=D_{5} \oplus A_{3}$ and $\left.\mathcal{T}=A_{7} \oplus A_{1}\right)$ are not equivalent.

As a consequence from this corollary

$$
\mathscr{E}_{0}=\bigsqcup_{\ell=1}^{8} \mathscr{E}_{0, \ell}
$$

where $\mathscr{E}_{0, \ell}$ is the subset of \mathscr{E}_{0} consisting of equivalence classes of elliptic fibrations with lattice as in Lemma 4.4 item ℓ. From now on we will focus our attention to describe each $\mathscr{E}_{0, \ell}$.

We say that a base point $P \in \mathbb{P}^{2}$ of a pencil Λ of plane curves with no common components is a point with index n when the intersection index at P between any two distinct members of Λ is equal to n.

Theorem 4.6. Let \mathcal{E} be a rational elliptic surface over an algebraically closed field k of characteristic 3 with Mordell-Weil rank 0, j-invariant in $k(T) \backslash k(T)^{3}$ and trivial lattice \mathcal{T}. Then the elliptic fibration $\pi: \mathcal{E} \rightarrow \mathbb{P}^{1}$ is equivalent to a fibration obtained from the resolution of base points of a pencil Λ as described below.

1. If $\mathcal{T}=E_{8}$, then $\Lambda=\langle D, 3 L\rangle$, where D is an irreducible nodal cubic curve and L is its inflectional line (cf. Figure 4.1);
2. If $\mathcal{T}=D_{8}$, then $\Lambda=\left\langle D, L_{1}+2 L_{2}\right\rangle$ where D is an irreducible nodal cubic curve, L_{1} is its inflectional line and L_{2} is the line passing through the flex point, tangent to D at a smooth point (cf. Figure 4.2);
3. If $\mathcal{T}=E_{7} \oplus A_{1}$, then $\Lambda=\left\langle D, L_{1}+2 L_{2}\right\rangle$, where D is an irreducible nodal cubic curve, L_{1} is the line through the node and the flex point of D and L_{2} is the inflectional line (cf. Figure 4.4);
4. If $\mathcal{T}=A_{4}^{\oplus 2}$, then $\Lambda=\left\langle D, Q_{1}+S_{1}\right\rangle$, where D is an irreducible nodal cubic curve, Q_{1} is an irreducible conic curve intersecting D at the node and the flex with indices 5 and 1 , respectively, and S_{1} is the flex line (cf. Figure 4.6);
5. If $\mathcal{T}=A_{7} \oplus A_{1}$, then $\Lambda=\left\langle D, L_{1}+L_{2}+L_{3}\right\rangle$, where D is an irreducible nodal cubic, L_{1} is its inflectional line and L_{2}, L_{3} are lines with their intersections represented in Figure 4.10.
6. If $\mathcal{T}=D_{6} \oplus A_{1}^{\oplus 2}$, then $\Lambda=\left\langle D, L_{1}+2 L_{2}\right\rangle$, where D is an irreducible nodal cubic curve, L_{1} is the line through the flex and the node and L_{2} is the line through the flex, tangent at a smooth point of D (cf. Figure 4.22);
7. If $\mathcal{T}=D_{5} \oplus A_{3}$, then $\Lambda=\left\langle D, Q_{1}+S_{1}\right\rangle$, where D is an irreducible nodal cubic curve, Q_{1} is an irreducible conic curve intersecting D at the node and the flex with indices 4 and 2 , respectively, and S_{1} is the flex line (cf. Figure 4.14);
8. If $\mathcal{T}=\left(A_{3} \oplus A_{1}\right)^{\oplus 2}$, then $\Lambda=\left\langle Q_{1}+L_{1}, Q_{2}+L_{2}\right\rangle$, where Q_{1}, Q_{2} are irreducible conic curves and L_{1}, L_{2} are lines with their intersections represented in Figure 4.19

Proof. We describe the strategy of our proof. To begin with, for each special fiber appearing in Lemma 4.4 we collect all possibilities $\left(C, P, n_{P}\right)$ of singular plane cubic curves C with marked singular points P - and indices n_{P} attached to them - for which there exists a sequence of $\sum n_{P}$ blowing-ups at the marked points, whose total transforms provide the given special fiber. (cf. Appendix A)

The second step in our proof will be to select, for each \mathcal{T}, the pencils generated by two cubic curves appearing as contractions of the two special fibers with higher number of components. This choice of generators can be made up to an automorphism of \mathbb{P}^{1} and will restrict the values the Mordell-Weil rank may reach. Yet some of these pencils will give rise to rational elliptic surfaces with rank higher than zero and will be discarded.

The third and final step is to study the equivalence between two fibrations, with same \mathcal{T}, obtained from distinct pencils. To this end we will need to identify the group of sections of the elliptic fibrations or, equivalently, the group $E(k(T))$ - since we will reach the equivalence by blowing-up base points of a pencil and contracting, in a different way, the sections and components of special fibers to obtain the second pencil.

Now we list the possible contractions for each special fiber appearing in Lemma 4.4.

Fibers	(a)	(b)	(c)	(d)	(e)	(f)	(g)
$I I^{*}$	$\underbrace{2}{ }^{3 L}$						

Table 4.3: Contractions

In the remaining of the proof we will analyze each case separately. To organize the analysis we will use the notation below.

If $P_{r}^{(l)}$ is a base point with index n_{r} of a pencil Λ_{l} of plane cubic curves, we will denote, when $s<n_{r}$, by $E_{r, s}^{(l)}$ the exceptional divisor of the s-th blow-up over P_{r}, and by $\sigma_{r}^{(l)}$ the exceptional divisor of the n_{r}-th blow-up over P_{r}. Also, we refer to the Table 4.3 in the following way: by $\left(I_{5},(d)\right)$ we will mean the contraction of the fiber I_{5} illustrated in column (d).

We notice that the exceptional divisors $\sigma_{r}^{(l)}$ determine disjoint sections of the elliptic fibration or, equivalently, distinct elements in $E(k(T))$. However the number of these $\sigma_{r}^{(l)}$ is sometimes smaller than the order of $E(k(T))$ and, in this case, we need to find its remaining elements. Also, as a general principle used to discard pencils in our analysis, we observe that a base point P of a pencil Λ with smooth general member can be a singular point of at most one member of Λ.
$\mathcal{T}=E_{8}$ By Lemma 4.4, we have a fiber of type I_{1} and a fiber of type $I I^{*}$. It is immediate to notice from the figures $\left(I I^{*},(a)\right)$ and $\left(I_{1},(a)\right)$ that the pencil is generated by $\Lambda_{1}=\langle D, 3 L\rangle$, where L is the inflectional line of the nodal irreducible cubic D. A configuration of the intersection of generators and resolution of the base point can be seen in Figure 4.1.

Figure 4.1: Resolution of Λ_{1}
$\mathcal{T}=D_{8}$ By Lemma 4.4, we have a fiber of type I_{4}^{*} and two fibers of type I_{1}. We have two pencils $\Lambda_{1}=\left\langle D, L_{1}+2 L_{2}\right\rangle$ and $\Lambda_{2}=\left\langle D^{\prime}, Q+L\right\rangle$, where D, D^{\prime} are like in $\left(I_{1},(a)\right)$ and $L_{1}+2 L_{2}, Q+L$ are like in $\left(I_{4}^{*},(a)\right),\left(I_{4}^{*},(b)\right)$, respectively.

In order to determine the geometric configuration of Λ_{1} we need to analyze the possibilities of having base points like in $\left(I_{4}^{*},(a)\right)$. For that it will be enough to analyze if the point $P_{1}^{(1)}$, as a smooth point of D, is either an inflectional point or not to obtain intersection index 5. It is immediate to see that the only way to get both indices right is if L_{1} is the inflectional line to D and L_{2} is the line through the flex and tangent to D at another smooth point. For the geometric configuration of Λ_{2} we do a similar analysis for the tangency point, $P_{1}^{(2)}$, between Q and L. The only way to get index 8 at $P_{1}^{(2)}$ is if it is a non-inflectional point of D^{\prime} and the irreducible conic Q intersects D^{\prime} with index 6 and L the tangent line at this point. In
figures 4.2 and 4.3 we can see representations of each configuration together with the resolution of the respective base points.

Figure 4.2: Resolution of Λ_{1}

Figure 4.3: Resolution of Λ_{2}
Now we will show that a fibration produced by a pencil as in Λ_{2} is equivalent to a fibration induced by Λ_{1}. To do this we just need to contract the resolution of Λ_{2} as in the sequence

$$
\sigma_{1}^{(2)} \rightarrow E_{1,7}^{(2)} \rightarrow E_{1,6}^{(2)} \rightarrow Q \rightarrow \sigma_{2}^{(2)} \rightarrow L \rightarrow E_{1,2}^{(2)} \rightarrow E_{1,3}^{(2)} \rightarrow E_{1,4}^{(2)},
$$

to obtain the pencil $\left\langle D^{\prime}, E_{1,1}^{(2)}+2 E_{1,5}^{(2)}\right\rangle$ which has same geometric configuration of Λ_{1}.
$\mathcal{T}=E_{7} \oplus A_{1}$ By Lemma 4.4, we have special fibers of type $I I I^{*}, I_{2}$ and I_{1}. Hence the two fibers with higher number of components are $I I I^{*}$ and I_{2}. The combinations $\left(I I I^{*},(a)\right),\left(I_{2},(a)\right)$ and $\left(I I I^{*},(b)\right),\left(I_{2},(b)\right)$ can not occur. Indeed, according to the general principle, the singular points of $\left(I I I^{*},(a)\right)$ and $\left(I_{2},(b)\right)$ must be smooth points of the other curve in each respective pair. However this together with the prescribed indices would provide a contradiction to Bézout's theorem. The remaining combinations give rise to pencils $\Lambda_{1}=\left\langle D, L_{1}+2 L_{2}\right\rangle$ and $\Lambda_{2}=\left\langle Q+L, 3 L^{\prime}\right\rangle$, where $L_{1}+2 L_{2}, 3 L^{\prime}$, $Q+L, D$ are like in $\left(I I I^{*},(a)\right),\left(I I I^{*},(b)\right),\left(I_{2},(a)\right)$ and $\left(I_{2},(b)\right)$, respectively. In Λ_{1}, to obtain index 2 at the node of D, the simple line L_{1} must be a line through the node of D which is not in its tangent cone. So the only way of having a base point of index 7 is if L_{1} also intersects D at the flex point and L_{2} is the inflectional line. In Λ_{2} we just need the triple line to be tangent to Q at some smooth point of $Q+L$. By Table 4.2 and the fact that sum of orders as roots of Δ is equal to 12 , both pencils must contain a nodal cubic curve as in $\left(I_{1},(a)\right)$. In figures 4.4 and 4.5 we can see representations of each configuration together with the resolution of the respective base points.

Figure 4.4: Resolution of Λ_{1}

Now we will show that a fibration produced by a pencil as in Λ_{2} is equivalent to a fibration induced by Λ_{1}. To do this we just need to contract the resolution of Λ_{2} as in the sequence

$$
\sigma_{1}^{(2)} \rightarrow E_{1,5}^{(2)} \rightarrow E_{1,4}^{(2)} \rightarrow E_{1,3}^{(2)} \rightarrow E_{1,2}^{(2)} \rightarrow L^{\prime} \rightarrow E_{2,1}^{(2)} \rightarrow \sigma_{2}^{(2)} \rightarrow L
$$

to obtain the pencil $\left\langle Q, E_{2,2}^{(2)}+2 E_{1,1}^{(2)}\right\rangle$ which has same geometric configuration of Λ_{1}, where the curve Q becomes a nodal cubic curve.

Figure 4.5: Resolution of Λ_{2}
$\mathcal{T}=A_{4}^{\oplus 2}$ By Lemma 4.4 , we have two special fibers of type I_{5} and two of type I_{1}. The two fibers with higher number of components are the two I_{5}. We start by analyzing which pairs of contractions of fibers of type I_{5} can generate pencils of generically smooth cubic curves. In what follows a pair $((\cdot),(\cdot))$ will mean the pair $\left(\left(I_{5},(\cdot)\right),\left(I_{5},(\cdot)\right)\right)$.
$((a),(a))$ Let $L_{1}+L_{2}+L_{3}$ and $L_{1}^{\prime}+L_{2}^{\prime}+L_{3}^{\prime}$ be the curves and let P_{1} and P_{2} be the marked points, both having index 3 , where P_{1} is the intersection point of L_{1} and L_{2} and P_{2} is the intersection point of L_{1}^{\prime} and L_{2}^{\prime}. We can not have a pencil with this configuration of curves and indices since we need the marked points to be base points, which can be singular points of only one member of the pencil, by the general principle. However this implies $I_{P_{1}}\left(L_{1}+L_{2}+L_{3}, L_{1}^{\prime}+L_{2}^{\prime}+L_{3}^{\prime}\right)=$ $I_{P_{2}}\left(L_{1}+L_{2}+L_{3}, L_{1}^{\prime}+L_{2}^{\prime}+L_{3}^{\prime}\right)=2$ and we need both intersection indices to be equal to 3 ;
$((a),(b))$ Let $L_{1}+L_{2}+L_{3}$ and $L_{1}^{\prime}+L_{2}^{\prime}+L_{3}^{\prime}$ be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 3,2 and 2 , respectively, where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is the intersection point of L_{1}^{\prime} and L_{2}^{\prime} and P_{3} is the intersection point of L_{1}^{\prime} and L_{3}^{\prime}. For the same reason as the previous case, it is not possible to obtain a geometric configuration in which P_{1} is a base point of index 3 ;
$((a),(c))$ Let $L_{1}+L_{2}+L_{3}$ and $Q+S$ be the curves and let P_{1} and P_{2} be the marked points of indices 3 and 4 respectively, where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is one of the intersection points of Q and S. It is not possible to obtain a pencil in which P_{2} is a base point of index 4 since Bézout's theorem implies that $Q+S$ intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 3 ;
$((a),(d))$ This case occurs and will be discussed below;
$((a),(e))$ Let $L_{1}+L_{2}+L_{3}$ and D be the curves and let P_{1} and P_{2} be the marked points of indices 3 and 5 respectively, where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is the node of D. It is not possible to obtain a pencil in which P_{2} is a base point of index 5 since Bézout's theorem implies that D can intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 3 ;
$((b),(b))$ This case occurs and will be discussed below;
$((b),(c))$ Let $L_{1}+L_{2}+L_{3}$ and $Q+S$ be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 2,2 and 4 , respectively, where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is the intersection point of L_{1} and L_{3} and P_{3} is one of the intersection points of Q and S. It is not possible to obtain a pencil in which P_{3} is a base point of index 4 since Bézout's theorem implies that $Q+S$ intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 3 ;
$((b),(d))$ Let $L_{1}+L_{2}+L_{3}$ and $Q+S$ be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points $2,2,2$ and 3. Where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is the intersection point of L_{1} and L_{3}, and P_{3} and P_{4} are the intersection points of Q and S. It is not possible to obtain a pencil in which P_{1} and P_{2} are base points of index 2 and P_{4} is a base point of index 3 . Indeed, from $I_{P_{1}}\left(L_{1}+L_{2}+L_{3}, Q+S\right)=I_{P_{2}}\left(L_{1}+L_{2}+L_{3}, Q+S\right)=2$ we have $I_{P_{i}}\left(L_{j}, Q+S\right) \geq 1$ for $i=1,2$ and $j=1,2,3$, so Bézout's theorem implies $I_{P_{4}}\left(L_{j}, Q+S\right) \leq 2$ for $j=1,2,3$;
$((b),(e))$ Let $L_{1}+L_{2}+L_{3}$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 2,2 and 5 , respectively, where P_{1} is the intersection point of L_{1} and L_{2}, P_{2} is the intersection point of L_{1} and L_{3} and P_{3} is the node of D. It is not possible to obtain a pencil in which P_{3} is a base point of index 5 since Bézout's theorem implies D can intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 3 ;
$((c),(c))$ Let $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ be the curves and let P_{1} and P_{2} be the marked points both of index 4 . Where P_{1} is one of the intersection points of Q_{1} and S_{1} and P_{2} is one of the intersection points of Q_{2} and S_{2}. It is not possible to obtain a pencil in which P_{1} and P_{2} are base points of index 4 . Indeed, on one hand we should have $P_{1} \in Q_{2} \backslash S_{2}$, by the general principle, on the other hand we should have $I_{P_{1}}\left(Q_{1}, Q_{2}\right)=3$, by Bézout's theorem. By an analogous argument we also get $I_{P_{2}}\left(Q_{1}, Q_{2}\right)=3$. However these two equalities contradict Bézout's theorem;
$((c),(d))$ This case occurs and will be discussed below;
$((c),(e))$ This case occurs and will be discussed below;
$((d),(d))$ Let $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points of indices 2,3,2 and 3 , respectively, where P_{1} and P_{2} are the intersection points of Q_{1} and S_{1} and P_{3} and P_{4} are the intersection points of Q_{2} and S_{2}. It is not possible to obtain a pencil having P_{1}, P_{2}, P_{3}
and P_{4} as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((d),(e))$ Let $Q+S$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 2,3 and 5 , respectively, where P_{1} and P_{2} are the intersection points of Q and S and P_{3} is the node of D. It is not possible to obtain a pencil having P_{1}, P_{2} and P_{3} as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((e),(e))$ Let D_{1} and D_{2} be the curves and let P_{1} and P_{2} be the marked points, both of index 5. Where P_{1} is the node of D_{1} and P_{2} is the node of D_{2}. It is not possible to obtain a pencil having P_{1} and P_{2} as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem.

