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RESUMO

Em 1944 Zariski descobriu que o teorema de Bertini sobre pontos singulares variáveis não
é mais verdadeiro quando passamos de um corpo de característica zero para um corpo de
característica positiva. Em outras palavras, ele encontrou fibrações por curvas singulares, que
só existem em característica positiva. Tais fibrações estão conectadas com muitos fenômenos
interessantes. Por exemplo, a extensão da classificação de Enriques de superfícies para
características positivas (Bombieri e Mumford em 1976), os contraexemplos do teorema do
anulamento de Kodaira (Mukai em 2013 e Zheng em 2016) e as singularidades isoladas com
número de Milnor infinito (Hefez, Rodrigues e Salomão em 2019). Neste trabalho vamos mostrar
que o processo de suavização introduzido por Shimada em 1991 pode ser usado para classificar
o conjunto de fibrações por curvas singulares de gênero dois - a menos de isomorfismos entre
suas fibras genéricas - de modo que suas suavizações sejam fibrações elípticas em superfícies
racionais. Além disso, também descreveremos os campos de vetores que podem ser usados
para recuperar tais fibrações por curvas singulares via o quociente de superfícies elípticas
racionais.



ABSTRACT

In 1944 Zariski discovered that Bertini’s theorem on variable singular points is no longer
true when we pass from a field of characteristic zero to a field of positive characteristic. In
other words, he found fibrations by singular curves, which only exist in positive characteristic.
Such fibrations are connected with many interesting phenomena. For instance, the extension of
Enrique’s classification of surfaces to positive characteristic (Bombieri and Mumford in 1976),
the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and
the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019).
In this work we are going to show that the smoothing process introduced by Shimada in 1991
can be used to classify the set of fibrations by genus two singular curves, up to isomorphism
among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces.
Moreover we will also describe the vector fields that can be used to recover such fibrations by
singular curves via quotient of rational elliptic surfaces.
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CHAPTER 1

Introduction

In 1944 Zariski discovered in [Z] that Bertini’s theorem on variable singular points may fail in positive

characteristic. In other words, he found fibrations f : X → Y by non-smooth algebraic curves between

smooth (irreducible) algebraic varieties over an algebraically closed field k of characteristic p > 0.

According to Mumford [Mum], that was Zariski’s main motivation to interpret generic fibers as curves

over k(Y ), the function field of the target, and to develop two different notions of simple points on

varieties defined over non-algebraically closed fields: regular in the sense of having a regular local ring

and smooth meaning that the usual Jacobian criterion is satisfied.

Fibrations by non-smooth varieties are related and encode several interesting characteristic p phe-

nomena in algebraic geometry and singularity theory. With no intention to provide an exhaustive list, we

mention that: fibrations by cuspidal curves arose in the characterization of quasi-hyperelliptic case that

appeared in the extension of Enriques’ classification of minimal surfaces to positive characteristic (see

[BM]); interesting connections with counterexamples of Kodaira vanishing theorem were pointed out

by Mukai in [Muk] and by Zheng in [Zh], where they showed that Kodaira vanishing theorem does not

work over a surface if and only if it admits a fibration by singular curves. There is also a connection with

a class of isolated hypersurfaces singularities which includes those having infinity Milnor number that

appeared in [HRS]. The existence of these fibrations by non-smooth varieties also enables us to find other

geometrical constructions that never occur in characteristic zero, for instance, a covering of P2 with a

family of singular, strange and non-classical curves, as observed in [Sa1] Example 1.1.

Several papers studied the classification of fibrations by singular curves from the birational perspective

as [S2], [S3], [Sa1], [Sa2] and [CS]. All of them used the well known strategy - that in this context

appeared at first in the work of Stöhr (see [S2]) and - which we outline below.