Now we will describe the geometric configurations making the following pencils possible: $\Lambda_{1}=$ $\left\langle D, Q_{1}+S_{1}\right\rangle, \Lambda_{2}=\left\langle L_{1}+L_{2}+L_{3}, Q_{2}+S_{2}\right\rangle, \Lambda_{3}=\left\langle R_{1}+R_{2}+R_{3}, R_{1}^{\prime}+R_{2}^{\prime}+R_{3}^{\prime}\right\rangle, \Lambda_{4}=\left\langle Q_{1}^{\prime}+S_{1}^{\prime}, Q_{2}^{\prime}+\right.$ $\left.S_{2}^{\prime}\right\rangle$, where $L_{1}+L_{2}+L_{3}, R_{1}+R_{2}+R_{3}, R_{1}^{\prime}+R_{2}^{\prime}+R_{3}^{\prime}, Q_{1}+S_{1}, Q_{1}^{\prime}+S_{1}^{\prime}, Q_{2}+S_{2}, Q_{2}^{\prime}+S_{2}^{\prime}$ and D are like in $\left(I_{5},(a)\right),\left(I_{5},(b)\right),\left(I_{5},(b)\right),\left(I_{5},(c)\right),\left(I_{5},(c)\right),\left(I_{5},(d)\right),\left(I_{5},(d)\right)$ and $\left(I_{5},(e)\right)$, respectively. By Table 4.2 and the fact that sum of orders as roots of Δ is equal to 12 , these pencils must contain two curves as in $\left(I_{1},(a)\right)$. In Λ_{1} the only way of obtaining index 5 at the node $P_{1}^{(1)}$ of D, is if $P_{1}^{(1)} \in Q_{1} \backslash S_{1}$ and the only way of obtaining index 4 at a singular point $P_{2}^{(1)}$ of $Q_{1}+S_{1}$ is if $P_{2}^{(1)}$ is the flex of D and S_{1} is be the inflectional line, since we already have Q_{1} transversal to D at $P_{2}^{(1)}$, by Bézout's theorem. In Λ_{2}, let $P_{1}^{(2)}$ be the intersection point of L_{1} and L_{2}, for it to have index 3 we must have $P_{1}^{(2)} \in Q_{2} \backslash S_{2}$ with Q_{2} being tangent to L_{2}, without loss of generality, and L_{1} intersects Q_{2} at another point $P_{2}^{(2)}$. From here it is immediate to notice that we need Q_{2} to be tangent to L_{3} at a point $P_{3}^{(2)}$ and S_{2} will be the line through $P_{2}^{(2)}$ and $P_{3}^{(2)}$. In Λ_{3}, let $P_{1}^{(3)}$ and $P_{2}^{(3)}$ be the points where R_{3} meets R_{1} and R_{2}, respectively. Let $P_{3}^{(3)}$ be another point of R_{1} and $P_{4}^{(3)}$ another point of R_{2}, then we can take R_{1}^{\prime} as the line through $P_{1}^{(3)}$ and $P_{4}^{(3)}, R_{2}^{\prime}$ as the line through $P_{2}^{(3)}$ and $P_{3}^{(3)}$ and R_{3}^{\prime} as the line through $P_{3}^{(3)}$ and $P_{4}^{(3)}$. In Λ_{4}, let $P_{1}^{(4)}$ be one of the intersection points of Q_{1}^{\prime} and S_{1}^{\prime}, for it to be a base point of index 4 we must have, by the general principle, $P_{1}^{(4)} \in Q_{2}^{\prime} \backslash S_{2}^{\prime}$ and Q_{1}^{\prime} intersects Q_{2}^{\prime} with index 3 at this point. In figures 4.6, 4.7. 4.8 and 4.9 we can see representations of each configuration together with the resolution of the respective base points.

Figure 4.6: Resolution of Λ_{1}

Figure 4.7: Resolution of Λ_{2}

Figure 4.8: Resolution of Λ_{3}

Figure 4.9: Resolution of Λ_{4}
In the resolution of Λ_{1} the sections $\sigma_{3}^{(1)}, \sigma_{4}^{(1)}$ and $\sigma_{5}^{(1)}$ are, respectively, the proper transforms of the tangent line to Q_{1} at $P_{1}^{(1)}$, the line through $P_{1}^{(1)}$ and $P_{2}^{(1)}$ and the irreducible conic curve intersecting D with index 2 at the flex $P_{2}^{(1)}$ and intersecting Q_{1} with index 3 at the node $P_{1}^{(1)}$ of D. In the resolution of Λ_{2} the section $\sigma_{5}^{(2)}$ is the proper transform of the line through $P_{1}^{(2)}$ and $P_{3}^{(2)}$. In the resolution of Λ_{4} the sections $\sigma_{4}^{(4)}$ and $\sigma_{5}^{(4)}$ are, respectively, the proper transforms of the tangent line to Q_{1} at $P_{1}^{(4)}$ and the line through $P_{1}^{(4)}$ and $P_{2}^{(4)}$.

As before we show that fibrations obtained from $\Lambda_{i}, i=2,3,4$, are equivalent to a fibration induced by a pencil Λ_{1}. We do this by contracting each resolution in an appropriate order.

We contract the resolution of Λ_{2} as in the sequence

$$
\sigma_{4}^{(2)} \rightarrow L_{2} \rightarrow L_{3} \rightarrow L_{1} \rightarrow E_{1,1}^{(2)} \rightarrow \sigma_{1}^{(2)} \rightarrow Q_{2} \rightarrow E_{3,2}^{(2)} \rightarrow E_{3,1}^{(2)} .
$$

For Λ_{3} we have the sequence

$$
\sigma_{2}^{(3)} \rightarrow E_{2,1}^{(3)} \rightarrow R_{3} \rightarrow E_{1,1}^{(3)} \rightarrow R_{1} \rightarrow \sigma_{4}^{(3)} \rightarrow E_{4,1}^{(3)} \rightarrow R_{3}^{\prime} \rightarrow E_{3,1}^{(3)} .
$$

For Λ_{4} we have the sequence

$$
\sigma_{1}^{(4)} \rightarrow E_{1,3}^{(4)} \rightarrow Q_{1}^{\prime} \rightarrow S_{1}^{\prime} \rightarrow E_{1,1}^{(4)} \rightarrow \sigma_{4}^{(4)} \rightarrow S_{2}^{\prime} \rightarrow E_{2,2}^{(4)} \rightarrow E_{2,1}^{(4)} .
$$

After these contractions we get the pencils $\left\langle E_{1,2}^{(2)}, E_{2,1}^{(2)}+S_{2}\right\rangle,\left\langle R_{2}, R_{1}^{\prime}+R_{2}^{\prime}\right\rangle,\left\langle E_{1,2}^{(4)}, E_{3,1}^{(4)}+Q_{2}^{\prime}\right\rangle$, respectively, all with same geometric configuration of Λ_{1}, where the irreducible nodal cubic curves are the images of $E_{1,2}^{(2)}, R_{2}, E_{1,2}^{(4)}$ and the irreducible conic curves are the images of $E_{2,1}^{(2)}, R_{1}^{\prime}$ and $E_{3,1}^{(4)}$.
$\mathcal{T}=A_{7} \oplus A_{1}$ By Lemma 4.4, we have one special fiber of type I_{8}, one of type I_{2} and two of type I_{1}. The two fibers with higher number of components are the I_{8} and the I_{2}. We start by analyzing which pairs of contractions of these two special fibers can generate pencils of generically smooth cubic curves having this set of special fibers. In what follows a pair $((\cdot),(\cdot))$ will mean the pair $\left(\left(I_{8},(\cdot)\right),\left(I_{2},(\cdot)\right)\right)$.
$((a),(a))$ Let $L_{1}+L_{2}+L_{3}$ and $Q+S$ be the curves and let P_{1} and P_{2} be the marked points of indices 4 and 3 , respectively, where P_{1} is the intersection point of L_{1} and L_{2} and P_{2} is the intersection point of L_{1} and L_{3}. Since a line can intersect a conic curve with index at most 2 , it is not possible to obtain a geometric configuration in which P_{1} is a base point of index 4 being singular only in $L_{1}+L_{2}+L_{3}$;
$((a),(b))$ This case occurs and will be discussed below;
$((b),(a))$ This case occurs and will be discussed below;
$\left(((b),(b))\right.$ Let $L_{1}+L_{2}+L_{3}$ and D be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points of indices $3,3,2$ and 2, respectively. Where P_{1}, P_{2} and P_{3} are the singular points of $L_{1}+L_{2}+L_{3}$ and P_{4} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((c),(a))$ Let $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ be the curves and let P_{1}, one of the intersection points of Q_{1} and S_{1}, be the marked point of index 7 . It is not possible to obtain a pencil having P_{1} as a base points with the given index, since the general principle requires it to be a smooth point of $Q_{2}+S_{2}$, however this contradicts Bézout's theorem.
$((c),(b))$ This case occurs and will be discussed below;
$((d),(a))$ Let $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ be the curves and let P_{1} and P_{2}, the intersection points of Q_{1} and S_{1}, be the marked point of indices 6 and 2 , respectively. It is not possible to obtain a pencil having P_{1} as a base points with the given index, since the general principle requires it to be a smooth point of $Q_{2}+S_{2}$, however this contradicts Bézout's theorem;
$((d),(b))$ Let $Q+S$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 6,2 and 2, respectively, where P_{1} and P_{2} are the singular points of $Q+S$ and P_{3} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((e),(a))$ This case occurs and will be discussed below;
$((e),(b))$ Let $Q+S$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 5,3 and 2, respectively, where P_{1} and P_{2} are the singular points of $Q+S$ and P_{3} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((f),(a))$ Let $Q+S$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 5,3 and 2, respectively, where P_{1} and P_{2} are the singular points of $Q+S$ and P_{3} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would imply $P_{1}, P_{2} \in Q_{2} \backslash S_{2}$ and $I_{P_{1}}\left(Q_{1}, Q_{2}\right)=I_{P_{2}}\left(Q_{1}, Q_{2}\right)=3$ which contradicts Bézout's theorem;
$((f),(b))$ Let $Q+S$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 4,4 and 2, respectively, where P_{1} and P_{2} are the singular points of $Q+S$ and P_{3} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((g),(a))$ Let D and $Q+S$ be the curves and let P_{1}, the node of D, be the marked point of index 8 . It is not possible to obtain a pencil having P_{1} as a base point with the given index since the general principle requires it to be a smooth point of $Q+S$, however this contradicts Bézout's theorem;
$((g),(b))$ Let D_{1} and D_{2} be the curves and let P_{1} and P_{2} be the marked points of indices 8 and 2 , respectively, where P_{1} is the node of D_{1} and P_{2} is the node of D_{2}. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem.

There are other four contractions of a fiber of type I_{8} not appearing in the list since they can not be part of a generically smooth pencil. They are:

- The union of an irreducible conic curve and a transversal line with the two intersection points being base points of index 4 ;
- The union of three lines in general position with one of the intersection points being a base point of index 6 ;
- The union of three lines in general position with one of the intersection points being a base point of index 5 and another of index 2 ;
- The union of three lines in general position with one of the intersection points being a base point of index 4 and the other two of index 2.

Now we will describe the geometric configurations making the following pencils possible: $\Lambda_{1}=$ $\left\langle D, L_{1}+L_{2}+L_{3}\right\rangle, \Lambda_{2}=\left\langle Q_{1}+S_{1}, R_{1}+R_{2}+R_{3}\right\rangle, \Lambda_{3}=\left\langle Q_{1}^{\prime}+S_{1}^{\prime}, Q_{2}+S_{2}\right\rangle, \Lambda_{4}=\left\langle D^{\prime}, Q_{3}+S_{3}\right\rangle$, where $L_{1}+L_{2}+L_{3}, R_{1}+R_{2}+R_{3}, Q_{3}+S_{3}, Q_{2}+S_{2}, Q_{1}+S_{1}, Q_{1}^{\prime}+S_{1}^{\prime}, D$ and D^{\prime} are like in $\left(I_{8},(a)\right)$, $\left(I_{8},(b)\right),\left(I_{8},(c)\right),\left(I_{8},(e)\right),\left(I_{2},(a)\right),\left(I_{2},(a)\right),\left(I_{2},(b)\right)$ and $\left(I_{2},(b)\right)$, respectively. By Table 4.2 and the fact that sum of orders as roots of Δ equals 12 , these pencils must contain two curves as in $\left(I_{1},(a)\right)$. In Λ_{1}, the geometric configuration becomes easy to determine after noticing that the only one way of obtaining intersection index 4 at one of the singular points of the curve $L_{1}+L_{2}+L_{3}$ - while satisfying the general principle - is if the intersection point is the flex point of the nodal cubic curve and one of the lines, say L_{1}, is the inflectional line. In Λ_{2}, the geometric configuration is determined knowing that one can only obtain index 3 at a singular point of the curve $R_{1}+R_{2}+R_{3}$ when the conic curve Q_{1} is tangent to one of the lines through this singular point. In Λ_{3}, the geometric configuration is determined knowing
that one can only obtain index 5 at a singular point of the curve $Q_{2}+S_{2}$ when both conic curves intersect at this point with index 4 . In Λ_{4}, the geometric configuration is determined knowing that one can only obtain index 7 at a singular point of the curve $Q_{3}+S_{3}$ when the conic curve Q_{3} intersects the nodal cubic curve D^{\prime} with index 6 and this intersection point is not a flex point of D^{\prime}. The geometric configuration of these pencils and their resolutions can be seen in the figures 4.10, 4.11, 4.12 and 4.13.

Figure 4.10: Resolution of Λ_{1}

Figure 4.11: Resolution of Λ_{2}

Figure 4.12: Resolution of Λ_{3}
In the resolution of Λ_{1} the section $\sigma_{4}^{(1)}$ is the proper transform of the line through the flex $P_{1}^{(1)}$ and the node $P_{3}^{(1)}$ of D. In the resolution of Λ_{3} the section $\sigma_{4}^{(3)}$ is the proper transform of the tangent line to Q_{1} at $P_{1}^{(3)}$. In the resolution of Λ_{4} the sections $\sigma_{3}^{(4)}$ and $\sigma_{4}^{(4)}$ are, respectively, the proper transform of the tangent line to D^{\prime} at $P_{1}^{(4)}$ and the proper transform of the irreducible conic curve intersecting Q_{3} and D^{\prime} at $P_{1}^{(4)}$ both with index 3 and intersecting D^{\prime} at the node $P_{2}^{(4)}$ with index 2.

Figure 4.13: Resolution of Λ_{4}

For Λ_{2} we have the sequence

$$
\sigma_{1}^{(2)} \rightarrow S_{1} \rightarrow \sigma_{3}^{(2)} \rightarrow E_{3,2}^{(2)} \rightarrow R_{1} \rightarrow \sigma_{2}^{(2)} \rightarrow E_{2,2}^{(2)} \rightarrow E_{2,1}^{(2)} \rightarrow R_{2}
$$

For Λ_{3} we have the sequence

$$
\sigma_{2}^{(3)} \rightarrow S_{1}^{\prime} \rightarrow \sigma_{1}^{(3)} \rightarrow E_{1,4}^{(3)} \rightarrow Q_{2} \rightarrow \sigma_{3}^{(3)} \rightarrow S_{2} \rightarrow E_{1,1}^{(3)} \rightarrow E_{1,2}^{(3)}
$$

For Λ_{4} we have the sequence

$$
\sigma_{2}^{(4)} \rightarrow E_{2,1}^{(4)} \rightarrow \sigma_{3}^{(4)} \rightarrow E_{1,2}^{(4)} \rightarrow E_{1,1}^{(4)} \rightarrow \sigma_{1}^{(4)} \rightarrow E_{1,6}^{(4)} \rightarrow E_{1,5}^{(4)} \rightarrow E_{1,4}^{(4)}
$$

After these contractions we obtain the pencils $\left\langle Q_{1}, E_{1,1}^{(2)}+R_{3}+E_{3,1}^{(2)}\right\rangle,\left\langle Q_{1}^{\prime}, E_{2,1}^{(3)}+E_{2,2}^{(3)}+E_{1,3}^{(3)}\right\rangle$, $\left\langle D^{\prime}, Q_{3}+S_{3}+E_{1,3}^{(4)}\right\rangle$, respectively, all with same geometric configuration of Λ_{1}, the irreducible nodal cubic curves being the images of Q_{1}, Q_{1}^{\prime} and D^{\prime}.
$\mathcal{T}=D_{5} \oplus A_{3}$ By Lemma 4.4 we have one special fiber of type I_{1}^{*}, one of type I_{4} and one of type I_{1}. The two fibers with higher number of components are the I_{1}^{*} and the I_{4}. We start by analyzing which pairs of contractions of fibers of type I_{5} can generate pencils of generically smooth cubic curves. In what follows a pair $((\cdot),(\cdot))$ will mean the pair $\left(\left(I_{1}^{*},(\cdot)\right),\left(I_{4},(\cdot)\right)\right)$.
$((a),(a))$ Let $R_{1}+2 R_{2}$ and $L_{1}+L_{2}+L_{3}$ be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 4, 2 and 2, respectively, where P_{1} and P_{2} are distinct points in R_{2} and P_{3} is the intersection point of L_{1} and L_{2}. It is not possible to obtain a pencil in which P_{1} is a base point of index 4 since $2 R_{2}$ can only intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index 2 ;
$((a),(b))$ This case occurs and will be discussed below;
$((a),(c))$ Let $R_{1}+2 R_{2}$ and $Q+S$ be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points of indices 4 , 2, 2 and 2, respectively, where P_{1} and P_{2} are distinct points in R_{2} and P_{3} and P_{4} are the intersection points of Q and S. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((a),(d))$ Let $R_{1}+2 R_{2}$ and D be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 4,2 and 4 , respectively, where P_{1} and P_{2} are distinct points in R_{2} and P_{3} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
((b), (a)) This case occurs and will be discussed below;
$((b),(b))$ Let $R_{1}+2 R_{2}$ and $Q+S$ be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points of indices $3,2,2$ and 3 , respectively, where P_{1} is the intersection point of R_{1} and R_{2}, P_{2} and P_{3} are distinct points in R_{2} and P_{4} is one of the intersection points of Q and S. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((b),(c))$ Let $R_{1}+2 R_{2}$ and $Q+S$ be the curves and let $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} be the marked points of indices $3,2,2,2$ and 2, respectively, where P_{1} is the intersection point of R_{1} and R_{2}, P_{2} and P_{3} are distinct points in R_{2} and P_{4} and P_{5} are the intersection points of Q and S. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((b),(d))$ Let $R_{1}+2 R_{2}$ and D be the curves and let P_{1}, P_{2}, P_{3} and P_{4} be the marked points of indices 3 , 2,2 and 4 , respectively, where P_{1} is the intersection point of R_{1} and R_{2}, P_{2} and P_{3} are distinct points in R_{2} and P_{4} is the node of D. It is not possible to obtain a pencil having these points as base points with the given indices, since the general principle would make the sum of intersection indices be at least 10 which contradicts Bézout's theorem;
$((c),(a))$ Let $Q+S$ and $L_{1}+L_{2}+L_{3}$ be the curves and let P_{1} and P_{2} be the marked points of indices 5 and 2 , respectively, where P_{1} is the intersection point of Q and S and P_{2} is the intersection point of L_{1} and L_{2}. It is not possible to obtain a pencil in which P_{1} is a base point of index 5 since $Q+S$ can only intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 2 (S can not be a component of $L_{1}+L_{2}+L_{3}$);
$((c),(b))$ This case occurs and will be discussed below;
$((c),(c))$ Let $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ be the curves and let P_{1}, P_{2} and P_{3} be the marked points of indices 5,2 and 2, respectively, where P_{1} is the intersection point of Q and S and P_{2} and P_{3} are the intersection points of Q_{2} and S_{2}. It is not possible to obtain a pencil having these points as base points with the given indices, since, on one side, to obtain index 5 at P_{1} we need $P_{1} \in Q_{2} \backslash S_{2}$, on the other side, P_{2} and P_{3} are also in Q_{2}. This means that we should have the sum of intersection indices between $Q_{1}+S_{1}$ and Q_{2} being at least 7 which contradicts Bézout's theorem;
$((c),(d))$ This case occurs and will be discussed below;
$((d),(a))$ Let $R_{1}+R_{2}+R_{3}$ and $L_{1}+L_{2}+L_{3}$ be the curves and let P_{1} and P_{2} be the marked points of indices 4 and 2, respectively, where P_{1} is the common intersection point of R_{1}, R_{2} and R_{3} and P_{2} is the intersection point of L_{1} and L_{2}. It is not possible to obtain a pencil in which P_{1} is a base point of index 4 since $R_{1}+R_{2}+R_{3}$ can only intersect $L_{1}+L_{2}+L_{3}$ at a smooth point with index at most 3 (R_{i} can not be a component of $L_{1}+L_{2}+L_{3}$, for $i=1,2,3$);
$((d),(b))$ Let $R_{1}+R_{2}+R_{3}$ and $Q+S$ be the curves and let P_{1} and P_{2} be the marked points of indices 4 and 3 , respectively, where P_{1} is the common intersection point of R_{1}, R_{2} and R_{3} and P_{2} is one of the intersection point of Q and S. It is not possible to obtain a pencil having these points as base points with the given indices, since to obtain index 4 at $P_{1} \in Q \backslash S$ where Q is tangent to one of
the three lines, say R_{1}, which implies we can not obtain index 3 at P_{2} since both R_{2} and R_{3} would be transversal to Q;
$((d),(c))$ This case occurs and will be discussed below;
$((d),(d))$ Let $R_{1}+R_{2}+R_{3}$ and D be the curves and let P_{1} and P_{2} be the marked points of indices 4 and 4 , respectively, where P_{1} is the common intersection point of R_{1}, R_{2} and R_{3} and P_{2} is the node of D. It is not possible to obtain a pencil in which P_{2} is a base point of index 4 since D can only intersect $R_{1}+R_{2}+R_{3}$ at a smooth point with index at most 3 .

Now we will describe the geometric configurations making the following pencils possible: $\Lambda_{1}=$ $\left\langle D, Q_{1}+S_{1}\right\rangle, \Lambda_{2}=\left\langle L_{1}+L_{2}+L_{3}, R_{1}+2 R_{2}\right\rangle, \Lambda_{3}=\left\langle Q_{2}+S_{2}, R_{3}+2 R_{4}\right\rangle, \Lambda_{4}=\left\langle Q_{2}^{\prime}+S_{2}^{\prime}, Q_{1}^{\prime}+S_{1}^{\prime}\right\rangle$, $\Lambda_{5}=\left\langle Q_{3}+S_{3}, L_{4}+L_{5}+L_{6}\right\rangle$, where $R_{3}+2 R_{4}, R_{1}+2 R_{2}, Q_{1}+S_{1}, Q_{1}^{\prime}+S_{1}^{\prime}, L_{4}+L_{5}+L_{6}$, $L_{1}+L_{2}+L_{3}, Q_{2}+S_{2}, Q_{2}^{\prime}+S_{2}^{\prime}, Q_{3}+S_{3}$ and D are like in $\left(I_{1}^{*},(a)\right),\left(I_{1}^{*},(b)\right),\left(I_{1}^{*},(c)\right),\left(I_{1}^{*},(c)\right)$, $\left(I_{1}^{*},(d)\right),\left(I_{4},(a)\right),\left(I_{4},(b)\right),\left(I_{4},(b)\right),\left(I_{4},(c)\right)$ and $\left(I_{4},(d)\right)$, respectively. By Table 4.2 and since the sum of orders as roots of Δ equals 12 , all these pencils must contain a curve as in $\left(I_{1},(a)\right)$. In Λ_{1} the geometric configuration becomes easy to determine after noticing that the node of D must be in $Q_{1} \backslash S_{1}$ and to obtain index 5 at the intersection point of Q_{1} and S_{1}, it needs to be the flex point of D and S_{1} is its inflectional line. In Λ_{2}, the intersection point of L_{1} and L_{2} is a point of R_{1}, the intersection point of each of these lines with R_{2} is a base point of index 2 and L_{3} is a third line through the intersection point of R_{1} and R_{2}. In Λ_{3} the geometric configuration becomes easy to determine after noticing that the only way of obtaining index 4 at a point of $R_{4} \backslash R_{3}$ is if Q_{2} is tangent R_{4} at this point, and to obtain index 3 at one of the intersection points of Q_{2} and S_{2} we need Q_{2} to be tangent to R_{3} at this point. In Λ_{4} the geometric configuration is determined knowing that one can only obtain index 5 at the singular point of the curve $Q_{1}^{\prime}+S_{1}^{\prime}$ when both conic curves intersect at this point with index 3 . In Λ_{5} to obtain index 4 at the singular point of the curve $L_{4}+L_{5}+L_{6}$ when the conic curve Q_{3} is tangent to one of the lines at this point and the S_{3} is the line through the intersection points of Q_{3} with the components of $L_{4}+L_{5}+L_{6}$. The geometric configurations of these pencils and the resolution of their base points can be seen in the figures 4.14, 4.15, 4.16, 4.17 and 4.18.

Figure 4.14: Resolution of Λ_{1}

Figure 4.15: Resolution of Λ_{2}

\sim

Figure 4.16: Resolution of Λ_{3}

Figure 4.17: Resolution of Λ_{4}

Figure 4.18: Resolution of Λ_{5}
In the resolution of Λ_{1} the sections $\sigma_{3}^{(1)}$ and $\sigma_{4}^{(1)}$ are, respectively, the proper transform of the line through the flex $P_{1}^{(1)}$ and the node $P_{2}^{(1)}$ of D and the proper transform of the tangent line to Q_{1} at $P_{2}^{(1)}$. In the resolution of Λ_{3} the section $\sigma_{4}^{(3)}$ is the proper transform of the line through $P_{1}^{(3)}$ and $P_{3}^{(3)}$. In the resolution of Λ_{4} the section $\sigma_{4}^{(4)}$ is the proper transform of the line through $P_{1}^{(4)}$ and $P_{2}^{(4)}$.

For Λ_{2} we have the sequence

$$
\sigma_{1}^{(2)} \rightarrow L_{2} \rightarrow L_{1} \rightarrow E_{4,1}^{(2)} \rightarrow \sigma_{3}^{(2)} \rightarrow E_{3,1}^{(2)} \rightarrow R_{2} \rightarrow E_{1,1}^{(2)} \rightarrow R_{1} .
$$

For Λ_{3} we have the sequence

$$
\sigma_{2}^{(3)} \rightarrow S_{2} \rightarrow E_{3,1}^{(3)} \rightarrow E_{3,2}^{(3)} \rightarrow \sigma_{1}^{(3)} \rightarrow E_{1,3}^{(3)} \rightarrow E_{1,2}^{(3)} \rightarrow R_{4} \rightarrow R_{3}
$$

For Λ_{4} we have the sequence

$$
\sigma_{3}^{(4)} \rightarrow S_{2}^{\prime} \rightarrow E_{2,2}^{(4)} \rightarrow E_{2,1}^{(4)} \rightarrow \sigma_{1}^{(4)} \rightarrow E_{1,4}^{(4)} \rightarrow E_{1,3}^{(4)} \rightarrow E_{1,2}^{(4)} \rightarrow E_{1,1}^{(4)}
$$

For Λ_{5} we have the sequence

$$
\sigma_{1}^{(5)} \rightarrow Q_{3} \rightarrow E_{2,1}^{(5)} \rightarrow S_{3} \rightarrow \sigma_{3}^{(5)} \rightarrow L_{6} \rightarrow E_{1,1}^{(5)} \rightarrow E_{1,2}^{(5)} \rightarrow L_{5}
$$

After these contractions we obtain the pencils $\left\langle L_{3}, E_{2,1}^{(2)}+E_{1,2}^{(2)}\right\rangle,\left\langle Q_{2}, E_{1,1}^{(3)}+E_{2,1}^{(3)}\right\rangle,\left\langle Q_{2}^{\prime}, Q_{1}^{\prime}+S_{1}^{\prime}\right\rangle$, $\left\langle E_{3,1}^{(5)}, L_{4}+E_{1,3}^{(5)}\right\rangle$, respectively, all with same geometric configuration of Λ_{1}, where the irreducible nodal cubic curves are the images of $L_{3}, Q_{2}, Q_{2}^{\prime}$ and $E_{3,1}^{(5)}$ and the irreducible conic curve are the images of $E_{2,1}^{(2)}, E_{1,1}^{(3)}, Q_{1}^{\prime}$ and L_{4}.
$\mathcal{T}=\left(A_{3} \oplus A_{1}\right)^{\oplus 2}$ By Lemma 4.4. we have two special fibers of type I_{4} and two of type I_{2}. Hence the two fibers with higher number of components are the two I_{4}. Differently from all cases above, almost every pair of contractions of these two special fibers will yield a pencil, some of the pairs will have multiple ways of intersecting which imply multiple pencils having two special fibers of type I_{4}. However, most of them will yield elliptic surfaces with a set special fibers different from the one we are looking for. Indeed, the two fibers of type I_{4} only indicate two roots of Δ of order 4 , that is, we have a degree 4 factor of Δ which we do not know its factorization. We need to impose the existence of certain cubic curves in the pencil, corresponding to the fibers of type I_{2}. We do this by choosing generators G_{1}, G_{2} with a specific geometric configuration so that there are cubic curves C, not necessarily irreducible, satisfying $I_{P}\left(C, G_{1}\right)=I_{P}\left(C, G_{2}\right)=I_{P}\left(G_{1}, G_{2}\right)$ for all $P \in \mathbb{P}^{2}$. By Noether's Fundamental Theorem (see [F], Section 5.5) we guarantee that these curves are members of the pencil.