Let us consider f : X → Y a fibration by curves between smooth integral varieties over the alge-

braically closed field k. We avoid trivial situations assuming that f is a proper and dominant morphism,

so that almost all of its fibers are complete and integral curves. A divisor dominating Y via f is called an

horizontal divisor for f . It turns out that horizontal prime divisors correspond bijectively to closed points

of the generic fiber Xη of f , a complete and geometrically integral algebraic curve over k(Y ). By means

of this correspondence, the horizontal prime divisors contained in the non-smooth locus of f correspond

to the non-smooth closed points of Xη, which is, in turn, a regular curve over k(Y ). Therefore, f is a

fibration by non-smooth curves if and only if its generic fiber Xη is a regular but non-smooth curve over

k(Y ). In this way, it is equivalent to study proper fibrations by non-smooth curves and to study their

generic fibers, that is, regular but non-smooth curves that are complete and geometrically integral.
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This work is devoted less to the problem of classification of generic fibers mentioned above and more

to the study of an alternative approach to the classification of fibrations by singular curves using the

technique of quotient by p-closed vector fields. This point of view was taken by Bombieri and Mumford,

locally, in their extension of Enriques’ classification of surfaces to positive characteristic. It also appeared

as a central tool used by Takeda [Ta] in his construction of counterexamples of Kodaira vanishing theorem,

and by Shimada [Sh] in the description of the phenomenon of supercuspidal families of curves on surfaces.

We will give more details on this technique of quotients by vector fields in Chapter 2. Here, we give an

idea of how it goes, providing an example which illustrates the relationship between vector fields and

fibrations by singular curves.

Example 1.1. Let k denote an algebraically closed field of characteristic p > 0, X = A2 = Spec k[x, y],

Y = A1 = Spec k[t] and f : X → Y be the fibration by curves induced by f(x, y) = y2 + xp. The fiber

of f over each closed point t0 ∈ Y is the plane curve defined by the polynomial y2 + xp − t0, which has

(t
1/p
0 , 0) as its unique singular point.

If we consider new variables Z,W and T over k related to the others by Z = x, W p = y and T p = t,

we can define X1 = A2 = Spec k[Z,W ], Y1 = A1 = Spec k[T ]. Moreover, the natural morphisms

π : X1 → X , F : Y1 → Y and f1 : X1 → Y1 defined by π(Z,W ) = (Z,W p), F (T ) = T p and

f1(Z,W ) = W 2 + Z, respectively, make the following diagram commutative.

X

f
��

X1

f1
��

πoo

Y Y1
Foo

The important part to observe in this example is that OX(X) = k[x, y] coincides with the kernel

of the vector field or, equivalently, the derivation D1 =
∂

∂W of OX1(X1) = k[Z,W ]. Furthermore, the

pre-image by π of the horizontal locus V (y) of f , containing the singularities of the general fiber of f , is

V (W ); it is characterized by the following geometric property: for each closed point T0 ∈ Y1 we have

(T0, 0) ∈ V (W ) as a point of tangency between the fiber f−1
1 (T0) and the curve V (Z − T0), which is an

invariant curve of D1. Notice also that in this example the fibration f1 is generically smooth and can be

considered as a smoothing of f .

Shimada in [Sh] related fibrations by singular curves and fibrations by smooth curves on surfaces

using vector fields and Frobenius morphisms of the base curves. More precisely, he proved that after

applying finitely many times a process analogous to the one in above example, we can achieve this kind

of smoothing for any given singular fibration on surfaces. We will use Shimada’s smoothing process (cf.

Proposition 2.2) as a tool to classify certain fibrations by singular curves.

In what follows we describe the contents of this thesis. In Chapter 2 we collect the main definitions

and invariants (particularly we introduce our notion of equivalence of fibrations and recall the definition

of the arithmetic genus of the general fiber) together with results of Shimada [Sh], Tate [T] and others

that we shall use in our study of fibrations by singular curves. In the same Chapter 2 we place ourselves

in the setting in which we could obtain our main results, namely, that of fibrations by singular curves of

arithmetic genus two on surfaces over fields of characteristic three with Shimada’s smoothing providing

a rational elliptic surface. To this end we will rely heavily on unpublished results of Borges Neto [BN]

that establishes a connection between the classification of such fibrations and the classification of some

14



fibrations by elliptic curves. By lack of a widely accessible reference we decided to present his results -

which constitutes the core of the function fields machinery we will use - in considerable detail in Chapter

3. Building on the results obtained in Chapter 3, in Chapter 4 we present our main results. Namely, we

use a well-known result of Cossec and Dolgachev [CD] to reduce the study of equivalence classes of

fibrations by singular curves of arithmetic genus two over fields of characteristic three with Shimada’s

smoothing providing a rational elliptic surface to the study of equivalence classes of fibrations obtained by

blowing-up base points of certain pencils of plane cubic curves. Since the Mordell-Weil group of rational

points of an elliptic surface is a birational invariant, we use it to stratify the equivalence classes of such

fibrations. Under the additional assumption that the rational elliptic surface has a Mordell-Weil group

of rank zero, and through a careful analysis of resolution of base points, we succeeded to provide the

geometric configurations to the pairs of generators of the referred pencils of plane cubics (cf. Theorem