We will list every configuration in which each pair of generators G_{1}, G_{2} can intersect. In what follows a pair $((\cdot),(\cdot))$ will mean the pair $\left(\left(I_{4},(\cdot)\right),\left(I_{4},(\cdot)\right)\right)$.
$((a),(a))$ In this case we have one geometric configuration giving a pencil generated by curves $L_{1}+L_{2}+L_{3}$ and $L_{1}^{\prime}+L_{2}^{\prime}+L_{3}^{\prime}$. Let P_{1} be the intersection point of L_{1} and L_{2} and P_{2} be the intersection point of L_{1}^{\prime} and L_{2}^{\prime}. The geometric configuration is determined, up to reordering the components, by putting P_{1} in L_{2}^{\prime} and P_{2} in L_{2} and every remaining component should intersect the other curve in three distinct points. We can not have any contraction of a fiber of type I_{2} in this pencil. Indeed, since every line through three base points is one of the components of the generators which implies we can not have a contraction as in $\left(I_{2},(a)\right)$, on the other hand each base point of index 2 is a singular point of a generator which implies we can not have a contraction as in $\left(I_{2},(b)\right)$ either.
$((a),(b))$ In this case we have multiple geometric configurations giving pencils generated by curves $L_{1}+$ $L_{2}+L_{3}$ and $Q+S$, depending on how they intersect. We must have the intersection point P_{1} of L_{1} and L_{2}, without loss of generality, as the base point of index 2 and P_{2}, one of the intersection points of Q and S as the base point of index 3 . We have only one way of obtaining index 3 in a smooth point of $L_{1}+L_{2}+L_{3}$, that is, when Q is tangent to L_{3}. On the other hand, we have two ways of obtaining intersection index 2 at a smooth point of $Q+S$, either $P_{1} \in Q \backslash S$ with Q being transversal to both L_{1} and L_{2} or $P_{1} \in S \backslash Q$.
$P_{1} \in Q \backslash S$ In this case we have a pencil that can not contain any contraction of a fiber of type I_{2} since any line through three base points will be a component of the generators and the only base point of index two is a singular point of a generator.
$P \in S \backslash Q$ This case will still have multiple configurations depending on how Q intersects the components L_{1} and L_{2} of the first generator.

1. Suppose Q is not tangent to L_{1} nor L_{2}. In this case we have a pencil that can not contain any contraction of a fiber of type I_{2} since any line through three base points will be a component of the generators and the only point of index 2 is a singular point of a generator.
2. Suppose Q is tangent to only one the components, say L_{1}. In this case the pencil may contain only one contraction of a fiber of type I_{2} as in $\left(I_{2},(b)\right)$ since we have a base point of index 2 being smooth on both generators.
3. Suppose Q is tangent to both L_{1} and L_{2} at points P_{3} and P_{4}, respectively. In this case the pencil will contain two contraction of a fiber of type I_{2} as in $\left(I_{2},(b)\right)$ since we have two points of index 2 being smooth on both generators. The special fibers over these order two points will be of type I_{2} because, on one hand, they can only add up to order 4 in the factorization of Δ, on the other hand, the Lemmas D and G in [JLRRSP] imply that in characteristic three a rational elliptic fibration having two fibers of type I_{4} must have the remaining fibers of type I_{n} with $n<3$.
$\left(((a),(c))\right.$ In this case we have multiple geometric configurations giving pencils generated by curves $L_{1}+$ $L_{2}+L_{3}$ and $Q+S$. Let P_{1} be the intersection point of L_{1} and L_{2} and P_{2} and P_{3} be the intersection points of Q and S. For P_{1} to be a base point of index 2 we must have $P_{1} \in Q$, since we already have $P_{2}, P_{3} \in S$. On the other hand, for P_{2} and P_{3} to be base points of index 2 each we have two possibilities. Firstly we can assume, without loss of generality, $P_{2} \in L_{1}$ then either $P_{3} \in L_{2}$ or $P_{3} \in L_{3}$.
($P_{3} \in L_{2}$) Here we have another two possibilities depending on how Q intersects L_{3}.
4. Suppose Q is not tangent to L_{3}. In this case we have a pencil that may contain only one contraction of a fiber of type I_{2} if the tangent line to Q at P_{1} intersects L_{3} at the same point as S then there will be an irreducible conic tangent to L_{1} at P_{2} and tangent to L_{3} at P_{3}. But since every other line through three base points is component of one generator and every base point of index 2 is a singular point of a generator, we can not have another contraction of a fiber of type I_{2}.
5. Suppose Q is tangent to L_{3} at a point P_{4}. In this case we have a pencil that may contain two contractions of a fiber of type I_{2}. One of those will be a nodal cubic curve as in $\left(I_{2},(b)\right)$ with node at P_{4} and the second one will be as in $\left(I_{2},(a)\right)$ if tangent line to Q at P_{1} intersects L_{3} at the base point P_{5}, the intersection point of L_{3} and S.
$\left(P_{3} \in L_{3}\right)$ In this case we have a pencil that can not contain any contraction of a fiber of type I_{2} since any line through three base points will either be a component of the generators or intersect each generator with a different index at one of its points and the only base point of index 2 is a singular point of a generator;
$((a),(d))$ Let $L_{1}+L_{2}+L_{3}$ and D be the curves and let P_{1} and P_{2} be the marked points of indices 2 and 4, respectively, where P_{1} is the intersection point of L_{1} and L_{2} and P_{2} is the node of D. It is not possible to obtain a pencil having P_{2} as a base point with the given index since the general principle requires it to be a smooth point of $L_{1}+L_{2}+L_{3}$, however this contradicts Bézout's theorem;
$((b),(b))$ In this case we have three geometric configurations giving pencils generated by curves $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$. Let P_{1} (respectively P_{2}) be one of the intersection points between Q_{1} and S_{1} (respectively Q_{2} and S_{2}). In order to obtain index 3 at P_{1} (respectively at P_{2}) we have two possibilities, either Q_{1} (resp. Q_{2}) is tangent to S_{2} (resp. S_{1}) or tangent to Q_{2} (resp. Q_{1}) at P_{1} (resp. P_{2}). Combining these possibilities we obtain the three configurations. It is immediate to see that none of them can contain a contraction of a fiber of type I_{2}, since there are no base points of index 2 on the pencils and the only line intersecting both curves just on base points which is not one of their components is $\overline{P_{1} P_{2}}$, but since this line intersects each generator with a different index it can not be a component of a member of the pencil.
$((b),(c))$ In this case we have multiple geometric configurations giving pencils generated by curves $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$. Let P_{1} be one of the intersection points between Q_{1} and S_{1} and P_{2} and P_{3} be the intersection points between Q_{2} and S_{2}. In order to obtain index 3 at P_{1} we have two possibilities, either Q_{1} is tangent to S_{2} or Q_{2} at this point. On the other hand, there is only one way of obtaining intersection indices 2 at P_{2} and P_{3}, that is, Q_{2} is transversal to Q_{1} at P_{2} and P_{3}.
6. Suppose Q_{1} is tangent to S_{2} at P_{1}, then Q_{1} and Q_{2} will intersect at four distinct points P_{1}, P_{2}, P_{3} and P_{4}. In this case the pencil will not contain any contraction of a fiber of type I_{2} since the only base points of index 2 are P_{2} and P_{3}, that are singular points of $Q_{2}+S_{2}$ and the only lines intersecting both generators just at base points are $\overline{P_{1} P_{2}}$ and $\overline{P_{1} P_{3}}$ but they intersect each generator with a different index, so it can not be a component of any member of the pencil.
7. Suppose Q_{1} is tangent to Q_{2} at P_{1}. In this case the pencil may contain two contractions of a fiber of type I_{2}, both as in $\left(I_{2},(a)\right)$, if the both tangent lines to Q_{1} at P_{2} and P_{3} intersect Q_{2} at the base point P_{4}, the intersection point of Q_{2} and S_{1}. For the tangent line at P_{2} we have the irreducible conic curve tangent to Q_{1} at P_{1} and P_{3} and going through the intersection point P_{5} of S_{1} and S_{2}, while the conic curve for the other tangent line is obtained in the same way by taking P_{2} instead of P_{3}.
$((b),(d))$ In this case we have two geometric configurations giving pencils generated by curves $Q+S$ and D. Let P_{1} be one of the intersection points between Q and S and P_{2} be the node of D. For P_{2} to be a base point of index 4 we must have $P_{2} \in Q \backslash S$. To obtain index 3 at P_{1} we have two possibilities, either Q or S intersect D with index 2 at P_{1}. Firstly notice that can not contain a member as in $\left(I_{2},(b)\right)$ since they do not have a base point of index 2 .
8. Suppose D is tangent to Q at P_{1}. In this case the pencil may contain only one member as in $\left(I_{2},(a)\right)$ since the only way of obtaining a line different from S through base points intersecting each curve with the same index is if P_{1} is the flex of D, so the member would be formed by the inflectional line and the irreducible conic intersecting D and Q with index 4 at P_{1} and intersecting D at the other two intersection points of D and S.
9. Suppose D is tangent to S at P_{1}. In this case the pencil can not contain any member as in $\left(I_{2},(a)\right)$ since there is no line through three base points intersecting both generators with the same index.
$((c),(c))$ In this case we have only one geometric configuration giving a pencil generated by curves $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$. Let P_{1} and P_{2} be the singular points of $Q_{1}+S_{1}$ and let P_{3} and P_{4} be the singular points of $Q_{2}+S_{2}$. Since all four points must be base points of index 2 we must have $P_{1}, P_{2} \in Q_{2} \backslash S_{2}$ and $P_{3}, P_{4} \in Q_{1} \backslash S_{1}$. However, with this configuration, we can not have any contraction of a fiber of type I_{2} since each base point of index 2 is a singular point of a generator and there is no line through base points intersecting both generators with the same index.
$((c),(d))$ In this case we have only one geometric configuration giving a pencil generated by curves $Q+S$ and D. Let P_{1} and P_{2} be the singular points of $Q+S$ and let P_{3} be the node of D. For P_{3} to be a base point of index 4, we must have $P_{3} \in Q \backslash S$. To obtain indices 2 at P_{1} and P_{2} the line S must be transversal to D. With this configuration, we can not have any contraction of a fiber of type I_{2} since each base point of index 2 is a singular point of a generator and there is no line through base points intersecting both generators with the same index.
$((d),(d))$ In this case we can have only one pencil generated by curves D_{1} and D_{2}. Let P_{1} be the node of D_{1} and let P_{2} be the node of D_{2}. Since P_{1} and P_{2} must have index 4 , we can not have any contraction of a fiber of type I_{2} because, on one side, we do not have any index 2 base point and, on the other side, we can not have two index 4 base points being smooth points of an irreducible conic curve.

Now we will highlight the pencils that we are interested in assuming the conditions that allow the two special fibers of type I_{2} in their resolutions and we will relabel the generators and the base points according to the pencil they are in for further use.

- $\Lambda_{1}=\left\langle Q_{1}+S_{1}, Q_{2}+S_{2}\right\rangle$, where the generators are as in item 2 of the case $((b),(c))$, and we assume the tangent lines to Q_{1} at the base points $P_{2}^{(1)}$ and $P_{3}^{(1)}$ intersecting Q_{2} at the same point as S_{1}. We will call S_{3} the tangent line to Q_{1} at $P_{2}^{(1)}, Q_{3}$ the conic curve tangent to Q_{1} at $P_{1}^{(1)}$ and $P_{3}^{(1)}, S_{4}$ the tangent line to Q_{1} at $P_{3}^{(1)}$ and Q_{4} the conic curve tangent to Q_{1} at $P_{1}^{(1)}$ and $P_{2}^{(1)}$.
- $\Lambda_{2}=\left\langle R_{1}+R_{2}+R_{3}, Q+S\right\rangle$, where the generators are as in item 2 of the case $((a),(c))$, and we assume the tangent line, S_{5}, to Q at $P_{1}^{(2)}$ intersects R_{3} at the same point as S. We will call Q_{5} the conic curve tangent to R_{1}, R_{2} and R_{3} at $P_{4}^{(2)}, P_{3}^{(2)}$ and $P_{2}^{(2)}$, respectively, and D the nodal cubic curve with node at $P_{4}^{(2)}$.
- $\Lambda_{3}=\left\langle L_{1}+L_{2}+L_{3}, Q_{6}+S_{6}\right\rangle$, where the generators are as in item 3 of the case $((a),(b))$. We call D_{1} the nodal cubic curve with node at $P_{3}^{(3)}$ and D_{2} the nodal cubic curve with node at $P_{4}^{(3)}$.

The geometric configurations of these pencils and the resolution of their base points can be seen in the figures 4.19, 4.20 and 4.21 .

Figure 4.19: Resolution of Λ_{1}

Figure 4.20: Resolution of Λ_{2}

Figure 4.21: Resolution of Λ_{3}
In the resolution of Λ_{1} the sections $\sigma_{6}^{(1)}, \sigma_{7}^{(1)}$ and $\sigma_{8}^{(1)}$ are, respectively, the proper transforms of the tangent line to Q_{1} at $P_{1}^{(1)}$, the line through $P_{1}^{(1)}$ and $P_{2}^{(1)}$ and the line through $P_{1}^{(1)}$ and $P_{3}^{(1)}$. In the resolution of Λ_{2} the sections $\sigma_{6}^{(2)}, \sigma_{7}^{(2)}$ and $\sigma_{8}^{(2)}$ are, respectively, the proper transforms of the line through $P_{1}^{(2)}$ and $P_{4}^{(2)}$, the line through $P_{2}^{(2)}$ and $P_{4}^{(2)}$ and the line through $P_{3}^{(2)}$ and $P_{4}^{(2)}$. In the resolution of Λ_{3} the sections $\sigma_{5}^{(3)}, \sigma_{6}^{(3)}, \sigma_{7}^{(3)}$ and $\sigma_{8}^{(3)}$ are, respectively, the proper transforms of the line through $P_{2}^{(3)}$ and $P_{3}^{(3)}$, the line through $P_{2}^{(3)}$ and $P_{4}^{(3)}$, the line through $P_{3}^{(3)}$ and $P_{4}^{(3)}$ and the irreducible conic curve through all base points, tangent to R_{3} at $P_{2}^{(3)}$.

Now we can follow the sequences below to find pencils with the same configuration of Λ_{1}.

For Λ_{2} we have the sequence

$$
\sigma_{6}^{(2)} \rightarrow E_{1,1}^{(2)} \rightarrow R_{3} \rightarrow \sigma_{8}^{(2)} \rightarrow E_{3,1}^{(2)} \rightarrow \sigma_{2}^{(2)} \rightarrow E_{2,1}^{(2)} \rightarrow \sigma_{4}^{(2)} \rightarrow \sigma_{5}^{(2)}
$$

For Λ_{3} we have the sequence

$$
\sigma_{8}^{(3)} \rightarrow E_{1,1}^{(3)} \rightarrow L_{2} \rightarrow \sigma_{4}^{(3)} \rightarrow Q_{7} \rightarrow \sigma_{5}^{(3)} \rightarrow E_{2,1}^{(3)} \rightarrow \sigma_{2}^{(3)} \rightarrow \sigma_{6}^{(3)}
$$

After these contractions we obtain the pencils $\left\langle R_{1}+R_{2}, Q_{5}+S_{5}\right\rangle$ and $\left\langle L_{1}+L_{3}, S_{7}+E_{2,2}^{(3)}\right\rangle$, respectively, both having the same geometric configuration of Λ_{1}. The pairs of irreducible conic curves are, respectively, the images of R_{1}, S_{5} and $L_{1}, E_{2,2}^{(3)}$.
$\mathcal{T}=D_{6} \oplus A_{1}^{\oplus 2}$ By Lemma 4.4 , we have one special fiber of type I_{2}^{*} and two of type I_{2}. Hence the two fibers with higher number of components are the I_{2}^{*} and one of the I_{2}. As in the previous case, we have some pairs giving rise to pencils that yield elliptic surfaces with another set of special fibers. But in this case it is simpler to identify the ones we want, since, given a such pencil, we just have some freedom on a factor of degree 2 of Δ which can only give us another fiber of I_{2} or two of type I_{1}.

To find the pencils and conditions needed to obtain the second contraction of a fiber of type I_{2} as one of its members, we will list every configuration in which a contraction of a fiber of type I_{2}^{*} can intersect a contraction of a fiber of type I_{2}. In what follows a pair $((\cdot),(\cdot))$ will mean the pair $\left(\left(I_{2}^{*},(\cdot)\right),\left(I_{2},(\cdot)\right)\right)$.
$((a),(a))$ In this case we have a geometric configuration giving a pencil generated by curves $L_{1}+2 L_{2}$ and $Q+S$, where the intersection point P_{1} of L_{1} and L_{2} is a base point of index 4 . Notice that the only way of obtaining index 4 at P_{1} while being a smooth point of $Q+S$ is if the $P_{1} \in Q \backslash S$ and L_{1} is the tangent line to Q at this point. Let P_{2} be the second intersection point of Q and L_{2} and let P_{3} and P_{4} be the points where S intersects L_{1} and L_{2}, respectively;
$((a),(b))$ In this case we have curves $L_{1}+2 L_{2}$ and D where the intersection point P_{1} of L_{1} and L_{2} should be a base point of index 4 and the node P_{2} of D should be a base point of index 2 . To obtain a pencil having these base points and giving rise to an elliptic surface, on one side, we would have $P_{2} \in L_{1} \backslash L_{2}$ and, on the other side, we would have D tangent to L_{1} at P_{1}, but this contradicts Bézout's theorem;
$((b),(a))$ In this case we have a geometric configuration giving a pencil generated by curves $L_{1}+2 L_{2}$ and $Q+S$, where the intersection point P_{1} of L_{1} and L_{2} is a base point of index 3 and we have another point $P_{2} \in L_{2} \backslash L_{1}$ of index 4 . The only way these indices can be achieved, while satisfying the general principle, is if Q is tangent to L_{2} at P_{2} and S is a line through P_{1} different from L_{1} and L_{2};
$((b),(b))$ In this case we have a geometric configuration giving a pencil generated by curves $L_{1}+2 L_{2}$ and D, where the intersection point P_{1} of L_{1} and L_{2} is a base point of index 3 , the node P_{2} of D is a base point of index 2 and we have another base point $P_{3} \in L_{2} \backslash L_{1}$ of index 4 . The only way all these indices can be achieved is if $P_{2} \in L_{1} \backslash L_{2}, D$ is tangent to L_{2} at P_{3} and the tangent line to D at P_{1} is different from L_{1} and L_{2};
$((c),(a))$ In this case we have a geometric configuration giving a pencil generated by curves $Q_{1}+S_{1}$ and $Q_{2}+S_{2}$ where the intersection point P_{1} of Q_{1} and S_{1} is a base point of index 6 . The only way of obtaining this index is if Q_{1} and Q_{2} intersect at P_{1} with index 4 ;
$((c),(b))$ In this case we have a geometric configuration giving a pencil generated by curves $Q+S$ and D where the intersection point P_{1} of Q and S is a base point of index 6 and the node P_{2} of D is a base point of index 2 . The only way these indices can be achieved is if $P_{2} \in Q \backslash S$ and D and Q intersect at P_{1} with index 4 ;
$((d),(a))$ In this case we have curves $L_{1}+L_{2}+L_{3}$ and $Q+S$ where the common intersection point P_{1} of L_{1}, L_{2} and L_{3} should be a base point of index 5 which can not be achieved on a smooth point of $Q+S$;
$((d),(b))$ In this case we have a geometric configuration giving a pencil generated by curves $L_{1}+L_{2}+L_{3}$ and D where the common intersection point P_{1} of L_{1}, L_{2} and L_{3} is a base point of index 5 and the node P_{2} of D is a base point of index 2 . To obtain these indices we need P_{1} to be the flex point of D and one of the three lines, say L_{1}, is its inflectional line and P_{2} is a point on another line, say L_{2};

Now we will show that it is possible to impose some restrictions to each configuration giving a pencil so that it will contain a cubic curve yielding the extra special fiber of type I_{2}. This will again be achieved applying Max Noether's Fundamental Theorem. We will relabel the generators and the base points according to the pencil they are in for further use.

The respective pencils and their restrictions are:

- $\Lambda_{1}=\left\langle D, L_{1}+2 L_{2}\right\rangle$, with D and $L_{1}+2 L_{2}$ as in $\left(I_{2},(b)\right)$ and $\left(I_{2}^{*},(b)\right)$, respectively, where the line L_{1} intersects the nodal cubic curve D at the node $P_{1}^{(1)}$ and another point $P_{2}^{(1)}$ and L_{2} is a line through $P_{2}^{(1)}$ and tangent to D at a third point $P_{3}^{(1)}$. We need the following restriction: $P_{2}^{(1)}$ must be the inflectional point of D. In this way we shall have a member of Λ_{1} as in $\left(I_{2},(a)\right)$ where the line S is the inflectional line of D at $P_{2}^{(1)}$ and the conic curve Q is the one tangent to L_{1} at $P_{1}^{(1)}$ and intersecting D with index 4 at $P_{3}^{(1)}$. The configuration of generators and base points can be seen in Figure 4.22 .
- $\Lambda_{2}=\left\langle Q+S, L_{1}+2 L_{2}\right\rangle$, with $Q+S$ and $L_{1}+2 L_{2}$ as in $\left(I_{2},(a)\right)$ and $\left(I_{2}^{*},(b)\right)$, respectively, where the lines S, L_{1} and L_{2} meet at a point $P_{1}^{(2)}$ and the irreducible conic Q is tangent to L_{2} at a point $P_{2}^{(2)}$. We need the following restriction: Q must be tangent to L_{1} at some point $P_{3}^{(2)}$. In this way we shall have in Λ_{2} a member D as in $\left(I_{2},(b)\right)$ where $P_{3}^{(2)}$ is the node, $P_{1}^{(2)}$ is the flex point and S is the inflectional line and D is tangent to L_{2} at $P_{2}^{(2)}$.
- $\Lambda_{3}=\left\langle Q^{\prime}+S^{\prime}, R_{1}+2 R_{2}\right\rangle$, with $Q^{\prime}+S^{\prime}$ and $R_{1}+2 R_{2}$ as in $\left(I_{2},(a)\right)$ and $\left(I_{2}^{*},(a)\right)$, respectively, where the irreducible conic curve Q^{\prime} is tangent to the line R_{1} at the intersection point $P_{1}^{(3)}$ of R_{1} and R_{2}, Q^{\prime} intersects R_{2} at another point $P_{2}^{(3)}$, while the line S^{\prime} intersects R_{2} at a third point $P_{3}^{(3)}$ and intersects R_{1} at $P_{4}^{(3)}$. We need the following restriction: S^{\prime} must be chosen in a way that the tangent line to Q^{\prime} at $P_{2}^{(3)}$ also intersects R_{1} at $P_{4}^{(3)}$. In this way have another member $Q^{\prime \prime}+S^{\prime \prime}$ of Λ_{3} as in $\left(I_{2},(a)\right)$ where the line $S^{\prime \prime}$ is the tangent line to Q^{\prime} at $P_{4}^{(3)}$ and the conic curve $Q^{\prime \prime}$ is the one that intersects Q^{\prime} at $P_{1}^{(3)}$ with index 4 and is tangent to S^{\prime} at $P_{3}^{(3)}$. The configuration of generators and base points can be seen in Figure 4.23 .
- $\Lambda_{4}=\left\langle D^{\prime}, Q_{1}+S_{1}\right\rangle$, with D^{\prime} and $Q_{1}+S_{1}$ as in $\left(I_{2},(b)\right)$ and $\left(I_{2}^{*},(c)\right)$, respectively, where the nodal cubic curve D^{\prime} intersects the irreducible conic Q_{1} with index 4 at $P_{1}^{(4)}$, the tangency point of Q_{1} and S_{1}; the node $P_{2}^{(4)}$ of D^{\prime} is in $Q_{1} ; S_{1}$ intersects D^{\prime} at another point $P_{3}^{(4)}$. We need the
following restrictions: the point $P_{1}^{(4)}$ in D^{\prime} must be chosen in a way that both tangent lines to Q_{1} at $P_{1}^{(4)}$ and $P_{2}^{(4)}$ meet D^{\prime} at $P_{3}^{(4)}$. Thus we must have a member of Λ_{4} as in $\left(I_{2},(a)\right)$ where the conic curve $Q^{\prime \prime \prime}$ is the one intersecting D^{\prime} and Q_{1} at $P_{1}^{(4)}$ with indices 6 and 4 , respectively, and the line $S^{\prime \prime \prime}$ is the tangent line to Q_{1} at $P_{2}^{(4)}$. The configuration of generators and base points can be seen in Figure 4.24 .
- $\Lambda_{5}=\left\langle Q^{\prime \prime \prime}+S^{\prime \prime \prime}, Q_{1}+S_{1}\right\rangle$, with $Q^{\prime \prime \prime}+S^{\prime \prime \prime}$ and $Q_{1}+S_{1}$ as in $\left(I_{2},(a)\right)$ and $\left(I_{2}^{*},(c)\right)$, respectively, where the irreducible conic curve $Q^{\prime \prime \prime}$ intersects Q_{1} with index 4 at $P_{1}^{(5)}$, the tangency point of Q_{1} and S_{1}; the line $S^{\prime \prime \prime}$ intersects S_{1} at another point $P_{2}^{(5)}$. We need the following restriction: $S^{\prime \prime \prime}$ must be tangent to Q_{1} at a point $P_{3}^{(5)}$. Thus we shall have a member of Λ_{5} as in $\left(I_{2},(a)\right)$ where the node is the point $P_{3}^{(5)}$.
- $\Lambda_{6}=\left\langle D^{\prime \prime}, L_{3}+L_{4}+L_{5}\right\rangle$ with $D^{\prime \prime}$ and $L_{3}+L_{4}+L_{5}$ as in $\left(I_{2},(b)\right)$ and $\left(I_{2}^{*},(d)\right)$, respectively, where the nodal cubic curve $D^{\prime \prime}$ has node $P_{1}^{(6)}$ over L_{3} and the intersection point $P_{2}^{(6)}$ of the lines L_{3}, L_{4}, L_{5} is the flex point of $D^{\prime \prime}$ and L_{4} is its inflectional line. We need the following restriction: L_{5} must be the line through $P_{2}^{(6)}$ that is tangent to $D^{\prime \prime}$ at another point $P_{3}^{(6)}$. In this way Λ_{6} has another member $D^{\prime \prime \prime}$ as in $\left(I_{2},(b)\right)$ with node $P_{3}^{(6)}$. The configuration of generators and base points can be seen in Figure 4.25

Notice that a pencil with generators as in Λ_{2} can be turned into a pencil of the form Λ_{1} via a Möbius transformation. We have the same relation between Λ_{4} and Λ_{5}. Thus we only need to show the contractions for the pencils Λ_{3}, Λ_{4} and Λ_{6}.

Figure 4.22: Resolution of Λ_{1}
In the resolution of Λ_{1} the section $\sigma_{4}^{(1)}$ is the proper transform of the line through $P_{1}^{(1)}$ and $P_{3}^{(1)}$. In the resolution of Λ_{4} the section $\sigma_{4}^{(4)}$ is the proper transform of the line through $P_{1}^{(4)}$ and $P_{2}^{(4)}$. In the resolution of Λ_{6} the section $\sigma_{4}^{(6)}$ is the proper transform of the line through $P_{1}^{(6)}$ and $P_{3}^{(6)}$.

Now we can follow the sequences below to find pencils with the same configuration of Λ_{1}.
For Λ_{3} we have the sequence

$$
\sigma_{1}^{(3)} \rightarrow Q^{\prime} \rightarrow \sigma_{4}^{(3)} \rightarrow R_{1} \rightarrow E_{1,2}^{(3)} \rightarrow \sigma_{3}^{(3)} \rightarrow E_{3,1}^{(3)} \rightarrow R_{2} \rightarrow E_{2,1}^{(3)}
$$

For Λ_{4} we have the sequence

$$
\sigma_{4}^{(4)} \rightarrow E_{2,1}^{(4)} \rightarrow \sigma_{3}^{(4)} \rightarrow S_{1} \rightarrow E_{1,2}^{(4)} \rightarrow \sigma_{1}^{(4)} \rightarrow E_{1,5}^{(4)} \rightarrow E_{1,4}^{(4)} \rightarrow Q_{1}
$$

Figure 4.23: Resolution of Λ_{3}

Figure 4.24: Resolution of Λ_{4}

Figure 4.25: Resolution of Λ_{6}
For Λ_{6} we have the sequence

$$
\sigma_{4}^{(6)} \rightarrow E_{1,1}^{(6)} \rightarrow \sigma_{2}^{(6)} \rightarrow E_{2,4}^{(6)} \rightarrow E_{2,3}^{(6)} \rightarrow \sigma_{3}^{(6)} \rightarrow L_{5} \rightarrow E_{2,1}^{(6)} \rightarrow L_{3} .
$$

After these contractions we obtain the pencils $\left\langle S^{\prime}, E_{1,3}^{(3)}+2 E_{1,1}^{(3)}\right\rangle,\left\langle D^{\prime}, E_{1,1}^{(4)}+2 E_{1,3}^{(4)}\right\rangle$ and $\left\langle D^{\prime \prime}, L_{4}+\right.$ $\left.2 E_{2,2}^{(6)}\right\rangle$, respectively, all having the same geometric configuration of Λ_{1}. The irreducible nodal cubic curves are, respectively, the images of S^{\prime}, D^{\prime} and $D^{\prime \prime}$.