4.6). It turns out that the restriction obtained in the case of Mordell-Weil rank zero is surprisingly strong:

they allowed us to deduce that the corresponding stratum has dimension zero. Indeed we prove that every

fibration by singular curves of arithmetic genus two over fields of characteristic three with Shimada’s

smoothing being a rational elliptic surface of rank zero possess as smoothing a fibration obtained by

resolving base points of a unique and explicit pencil of plane cubics, up to our equivalence relation (cf.

Theorem 4.7). For the sake of completeness we include an example (see Example 4.9) showing that the

same phenomenon does not propagate to the case where the Mordell-Weil rank of the rational elliptic

surface is one. As a result of the description of Theorem 4.7, mixing with results on function fields, we

obtain an explicit 3-closed vector field on the projective plane - with the prescribed tangency divisor

with the general member of such pencils - whose quotients produce our fibrations by singular curves of

arithmetic genus two.

15



CHAPTER 2

Smoothing and classification of
fibration by singular curves

In this chapter we recall the fundamentals of Shimada’s work [Sh] which are going to play an essential

role in our approach, as explained in the Introduction.

Unless mentioned otherwise, we always work with varieties, surfaces and curves being integral k-

schemes of finite type over an algebraically closed field k of characteristic p > 0. In particular, morphisms

are k-morphisms. By technical reasons we will mean by a fibration by (non-smooth or singular) curves

f : X → Y a dominant morphism between integral and complete varieties such that the general fiber is

a smooth (non-smooth or singular) integral curve though the total space X is smooth after eventually

restricting the base to a dense open subset.

Definition 2.1. Two fibrations f : X → Y and f ′ : X ′ → Y ′ are said to be equivalent when there are

birational maps σ : Y → Y ′ and φ : X → X ′ such that the following natural diagram commutes.

X

f
��

φ // X ′

f ′

��
Y

σ // Y ′

If this is the case we denote f ∼ f ′.

If η and η′ are the generic points of Y and Y ′ respectively, then the generic fibers Xη and X ′
η′ of f and

f ′, respectively, are complete and regular algebraic curves over the fields k(Y ) and k(Y ′) respectively.

We notice that f : X → Y and f ′ : X ′ → Y ′ are equivalent if and only if their generic fibers Xη and X ′
η′

are isomorphic curves, that is, the field extensions k(X)|k(Y ) and k(X ′)|k(Y ′) are isomorphic over k.

Let us consider f1 : S1 → C1 be a fibration by curves from a surface S1 onto a curve C1. Let D1 be a

rational vector field on S1, that is, a k-derivation of the field k(S1) of rational functions on S1. We say

that another vector field D on S1 is equivalent to D1 when D = hD1 for some h ∈ k(S1) \ {0}. It is

possible to see that the composition Dp
1 = D1 ◦ · · · ◦D1 of D1 with itself p-times is also a vector field on

S1. We assume that D1 is p-closed, that is, Dp
1 = hD1 for some h ∈ k(S1).

The variety SD1
1 , which is equal to S1 as a topological space, with the new structure sheaf

O
S
D1
1

(U) = {g ∈ OS1(U) | D1(g) = 0},

16



where U runs over the open subsets of S1, is called the quotient of S1 by the vector field D1. It is not

difficult to prove that SD1
1 is normal if S1 is so. The inclusions O

S
D1
1

(U) ⊂ OS1(U) induce a map

πD1 : S1 → SD1
1

which is purely inseparable of degree p, since it is an homeomorphism of surfaces and k(S1) is a purely

inseparable field extension of k(SD1
1 ) = k(S1)

D1 := {g ∈ k(S1) | D1(g) = 0} of degree p.