Theorem 4.7. The sets of equivalence classes $\mathscr{E}_{0, \ell}$ are singletons consisting of the equivalence class of the resolution of base points of the following pencils.
$\left(\mathscr{E}_{0,1}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x^{3}\right\rangle ;$
$\left(\mathscr{E}_{0,2}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x(x+y)^{2}\right\rangle ;$
$\left(\mathscr{E}_{0,3}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x^{2} y\right\rangle ;$
$\left(\mathscr{E}_{0,4}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x(x z+y z-x y)\right\rangle ;$
$\left(\mathscr{E}_{0,5}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x z(x+y)\right\rangle ;$
$\left(\mathscr{E}_{0,6}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-y(x+y)^{2}\right\rangle ;$
$\left(\mathscr{E}_{0,7}\right)\left\langle z^{2} x-y^{3}-y^{2} x,-x\left(y^{2}-x y-x z\right)\right\rangle ;$
$\left(\mathscr{E}_{0,8}\right)\left\langle\left(x z+x^{2}-y^{2}\right) z,-\left(x z-x^{2}+y^{2}\right) y\right\rangle$.
Our proof is a case by case analysis and we explain the general strategy, by splitting it in two situations. The first is in the presence of an irreducible nodal cubic curve as the first generator of the pencil, which occur in the first seven pencils in Theorem 4.6. In this event, we show that up to an automorphism of \mathbb{P}^{2}, the second generator is uniquely determined by the first generator.

The second situation occurs only for the last pencil, where such a nodal cubic curve does not appear. In this case we will apply Nagell's algorithm ($[\mathbf{C}]$ and references therein) to show that a Weierstrass form for each pencil as in item 8 of Theorem 4.6 is isomorphic to a Weierstrass form for the specific pencil stated above. Since we need to apply Nagell's algorithm we decided to summarize it in the following remark.

Remark 4.8. Without loss of generality, we may assume that $P=(0: 0: 1)$ is a point of the general member $H=F-T G$ of the pencil $\langle F, G\rangle$, which is an irreducible curve over $K=k(T)$. Hence we can write $H=H_{3}+H_{2} z+H_{1} z^{2}$ with $H_{1}=s_{8} x+s_{9} y, H_{2}=s_{5} x^{2}+s_{6} x y+s_{7} y^{2}$ and $H_{3}=s_{1} x^{3}+s_{2} x^{2} y+s_{3} x y^{2}+s_{4} y^{3}$, where H_{1} is the tangent of H at P and s_{8} is assumed to be different from 0 . We consider the second common point $Q=\left(-e_{2} s_{9}: e_{2} s_{8}: e_{3}\right)$ between H_{1} and H, where $e_{i}=H_{i}\left(s_{9},-s_{8}\right)$ for $i=2$, 3. If necessary we can change $z \mapsto y+z$, which fixes P and H_{1}, to assume $e_{3} \neq 0$. We make the change of variables

$$
x=x_{1}-s_{9}\left(e_{2} / e_{3}\right) z_{1}, \quad y=y_{1}+s_{8}\left(e_{2} / e_{3}\right) z_{1}, \quad z=z_{1}
$$

which sends $(0: 0: 1)$ to Q and $\left(e_{2} s_{9}:-e_{2} s_{8}: e_{3}\right)$ to P. Then, by doing

$$
x_{1}=x_{2}+s_{9} y_{2}, \quad y_{1}=-s_{8} y_{2}, \quad z_{1}=z_{2}
$$

we change the tangent at Q to x_{2}. In this system of coordinates H is sent to $H^{\prime}=H_{3}^{\prime}+H_{2}^{\prime} z_{2}+H_{1}^{\prime} z_{2}^{2}$, where $H_{i}^{\prime} \in K\left[x_{2}, y_{2}\right]$ is homogeneous of degree i. Writing $h=H^{\prime}\left(x_{2}, y_{2}, 1\right), h_{i}=H_{i}^{\prime}\left(x_{2}, y_{2}, 1\right)$ and using the blow-up

$$
x_{2}=x_{2}, \quad y_{2}=u x_{2}
$$

at $Q=(0,0)$ we obtain the curve $x_{2}^{2} h_{3}(1, u)+x_{2} h_{2}(1, u)+h_{1}(1, u)$, birationally equivalent to H. If we define

$$
v=-h_{3}(1, u) x_{2}+h_{2}(1, u)
$$

we get a Weierstrass form given by $v^{2}-\left(h_{2}(1, u)^{2}-h_{1}(1, u) h_{3}(1, u)\right)$, which is also birationally equivalent to H.

Proof. As we indicated in the strategy of our proof, in the seven first pencils of Theorem 4.6, the irreducible nodal cubic curve D can be taken as $z^{2} x-y^{3}-y^{2} x$, up to change of coordinates of \mathbb{P}^{2}.
$\mathscr{E}_{0,1}$ In this case the inflectional line L is given by x. So $\mathscr{E}_{0,1}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x^{3}\right\rangle$.
$\mathscr{E}_{0,2}$ In this case the inflectional line L_{1} is given by x and the line L_{2} is given by $x+y$ since this is the tangent line at the unique (non-flex) smooth point $(1:-1: 0)$ of the intersection of D and its polar curve at the flex $(0: 0: 1)$. So $\mathscr{E}_{0,2}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x(x+y)^{2}\right\rangle$.
$\mathscr{E}_{0,3}$ In this case, the line L_{1} trough the node $(1: 0: 0)$ and the flex is given by y and the inflectional line L_{2} is given by x. So $\mathscr{E}_{0,3}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x^{2} y\right\rangle$.
$\mathscr{E}_{0,4}$ In this case the inflectional line S_{1} is given by x and the irreducible conic Q_{1} with the required intersection indices can be either $x z+y z-x y$ or $x z+y z+x y$. Since both conic curves can be obtained from each other via the \mathbb{P}^{2}-automorphism $z \mapsto-z$, which fixes the curve D, we can choose Q_{1} to be given by the first one. So $\mathscr{E}_{0,4}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x(x z+y z-x y)\right\rangle$.
$\mathscr{E}_{0,5}$ In this case L_{1} is given by x and L_{2} is given by $x+y$ and L_{3} is given by z. So $\mathscr{E}_{0,5}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x z(x+y)\right\rangle$.
$\mathscr{E}_{0,6}$ In this case L_{1} is given by y and L_{2} is given by $x+y$. So $\mathscr{E}_{0,6}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-y(x+y)^{2}\right\rangle$.
$\mathscr{E}_{0,7}$ In this case S_{1} is given by x and Q_{1} can be either $y^{2}-x y-x z$ or $y^{2}-x y+x z$. Since both conic curves can be obtained from each other via the \mathbb{P}^{2}-automorphism $z \mapsto-z$, we can choose Q_{1} to be given by the first one. So $\mathscr{E}_{0,7}$ is the class given by the resolution of the pencil $\left\langle z^{2} x-y^{3}-y^{2} x,-x\left(y^{2}-x y-x z\right)\right\rangle$.

Now we will study the only case that does not have a nodal cubic curve in the pencil codifying the prescribed geometric properties of the required fibration.

$\mathscr{E}_{0,8}$

Up to a projective change of coordinates, L_{1}, L_{2} and the tangent line to Q_{1} at $P_{1}^{(1)}$ are given by y, z and x, respectively. With restrictions as in item 8 of Theorem 4.6, Q_{1} and Q_{2} are given respectively by $-x^{2}+a^{2} y^{2}+b x z$ and $x^{2}-a^{2} y^{2}+b x z$, with $a b \neq 0$. Therefore each fibration with $\mathcal{T}=\left(A_{3} \oplus A_{1}\right)^{\oplus 2}$ is equivalent to a fibration obtained from the pencil $\left\langle z\left(x^{2}-a^{2} y^{2}+b x z\right),-y\left(-x^{2}+a^{2} y^{2}+b x z\right)\right\rangle$. If we apply Nagell's algorithm 4.8 to the curve $H_{a, b}=z\left(x^{2}-a^{2} y^{2}+b x z\right)+T\left(y\left(-x^{2}+a^{2} y^{2}+b x z\right)\right)$ we obtain a birationally equivalent curve given by the Weierstrass form

$$
v^{2}-\left(a^{2} b^{4} T^{3} u^{3}+\left(b^{4} T^{4}+a^{2} b^{2} T^{2}\right) u^{2}+b^{2} T^{3} u\right)
$$

having j-invariant

$$
\left(b^{12} T^{12}-a^{6} b^{6} T^{6}+a^{12}\right) /\left(a^{4} b^{8} T^{8}+a^{6} b^{6} T^{6}+a^{8} b^{4} T^{4}\right)
$$

If we also apply Nagell's algorithm to the curve $H_{1,1}$ followed by the Möbius transformation sending T to $\frac{b}{a} T$ we will obtain a Weierstrass form with $\left(a^{2} b^{4} T^{4}+a^{4} b^{2} T^{2}\right)$ being the coefficient of u^{2} and with the same j-invariant as above. By the Remark 3.11 the elliptic curves given by these Weierstrass forms are isomorphic. So $\mathscr{E}_{0,8}$ is the class given by the resolution of the pencil $\left\langle z\left(x^{2}-y^{2}+x z\right),-y\left(-x^{2}+\right.\right.$ $\left.\left.y^{2}+x z\right)\right\rangle$.

Example 4.9. We consider the pencils $\Lambda_{1}=\left\langle-x(y+x)(z-y),(x-y)\left(x^{2}-x y-x z+z^{2}\right)\right\rangle$ and $\Lambda_{2}=\left\langle-x(\alpha y+x)(z-y),(x-y)\left(x^{2}-x y-x z+z^{2}\right)\right\rangle$ where α is a primitive element for the field
extension $\mathbb{F}_{38} \mid \mathbb{F}_{3}$. Both pencils give rise to elliptic surfaces having the special fibers $2 I_{4}, I_{2}, 2 I_{1}$. This means that their discriminants, Δ_{1} and Δ_{2}, must have two roots of order 4 , one of order 2 and two of order 1 . If they were equivalent there should exist a Möbius transformation sending Δ_{1} to Δ_{2}. Since such a transformation preserves the orders of roots, it should be determined by its action on roots of order 2 and 4, resulting in two possibilities. However, a MAGMA check shows that neither sends the roots of order 1 of Δ_{1} to those of Δ_{2}. Our computations suggest that the space of non-equivalent elliptic fibrations having this configuration of special fibers have positive dimension.

Vector fields on the projective plane inducing fibrations by singular curves

Let us consider k an algebraically closed field of characteristic three. In this chapter we will deal with the question:

Question 5.1. Given a pencil of generically smooth plane cubic curves $(F: G): \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ how can we build a 3 -closed vector field D on \mathbb{P}^{2} such that the rational map $\left(\mathbb{P}^{2}\right)^{D} \rightarrow \mathbb{P}^{1}$ induces a fibration by singular curves of genus two?

In this chapter we will answer Question 5.1 for the pencils described in Theorem 4.7, which is enough to answer for all pencils inducing fibrations by elliptic curves with Mordell-Weil rank zero.

Given a fibration $f: S \rightarrow \mathbb{P}^{1}$ by singular curves of genus two whose smoothing is a fibration by elliptic curves $f_{1}: S_{1} \rightarrow \mathbb{P}^{1}$, we will construct a 3 -closed vector field D_{1} on S_{1} such that we have a commutative diagram

where $F_{\mathbb{P}^{1}, k}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is the relative Frobenius map of \mathbb{P}^{1}. More precisely we will find a k-derivation D_{1} of $k\left(S_{1}\right)$ whose kernel is $k\left(S_{1}\right)^{D_{1}}=k(S)$. Just to refresh our notations, the field of rational functions of the source and the target of $F_{\mathbb{P}^{1}, k}$ are $k(T)$ and $k(t)$, respectively, where T is a transcendental element over k and $t=T^{3}$.

It follows from Proposition 3.5 that $k(S)=k(x, y, t)$ and $k\left(S_{1}\right)=k(z, w, T)$ where $y^{2}=h\left(x^{3}-\right.$ $\left.j^{3}\right)\left(x^{3}-j^{3} x-j^{3}\right), w^{2}=-h\left(j^{4} z^{3}+j^{3} z^{2}-1\right), h \in k(t)$ and $j \in k(T) \backslash k(t)$. It also follows from the proof of Proposition 3.5 that $z=\frac{1}{x-j}$ and $w=z^{3} y$.

Lemma 5.2. With the above notations, we have $k(S)=k\left(z^{3}, w, T^{3}\right)$.

Proof. Notice that $T^{3}=t \in k(S)$. Moreover, $z^{3}, w \in k(S)$, since $z^{3}=\frac{1}{x^{3}-j^{3}}$ and $j^{3} \in k(S)$. Hence $k(S) \supseteq k\left(z^{3}, w, T^{3}\right)$.

For the other inclusion, since $t=T^{3}$ and $y=\frac{w}{z^{3}}$ we have $t, y \in k\left(z^{3}, w, T^{3}\right)$ and it remains to prove that $x \in k\left(z^{3}, w, T^{3}\right)$. From the equation relating x and y, namely $y^{2}=h\left(x^{3}-j^{3}\right)\left(x^{3}-j^{3} x-j^{3}\right)=$ $h z^{-3}\left(z^{-3}-j^{3} x\right)$, we obtain $x=z^{-3}-z^{3} y^{2} h^{-1}$ with $h \in k\left(T^{3}\right)$.

This lemma motivates us to look for a k-derivation D_{1} of $k(z, w, T)$ whose kernel is $k\left(z^{3}, w, T^{3}\right)$. A natural candidate is to consider the extension to $k(z, w, T)$ of the derivation $\frac{\partial}{\partial z}$ of $k(z, w)$. To define such extension we just need to determine the derivation applied to T and we do this by considering the relation $w^{2}=-h\left(j^{4} z^{3}+j^{3} z^{2}-1\right)$. To this end, if we write $f(z, T)=h\left(j^{4} z^{3}+j^{3} z^{2}-1\right)$, then D_{1} is defined by the k-derivation satisfying $D_{1}(z)=1, D_{1}(w)=0$ and such that

$$
0=2 w D_{1}(w)=-\left(f_{z}+f_{T} D_{1}(T)\right)
$$

where f_{z} and f_{T} are the partial derivatives of f with respect to indicated variables in $k(z, T)$. Since $h \in k\left(T^{3}\right)$ it follows that $f_{T}=h j^{3} j^{\prime} z^{3}$ where j^{\prime} is the derivative of j with respect to T in $k(T)$. On the other hand $j \in k(T) \backslash k\left(T^{3}\right)$ implies that $j^{\prime} \neq 0$, that is, $f_{T} \neq 0$. Hence $D_{1}(T)$ can be defined by $-\frac{f_{z}}{f_{T}}$ and, therefore

$$
D_{1}(g(z, w, T))=g_{z}-\frac{f_{z}}{f_{T}} g_{T}=\frac{g_{z} f_{T}-f_{z} g_{T}}{f_{T}}
$$

for every $g(z, w, T) \in k(z, w, T)$.
Lemma 5.3. If $D_{1} \in \operatorname{Der}_{k}(k(z, w, T))$ is defined as above, then $\operatorname{Ker} D_{1}=k\left(z^{3}, w, T^{3}\right)$.
Proof. The definition of D_{1} implies $k\left(z^{3}, w, T^{3}\right) \subseteq \operatorname{Ker} D_{1} \subseteq k(z, w, T)$. Moreover, from the previous lemma $k(z, w, T) \mid k\left(z^{3}, w, T^{3}\right)$ is a field extension of degree 3 because $k(z, w, T)=k(x, y, t) k(T)$. Hence we may conclude $k\left(z^{3}, w, T^{3}\right)=\operatorname{Ker} D_{1}$ just observing that $D_{1}(z) \neq 0$.

Lemma 5.4. The derivation D_{1} satisfies $D_{1}^{3}=0$ and, in particular, it is 3-closed.
Proof. Since D_{1}^{3} is also a k-derivation of $k(z, w, T)$ we have $D_{1}^{3}(g(z, w, T))=g_{z} D_{1}^{3}(z)+g_{w} D_{1}^{3}(w)+$ $g_{T} D_{1}^{3}(T)$ for each $g(z, w, T) \in k(z, w, T)$. Hence, it is enough to prove that D_{1}^{3} kills z, w and T. Clearly $D_{1}^{3}(z)=D_{1}^{3}(w)=0$. By direct computation we also check $D_{1}^{3}(T)=0$. Indeed

$$
D_{1}(T)=\frac{h j^{3} z}{h j^{3} j^{\prime} z^{3}}=\frac{1}{j^{\prime} z^{2}} \text { and } D_{1}^{2}(T)=D_{1}\left(\frac{1}{j^{\prime} z^{2}}\right)=-\frac{j^{\prime \prime} z^{2} D_{1}(T)+j^{\prime 2} z}{\left(j^{\prime} z^{2}\right)^{2}}=\frac{-j^{\prime \prime} z^{2}+\left(j^{\prime}\right)^{2} z^{3}}{\left(j^{\prime} z^{2}\right)^{3}}
$$

where $j^{\prime \prime}$ is the second derivative of j with respect to T in $k(T)$. Therefore,

$$
D_{1}^{3}(T)=D_{1}\left(\frac{-j^{\prime \prime} z^{2}+\left(j^{\prime}\right)^{2} z^{3}}{\left(j^{\prime} z^{2}\right)^{2}}\right)=\frac{-j^{\prime \prime \prime} D_{1}(T) z^{2}+j^{\prime \prime} z-j^{\prime} j^{\prime \prime} D_{1}(T) z^{3}}{\left(j^{\prime} z^{2}\right)^{3}}=\frac{j^{\prime \prime} z-j^{\prime \prime} z}{\left(j^{\prime} z^{2}\right)^{3}}=0
$$

since the third derivative $j^{\prime \prime \prime}$ of j is zero.
We summarize all facts above in the following result.
Proposition 5.5. Let $f_{1}: S_{1} \rightarrow \mathbb{P}^{1}$ be the smoothing of an absolutely elliptic fibration $f: S \rightarrow \mathbb{P}^{1}$ by genus two singular curves, over an algebraically closed field k of characteristic three. Let $k\left(S_{1}\right)=k(z, w, T)$, with z, w, T satisfying the Weierstrass polynomial of Proposition 3.5 for $K=k(t)$ and $L=k(T)$. Then the 3-closed vector field D_{1} such that $S=S_{1}^{D_{1}}$ is given by

$$
D_{1}(g)=\frac{f_{T} g_{z}-f_{z} g_{T}}{f_{T}}
$$

for every $g \in k(z, w, T)$, where $f(z, T)=h\left(j^{4} z^{3}+j^{3} z^{2}-1\right)$ and $f_{z}, f_{T}, g_{z}, g_{T}$ stand by the partial derivatives of f and g with respect to the indicated variables.

Now we will use the derivation D_{1} in order to answer Question 5.1 for each pencil appearing in Theorem 4.7.

Theorem 5.6. Let Λ_{ℓ} be the pencil in item ℓ of Theorem 4.7 for each $\ell=1, \ldots, 8$. If $D_{1, \ell}=A_{\ell} \partial / \partial x+$ $B_{\ell} \partial / \partial y$ is a 3 -closed vector field, with coordinates x, y in the chart $z \neq 0$ in \mathbb{P}^{2}, whose induced fibration on $\left(\mathbb{P}^{2}\right)^{D_{1, \ell}}$ is by genus two singular curves, then A_{ℓ} and B_{ℓ} can be chosen as below.

1. $A_{1}=x^{2}$ and $B_{1}=y^{2}$;
2. $A_{2}=x^{6}+x^{4} y+x^{3} y^{2}-x^{3} y+x^{3}+x^{2} y^{2}-x^{2}+x y^{3}-x y^{2}-y^{3}+y^{2}$
and
$B_{2}=(y-1)^{2}\left(x^{3}-x y+x-y^{2}+y\right) ;$
3. $A_{3}=-x$ and $B_{3}=(x+y)\left(x-y^{3}\right)$;
4. $A_{4}=-\left(x^{4} y^{2}+x^{4} y+x^{4}+x^{3} y^{4}+x^{3} y^{3}+x^{3} y^{2}+x^{3} y-x^{3}-x^{2} y^{5}+x^{2} y^{4}+x^{2}+x y^{6}-x y^{5}-y^{6}\right)$ and

$$
B_{4}=-\left(x^{2} y^{5}-x^{2} y^{4}+x^{2} y^{3}+x^{2} y^{2}+x^{2}-x y^{6}-x y^{5}-x y^{3}+x y^{2}-x y+y^{7}-y^{6}-y^{5}\right) ;
$$

5. $A_{5}=-\left(x^{4}+x^{3} y^{3}+x^{3} y+x^{2} y^{4}+x^{2}-x y^{5}-y^{6}\right)$
and
$B_{5}=x^{2} y^{4}+x^{2} y^{2}-x^{2}-x y^{5}+x y^{3}+x y+y^{6} ;$
6. $A_{6}=-x^{2}$ and $B_{6}=y^{2}$;
7. $A_{7}=-\left(x^{2} y^{2}+x^{2} y+x y^{3}-x+y^{3}\right)$
and

$$
B_{7}=-(y+1)(y-1)\left(x y+x+y^{2}-y\right) ;
$$

8. $A_{8}=-x y(x+y)(x-y)$ and $B_{8}=\left(x^{2}-x^{2} y^{2}+y^{4}\right)$.

Proof. Our strategy here will be similar to the one used in case $\ell=8$ of Theorem4.7. In this way we will take, in each item of the mentioned theorem, a general member $F-T G$ of the pencil and we apply Nagell's algorithm (see Remark 4.8) to reach a Weierstrass equation $v^{2}=a_{0} u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$ for the generic fiber of the fibration induced by the pencil. After that we apply the map

$$
z_{1}=a+b u, w_{1}=e v
$$

where $a=a_{4} / a_{2}, b=j a_{2} / a_{0}$ and $e=a_{0}^{2} j$, as in Lemma 3.13, to obtain another Weierstrass form for the generic fiber as in Proposition 3.5 - with z_{1} and w_{1} instead of z and w - since these are the coordinates where D_{1} is known. To see the derivation D_{1} of $k\left(z_{1}, w_{1}, T\right)$ as a derivation of $k(u, v, T)$ we only need to express $D_{1}(u), D_{1}(v)$ and $D_{1}(T)$ in terms of the generators u, v and T of the function field $k\left(S_{1}\right) \mid k$. We proceed similarly in each step of Nagell's algorithm until reaching the derivation D_{1} expressed in the coordinates x, y and T or equivalently only in x, y since $T=F(x, y, 1) / G(x, y, 1)$. Along the previous process, whenever we find it convenient, we substitute the derivation by a rational multiple in order to get
simpler expressions in each step. All computations were performed using the algebra systems Magma [$\mathbf{B C P}$] and Maxima [Max].

Since each case has computations following the same pattern, we decided to show them only in case 8 .
Applying Nagell's algorithm to the pencil $\left\langle\left(x z+x^{2}-y^{2}\right) z,-\left(x z-x^{2}+y^{2}\right) y\right\rangle$, obtained in Theorem 4.7. we get a Weierstrass form with $a_{0}=T^{3}, a_{2}=T^{4}+T^{2}, a_{4}=T^{3}, a_{6}=0$ and j-invariant $\left(T^{12}-T^{6}+1\right) /\left(T^{8}+T^{6}+T^{4}\right)$. After the map indicated at the beginning of the proof we get a normal form over the field $k\left(z_{1}, w_{1}, T\right)$ where

$$
\begin{gathered}
D_{1,8}\left(z_{1}\right)=1, \\
D_{1,8}\left(w_{1}\right)=0 \\
D_{1,8}(T)=1 /\left(j^{\prime} z_{1}^{2}\right)=\left(T^{13}-T^{11}-T^{7}+T^{5}\right) /\left(\left(T^{16}-T^{12}-T^{10}+T^{6}+T^{4}-1\right) z_{1}^{2}\right) .
\end{gathered}
$$

Then we take the equivalent derivation, also denoted $D_{1,8}$, given by

$$
\begin{gathered}
D_{1,8}\left(z_{1}\right)=\left(T^{16}-T^{12}-T^{10}+T^{6}+T^{4}-1\right) z_{1}^{2} \\
D_{1,8}\left(w_{1}\right)=0 \\
D_{1,8}(T)=T^{13}-T^{11}-T^{7}+T^{5} .
\end{gathered}
$$

Taking the inverse map we can compute $D_{1,8}(u), D_{1,8}(v)$ and $D_{1,8}(T)$ in terms of u, v, T. They have $T^{4}\left(T^{2}-1\right)^{3}$ as a common factor and cleaning up this factor we obtain an equivalent derivation given by

$$
\begin{gathered}
D_{1,8}(u)=T u^{2}-\left(T^{2}+1\right) u \\
D_{1,8}(v)=\left(T^{2}+1\right) v, \\
D_{1,8}(T)=T^{3}-T .
\end{gathered}
$$

Writing $D_{1,8}$ in the next generators of $k\left(S_{1}\right)$ we see that $T\left(u^{2}-1\right)$ is the denominator of $D_{1,8}\left(x_{2}\right)$. Multiplying by this polynomial we obtain an equivalent derivation given by

$$
\begin{aligned}
& D_{1,8}(u)=T^{2} u^{4}+\left(-T^{3}-T\right) u^{3}-T^{2} u^{2}+\left(T^{3}+T\right) u, \\
& D_{1,8}\left(x_{2}\right)=\left(-T^{3} u^{2}+T^{2} u-T\right) x_{2}-T u^{2}+\left(-T^{2}-1\right) u-T, \\
& D_{1,8}(T)=\left(T^{4}-T^{2}\right) u^{2}-T^{4}+T^{2} .
\end{aligned}
$$

In terms of the next generators x_{2}, y_{2} and T, x_{2}^{3} is the common denominator of $D_{1,8}$. Hence the equivalent derivation is given by

$$
\begin{gathered}
D_{1,8}\left(x_{2}\right)=\left(-T^{3} x_{2}^{2}-T x_{2}\right) y_{2}^{2}+\left(T^{2} x_{2}^{3}+\left(-T^{2}-1\right) x_{2}^{2}\right) y_{2}-T x_{2}^{4}-T x_{2}^{3}, \\
D_{1,8}\left(y_{2}\right)=T^{2} y_{2}^{4}+\left(\left(T^{3}-T\right) x_{2}-T\right) y_{2}^{3}+\left(-T^{2}-1\right) x_{2} y_{2}^{2}+\left(T^{3} x_{2}^{3}-T x_{2}^{2}\right) y_{2}, \\
D_{1,8}(T)=\left(T^{4}-T^{2}\right) x_{2} y_{2}^{2}+\left(T^{2}-T^{4}\right) x_{2}^{3} .
\end{gathered}
$$

For the generators x_{1}, y_{1}, T we have

$$
\begin{gathered}
D_{1,8}\left(x_{1}\right)=\left(-T^{3} x_{1}^{2}-T x_{1}\right) y_{1}^{2}+\left(\left(T^{2}+1\right) x_{1}^{2}-T^{2} x_{1}^{3}\right) y_{1}-T x_{1}^{4}-T x_{1}^{3}, \\
D_{1,8}\left(y_{1}\right)=-T^{2} y_{1}^{4}+\left(\left(T^{3}-T\right) x_{1}-T\right) y_{1}^{3}+\left(T^{2}+1\right) x_{1} y_{1}^{2}+\left(T^{3} x_{1}^{3}-T x_{1}^{2}\right) y_{1} \\
D_{1,8}(T)=\left(T^{4}-T^{2}\right) x_{1} y_{1}^{2}+\left(T^{2}-T^{4}\right) x_{1}^{3} .
\end{gathered}
$$

Finally we have to determine $D_{1,8}$ in terms of x, y, T or equivalently in terms of x, y, because $T=$ $F(x, y, 1) / G(x, y, 1)$. With these coordinates we get $x^{3} y\left(x^{2}-y^{2}\right)(x+y+1)^{2}(x-y+1)^{2}$ as a common factor of $D_{1,8}(x)$ and $D_{1,8}(y)$. Therefore $D_{1,8}$ is equivalent to a derivation given by

$$
A_{8}=D_{1,8}(x)=-x y(x+y)(x-y) \text { and } B_{8}=D_{1,8}(y)=\left(x^{2}-x^{2} y^{2}+y^{4}\right)
$$

Blow-ups of smooth surfaces

In this appendix we will remember some facts about blow-ups of a smooth surface S at point P and its relation with a pencil of curves in S (cf. [$\mathbf{H}]$ and [Mi]).

Let S be a smooth surface and let $P \in S$ be a closed point. Then there exist a surfaces \tilde{S} and a morphism $\pi: \tilde{S} \rightarrow S$, which are unique up to isomorphism, such that

1. $\left.\pi\right|_{\pi^{-1}(S-\{P\})}: \pi^{-1}(S-\{P\}) \rightarrow S-\{P\}$ is an isomorphism;
2. $\pi^{-1}(P)=E$ is isomorphic to \mathbb{P}^{1}.

We say that π is the blow-up of S at P and we call E its exceptional curve.
Lemma A.1. Let C be an irreducible curve on S that passes through P with multiplicity m. Then $\pi^{*} C=\tilde{C}+m E$, where \tilde{C} is the closure of $\pi^{-1}(C-\{P\})$ in \tilde{S} called the proper transform of C.

Proposition A.2. Let S be a smooth surface, $\pi: \tilde{S} \rightarrow S$ the blow-up of a point $P \in S$ and $E \subset \tilde{S}$ the exceptional curve. Let D, D^{\prime} be divisors on S, then

- $\left(\pi^{*} D\right) \cdot\left(\pi^{*} D^{\prime}\right)=D \cdot D^{\prime} ;$
- $E \cdot\left(\pi^{*} D\right)=0$;
- $E^{2}=-1$.

Proposition A.3. Let $\left\{C_{\lambda}\right\}$ be a pencil curves (general member smooth) on a smooth surface S with a base point P. Let $\pi: \tilde{S} \rightarrow S$ be the blow-up of S at P, then

- $\left\{\pi^{*} C_{\lambda}-E\right\}$ is the corresponding pencil on \tilde{S};
- Given a member $C_{\lambda_{0}}$ in S, the corresponding member in \tilde{S} is $\tilde{C}_{\lambda_{0}}+\left(m_{P}\left(C_{\lambda_{0}}\right)-1\right) E$;
- If P is a base point of $\left\{C_{\lambda}\right\}$ of index $n \geq 2$ then there is a point $P_{1} \in E$ which is a base point of $\left\{\pi^{*} C_{\lambda}-E\right\}$ of index $n-1 ;$
- Let B be an irreducible component of $C_{\lambda_{0}}$, then $\tilde{B}^{2}=B^{2}-m_{P}(B)^{2}$;
- If P is a base point of index 1 , then E is a global section in \tilde{S}, that is E is not a component of any curve in $\left\{\pi^{*} C_{\lambda}-E\right\}$ and intersects every curve of this pencil transversally.