If we consider {xP , yP } a local coordinate system at each smooth point P at S1, we can write

D1 = hP

(
fP

∂

∂xP
+ gP

∂

∂yP

)
where hP ∈ k(S1) and fP , gP are relatively prime elements in OS1,P . The divisor (D1) associated

to D1 is defined by the functions {hP }P∈S1 . We say that P is an isolated singularity of D1 when

fP (P ) = gP (P ) = 0 and, otherwise, we say that D1 has only divisorial singularities in a neighborhood

of P . When D1 has only divisorial singularities at any point of S1 we say that D1 has only divisorial

singularities. We say that a curve B on S1 is invariant by D1 if D1(f) ∈ f · OS1,P for any point P ∈ B,

where f is a local equation of B at P .

Proposition 2.2 (Shimada). Let us consider k an algebraically closed field of characteristic p > 0 and

f : S → C be a fibration by singular curves, where S is a normal surface and C is a smooth curve

over k. If S1 is the normalization of S ×C C(1/p), then there exists a p-closed vector field D1 - uniquely

determined up to equivalence - on S1 such that the diagram

S = SD1
1

f

��

S1

f1
��

πD1oo

C C1

F
C(1/p),koo

commutes, where C1 = C(1/p) and FC(1/p),k is the relative Frobenius map of C(1/p). Moreover, after

applying this process finitely many times we obtain a commutative diagram

S = SD1
1

f

��

S1 = SD2
2

f1
��

πD1oo · · ·πD2oo Sn
πDnoo

fn
��

C C1

F
C(1/p),koo · · ·oo Cn

F
C
(1/p)
n−1 ,k
oo

(2.1)

such that fn : Sn → Cn is a fibration by (generically smooth) curves.

Definition 2.3. Given a fibration f : S → C in the setting of the Proposition 2.2, we say that fn : Sn → Cn

is the Shimada’s smoothing of f when n is the first integer such that fn is a fibration by (generically

smooth) curves.

The previous result suggests the following problem: “Is it possible to use Shimada’s process of

smoothing to classify fibrations by singular curves?". With this problem in mind we observe that since

Shimada’s process is intrinsic, equivalent fibrations must have equivalent smoothings. Hence a possible

stratification would be by discrete data which are invariant under our equivalence relation, the most

prominent being the arithmetic genus pa of the generic fiber.

17



Since the normalization of (Si)ηi ⊗k(Ci) k(Ci)
1/p is equal to (Si+1)ηi+1 where ηi is the generic point

of Ci, we can apply Corollary 3.2 in [S1] and a result due to Rosenlicht in [R] pg. 182 to obtain that

pa((Si+1)ηi+1) > pa((Si)ηi) if and only if fi is a fibration by singular curves.

For simplicity we will study the case where f1 : S1 → C1 is already the smoothing of the fibration

by singular curves f : S → C. This can be thought as if we are going from hn−1 to hn, where hn is the

Shimada’s smoothing of a fibration by singular curves h. The simplest case with this setup is when the

arithmetic genera g and g1 of the generic fibers of f and f1, respectively, are equal to 1 and 0. However,

the equivalence class of f1 does not determine the equivalence class of f , as we can see in [Q] Proposition

2(4). Indeed, Queen has shown in [Q] that there are non-isomorphic regular and non-smooth curves with

g = 1 and g1 = 0, whose smoothings have a rational point, that is they are isomorphic to the projective

line. On the other hand, [BN] Corollary 2 pg. 34 or Chapter 3 Proposition 3.12, shows that the simplest

case where we obtain a correspondence between the equivalence classes is when g = 2, g1 = 1 and the

characteristic of k is 3. Fibrations with this feature will be called absolutely elliptic fibrations by singular

curves of arithmetic genus 2.

In this work we will start to describe the set of equivalence classes of absolutely elliptic fibrations by

singular curves of genus 2, over an algebraically closed fields of characteristic 3. Actually we are going

to study fibrations by singular curves f : S → C such that the total spaces S1 of the smoothings f1 in

Shimada’s diagram are rational surfaces. Therefore, C and C1 are the projective lines and, locally, they

are the affine lines A1
t = Spec k[t] and A1

T = Spec k[T ], respectively, with T 3 = t. Summing up, we

are interested in describing the set H of equivalence classes of absolutely elliptic fibrations by singular

curves of genus 2 with the prescribed restrictions.
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CHAPTER 3

Absolutely elliptic regular curves of
genus two

In this chapter we will study the generic fiber of absolutely elliptic fibrations by singular curves of

genus two. As we will be concerned with birational invariants of these curves, we will actually study them

with a function fields point of view. Actually, most results presented here are not ours and were obtained

originally by Borges Neto in his unpublished PhD Thesis [BN]. For the sake of completeness we will

present proofs.