We also can use this result to conclude that in a rational elliptic surface every component of a reducible fiber has self-intersection equal to -2 . Furthermore, if we look at these results from the view point of contractions of curves with self-intersection equal to -1 , we see that the self-intersection of a curve of a pencil increase by as many as the number points this curve intersects the exceptional curve we contract. We also increase the base point index by one.

To illustrate how to obtain the special fibers from the singular curves in the Table 4.3 , we will present the blow-ups of the curves in the row I_{2}^{*}. Since each marked singular point gives rise to a different sequence of blow-ups, which gives us disjoint sequences of new components (or sections when the index is equal to 1). We will see how the index and multiplicity of a point affect the new components. In each figure the blue curve represents locally a smooth member of a pencil containing the singular curve as a member. We will abuse notation and denote the proper transform of a curve C by C. We start with a point of index 2 of the singular $\left(I_{2}^{*},(a)\right)$.

The base point is a point of index 2 and multiplicity 2 implies that the exceptional curve is a component of multiplicity 1 of the curve above this and we have a base point of index 1 in the exceptional curve, which give a section in the next blow-up.

Now we look at the point of index 4 in $\left(I_{2}^{*},(a)\right)$.

The base point is a point of index 4 and multiplicity 3 implies the exceptional curve is a component of multiplicity 2 of the curve above this and we have a base point of index 3 in the exceptional curve, since
blue curve is tangent to L_{1}, this base point is also in the proper transform of L_{1}.

The base point is a point of index 3 and multiplicity 3 implies the exceptional curve is a component of multiplicity 2 of the curve above this and we have a base point of index 2 in the exceptional curve.

We have again a base point index 2 and multiplicity 2 . So the next blow-up gives:

Putting all 3 sequences of blow-ups together we get essentially a fiber of type I_{2}^{*}, with possibly some base points that are smooth in this curve.

Next we have the singular curve $\left(I_{2}^{*},(b)\right)$. We already know that the base point of index 3 and multiplicity 3 will give the following configuration.

Now we look at the point of index 4 in $\left(I_{2}^{*},(b)\right)$.

The base point of index 4 and multiplicity 2 implies that the exceptional curve is a component of multiplicity 1 of the curve above this and we have a base point of index 3 in the exceptional curve, since blue curve is tangent to L_{2}, this base point is also in the proper transform of L_{2}.

We have again a base point of index 3 and multiplicity 3 . So the next blow-ups give:

Putting these 2 sequences of blow-ups together we get essentially a fiber of type I_{2}^{*}.
Next we have the singular curve $\left(I_{2}^{*},(c)\right)$.

The base point is a point of index 5 and multiplicity 3 implies the exceptional curve is a component of multiplicity 2 of the curve above this and we have a base point of index 4 in the exceptional curve, since blue curve has inflectional line L_{1}, its proper transform is tangent to the proper transform of L_{2}.

We already know that the base point of index 4 and multiplicity 3 will give the following configuration.

And this is the configuration of a fiber of type I_{2}^{*}.
Finally we have the singular curve $\left(I_{2}^{*},(d)\right)$.

The base point is a point of index 6 and multiplicity 2 implies the exceptional curve is a component of multiplicity 1 of the curve above this and we have a base point of index 5 in the exceptional curve, since blue curve intersects the conic Q and the line with indices 4 and 2 , respectively, its proper transform intersects the proper transforms of Q and L with indices 3 and 1, respectively.

And this is basically the configuration in the previous case, which gives our special fiber.

Codes

In this appendix we show the codes used on the algebra systems MAGMA and MAXIMA.
We start by showing the following code used on the algebra system MAXIMA to apply Naggel's algorithm in the case $\mathscr{E}_{0,8}$ which appears in the proof of Theorem4.7.
(\% i2) $\quad \mathrm{F}: \mathrm{y}^{*}\left(-\mathrm{x}^{\wedge} 2+\mathrm{a}^{\wedge} 2^{*} \mathrm{y}^{\wedge} 2+\mathrm{b}^{*} \mathrm{x}^{*} \mathrm{z}\right)$;
$\mathrm{G}: \mathrm{z}^{*}\left(\mathrm{x}^{\wedge} 2-\mathrm{a}^{\wedge} 2^{*} \mathrm{y}^{\wedge} 2+\mathrm{b}^{*} \mathrm{x} * \mathrm{z}\right)$;

$$
\begin{align*}
& y\left(b x z+a^{2} y^{2}-x^{2}\right) \\
& z\left(b x z-a^{2} y^{2}+x^{2}\right)
\end{align*}
$$

(\% i3) $\mathrm{H}:$ num $($ ratsimp $(\mathrm{F}+\mathrm{t} * \mathrm{G})$);

$$
b t x z^{2}+\left(-a^{2} t y^{2}+b x y+t x^{2}\right) z+a^{2} y^{3}-x^{2} y
$$

(\% i6) H_3:coeff(H,z,0);
H_2: coeff(H,z,1);
H_1:coeff(H,z,2);

$$
\begin{gather*}
a^{2} y^{3}-x^{2} y \\
-a^{2} t y^{2}+b x y+t x^{2} \\
b t x
\end{gather*}
$$

(\% i8) s_8:coeff(H_1,x);
s_9:coeff(H_1,y);
(\% i10) e_2:polymod(subst([x=s_9,y=-s_8],H_2),3);
e_3:polymod(subst([x=s_9,y=-s_8],H_3),3);

$$
\begin{align*}
& -a^{2} b^{2} t^{3} \\
& -a^{2} b^{3} t^{3}
\end{align*}
$$

(\% i14) x:x_1-s_9*(e_2/e_3)*z_1;
$\mathrm{y}: \mathrm{y} _1+\mathrm{s} _8 *\left(\mathrm{e} _2 / \mathrm{e} _3\right){ }^{*} \mathrm{z} _1$;
z:z_1;
H_4:num(polymod(ratsimp(ev(H)),3));
x_{1}
(\% o11)

$$
t z_{1}+y_{1}
$$

$$
z_{1}
$$

$$
\left(a^{2} t^{2} y_{1}-b t x_{1}\right) z_{1}^{2}+\left(b x_{1} y_{1}-a^{2} t y_{1}^{2}\right) z_{1}+a^{2} y_{1}^{3}-x_{1}^{2} y_{1}
$$

(\% i18) x_1:x_2+s_9*y_2;
y_1:-s_8*y_2;
z_1:z_2;
H_5:polymod(ratsimp(ev(H_4)),3);

$$
x_{2}
$$

(\% o15)

$$
-b t y_{2}
$$

$$
z_{2}
$$

$\left(-a^{2} b t^{3} y_{2}-b t x_{2}\right) z_{2}^{2}+\left(-a^{2} b^{2} t^{3} y_{2}^{2}-b^{2} t x_{2} y_{2}\right) z_{2}-a^{2} b^{3} t^{3} y_{2}^{3}+b t x_{2}^{2} y_{2}$
(\% i22) h:subst(z_2=1,H_5);
h_1:coeff(H_5,z_2,2);
h_2:coeff(H_5,z_2,1);
h_3:coeff(H_5,z_2,0);

$$
-a^{2} b^{3} t^{3} y_{2}^{3}-a^{2} b^{2} t^{3} y_{2}^{2}+b t x_{2}^{2} y_{2}-b^{2} t x_{2} y_{2}-a^{2} b t^{3} y_{2}-b t x_{2}
$$

$$
-a^{2} b t^{3} y_{2}-b t x_{2}
$$

$$
\begin{gather*}
-a^{2} b^{2} t^{3} y_{2}^{2}-b^{2} t x_{2} y_{2} \\
b t x_{2}^{2} y_{2}-a^{2} b^{3} t^{3} y_{2}^{3}
\end{gather*}
$$

(\% i23) f:ratsimp($\left.\operatorname{subst}\left(\mathrm{y} _2=\mathrm{u}^{*} \mathrm{x} _2, \mathrm{~h}\right) / \mathrm{x} _2\right)$;

$$
\left(b t u-a^{2} b^{3} t^{3} u^{3}\right) x_{2}^{2}+\left(-a^{2} b^{2} t^{3} u^{2}-b^{2} t u\right) x_{2}-a^{2} b t^{3} u-b t
$$

(\% i24) v:-coeff(f,x_2,2)*x_2+coeff(f,x_2,1);

$$
\left(a^{2} b^{3} t^{3} u^{3}-b t u\right) x_{2}-a^{2} b^{2} t^{3} u^{2}-b^{2} t u
$$

(\% i25) W:polymod(ratsimp((coeff(f,x_2,1)^2-coeff(f,x_2,2)*coeff(f,x_2,0))),3);

$$
a^{2} b^{4} t^{4} u^{3}+\left(a^{2} b^{2} t^{4}+b^{4} t^{2}\right) u^{2}+b^{2} t^{2} u
$$

(\% i26) $\Delta:-\operatorname{polymod}\left(\right.$ ratsimp $\left(\operatorname{coeff}(\mathrm{W}, \mathrm{u}, 3)^{*} \operatorname{coeff}(\mathrm{~W}, \mathrm{u}, 1)^{\wedge} 3\right.$ $\left.\left.-\operatorname{coeff}(\mathrm{W}, \mathrm{u}, 1)^{\wedge} 2^{*} \operatorname{coeff}(\mathrm{~W}, \mathrm{u}, 2)^{\wedge} 2+\operatorname{coeff}(\mathrm{W}, \mathrm{u}, 0)^{*} \operatorname{coeff}(\mathrm{~W}, \mathrm{u}, 2)^{\wedge} 3\right), 3\right)$;

$$
a^{4} b^{8} t^{12}+a^{2} b^{10} t^{10}+b^{12} t^{8}
$$

(\% i27) j:polymod(ratsimp(coeff(W,u,2)^ 6/(coeff(W,u,3)^2* $\Delta)), 3) ;$

$$
\frac{a^{12} t^{12}-a^{6} b^{6} t^{6}+b^{12}}{a^{8} b^{4} t^{8}+a^{6} b^{6} t^{6}+a^{4} b^{8} t^{4}}
$$

In the proof of Theorem 5.6 we analyze if we can swap a derivation with one of its rational multiples in order to get simpler expressions for D_{1} applied to each system of generators of the function field. For instance, if $K\left(S_{1}\right)=K\left(x_{1}, x_{2}, x_{3}\right)$ and $D_{1}\left(x_{1}\right), D_{1}\left(x_{2}\right), D_{1}\left(x_{3}\right)$ are polynomials, we use the following code on the algebra systems MAGMA to search for any common factors.
$\mathrm{L}:=\mathrm{GF}\left(3^{8}\right)$;
$L<x_{1}, x_{2}, x_{3}>$:=PolynomialRing(L,3);
Factorization $\left(D_{1}\left(x_{1}\right)\right)$;
Factorization $\left(D_{1}\left(x_{2}\right)\right)$;
Factorization $\left(D_{1}\left(x_{3}\right)\right.$);

Bibliography

[BCP] W. Bosma, J. Cannon, and C. Playoust,The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.
[BM] E. Bombieri, D. Mumford, Enriques’ classification of surfaces in characteristic p. III, Invent. Math. 35 (1976) 197-232.
[BN] H. Borges Neto, Mudança de gênero e classificação de corpos de gênero 2, Tese de Doutorado, Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1979).
[C] I. Connell, Elliptic Curve Handbook, (1999) http://www.math.mcgill.ca/connell/public/ECH1/.
[CD] Cossec, F. R., Dolgachev, I.V., Enriques Surfaces I, Progress in Mathematics, Birkhäuser, (1989).
[CS] A. S Cañate, K.-O, Stöhr, Fibrations by non-smooth projective curves of arithmetic genus two in characteristic two, Journal of Pure and Applied Algebra 220 (2016) 3282-3299.
[F] W. Fulton ALGEBRAIC CURVES. An Introduction to Algebraic Geometry. (2008) https://dept.math.lsa.umich.edu/ wfulton/CurveBook.pdf
[Fu] D. FusiConstruction of Linear Pencils of Cubics with Mordell-Weil Rank six and seven, Comment. Math. Univ. St. Paul. 58 no. 2 (2006) 195-205.
[G] D. M. Goldschmidt Algebraic Functions and Projective Curves. Graduate Texts in Mathematics, vol 215. Springer, New York, NY (2006).
[H] R. Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, v. 52, Springer (1977).
[HRS] A. Hefez, J. H. O. Rodrigues and R. Salomão, The Milnor number of a hypersurface singularity in arbitrary characteristic, Journal of Algebra 540 (2019) 20-41.
[JLRRSP] T. Jarvis, W. E. Lang, G. Rimmasch, J. Rogers, E. D. Summers, and N. Petrosyan, Classification of singular fibers on rational elliptic surfaces in characteristic three. Comm. Algebra, 33(12):4533-4566, (2005).
[La] S. Lang, Elliptic functions, Addison Wesley Comp (1973).
[Max] Maxima, a Computer Algebra System. Version 5.45.1 (2021).https://maxima.sourceforge.io/
[Mi] R. Miranda, On the Stability of Pencils of Cubic Curves, American Journal of Mathematics 102, no. 6 (1980): 1177-1202.
[MP] Y. Miyaoka, T. Peternell, Geometry of higher-dimensional algebraic varieties, volume. 26 of DMV Seminar. Birkhäuser Verlag, Basel (1997)
[Mum] D. Mumford, Introduction in 'Oscar Zariski: collected papers I', MIT Press (1972) 3-5.
[Muk] S. Mukai, Counterexamples to Kodaira's vanishing and Yau's inequality in positive characteristics. Kyoto J. Math. (2013) no. 2, 515-532.
[OS] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul., 40(1):83-99, (1991).
[Q] C.S. Queen, Nonconservative function fields of genus one. I, Arch. Math. 22 (1971) 612-623.
[R] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952) 169-191.
[Sa1] R. Salomão, Fibrations by non-smooth genus three curves in characteristic three, Journal of Pure and Applied Algebra 215 (2011) 1967-1979.
[Sa2] R. Salomão, Fibrations by curves with more than one non-smooth point, Bull Braz Math Soc, New Series 45 (2014) 267-292.
[Sal] C. SalgadoConstruction of linear pencils of cubics with Mordell-Weil rank five, Comment. Math. Univ. St. Paul., 58 no. 2 (2009) 95-104.
[Sh] I. Shimada, On supercuspidal families of curves on a surface in positive characteristic, Math. Ann., 292 (1992) 645-669.
[Shi] T. Shioda, On the Mordell-Weil Lattices, Comment. Math. Univ. St. Paul. 39 no. 2, 211-240 (1990).
[Si] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, v. 106, Springer (2000).
[S1] K.-O. Stöhr, On singular primes in function fields, Arch. Math. 50 (1988) 156-163.
[S2] K.-O. Stöhr, On Bertini's theorem in characteristic p for families of canonical curves in $\mathbb{P}^{(p-3) / 2}$, Proc. London Math. Soc. (3) 89 (2004) 291-316.
[S3] K.-O. Stöhr, On Bertini's theorem for fibrations by plane projective quartic curves in characteristic five, Journal of Algebra 315 (2007) 502-526.
[T] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952) 400-406.
[Ta] Y. Takeda, Fibration with moving cuspidal singularities, Nagoya Math. J. 122 (1991) 161-179.
[Z] O. Zariski, The theorem of Bertini on the variable singular points of a linear system of varieties, Trans. Amer. Math. Soc. 56 (1944) 130-140.
[Zh] X. Zheng, Counterexamples of Kodaira vanishing for smooth surfaces of general type in positive characteristic, Journal of Pure and Applied Algebra 221 (2017) 2431-2444.