Let us consider K a non-algebraically closed field of positive characteristic p and C be a regular

complete and geometrically integral algebraic curve over K. Hence, K is algebraically closed in K(C)

and K(C)|K is separably generated. By definition C is said to be non-smooth when C := C ⊗K K is a

non-regular curve over K. Since the arithmetic genus is invariant under base field extensions, it follows

that C is non-smooth if and only if pg(C) = pa(C) = pa(C) > pg(C), where pa and pg stand by the

arithmetic and geometric genera of the indicated curves, respectively. We recall that

pa(C)− pg(C) =
∑

δP (3.1)

where δP = dimK

ÕC,P

OC,P
, P runs over the points of C and ÕC,P is the integral closure of OC,P in K(C).

In this chapter we will study regular curves C with pa(C) = 2 and pg(C) = 1. Such curves are

called absolutely elliptic regular curves of genus two. It follows by Tate’s upper bound (see [T]) that

p ≤ 2pa(C) + 1 = 5. Therefore such phenomenon can occur only when we are working over fields of

characteristic two, three or five. More precisely, it is shown in [BN] and [CS] that absolutely elliptic

curves can occur only in characteristic two or three. In this work we will focus only in the case of

characteristic three.

Since genus two curves are hyperelliptic curves, it follows from Lemma 3.6.1 and Corollary 3.6.3 in

[G] that a genus two curve C over K is birationally equivalent to an affine plane curve over K given by

the equation

Y 2 = f(X)

where f(X) is a square free polynomial in K[X] of degree 5 or 6. Both degrees can be obtained from

one another by means of isomorphisms of K(C)|K. From now on we will describe polynomials f(X)

with degree 6 for which the corresponding curves are absolutely elliptic.
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We notice that f(X) is a separable polynomial in K[X] if and only if the affine plane curve over K

given by Y 2 = f(X) is regular. This is, in turn, equivalent to the smoothness of the affine plane curve

over K given by Y 2 = f(X). Therefore, regular but non-smooth curves C of genus two over K are

birationally equivalent to an affine plane curve over K given by the equation Y 2 = f(X) where f(X) is

a square free polynomial in K[X] of degree 6 and is inseparable as a polynomial in K[X].

Proposition 3.1. Let us consider K be a field of characteristic three and C be a genus two regular and

geometrically integral curve over K. Then, C is absolutely elliptic if and only if it is birationally equivalent

to an affine plane curve given by Y 2 − f(X), where f(X) = (a0X
3 − a1)(b0X

3 + b1X
2 + b2X + b3)

with a0, a1, b0, b1, b2, b3 ∈ K, a0b0 ̸= 0, a1
a0

̸∈ K3 and b0X
3 + b1X

2 + b2X + b3 separable.

Proof. If f ′(X) = 0, then f(X) = a0X
6 + a1X

3 + a2 with a0, a1, a2 ∈ K and a0 ̸= 0. Hence, in

K[X], f(X) can be factorized as a(X − b)3(X − c)3. We notice that b ̸= c because, otherwise, f(X)

would not be a square free polynomial in K[X]. In this case C has two singular points and, from (3.1),

pg(C) = 0. Therefore, we can restrict ourselves to the case f ′(X) ̸= 0.

We notice firstly that f(X) can not be irreducible, because otherwise, f(X) would be separable imply-

ing the smoothness of C. Hence f(X) = g(X)h(X) with g(X) and h(X) having gcd(g(X), h(X)) = 1

in K[X]. We consider q(X) being an irreducible common factor of f(X) and f ′(X). Since f(X) is

square free, we may assume without loss of generality that g(X) = q(X). From f ′(X) = q′(X)h(X) +

q(X)h′(X) we obtain that q(X) also divides q′(X). Hence q′(X) = 0 or equivalently q(X) ∈ K[X3].

Therefore, f(X) = (a0X
3 + a1)(b0X

3 + b1X
2 + b2X + b3) with a0, a1, b0, b1, b2, b3 ∈ K, a0b0 ̸= 0.

We also have a1
a0

̸∈ K3 since a0X
3 + a1 = q(X) is irreducible. To finish the proof, we notice that

f ′(X) ̸= 0 implies that (b0X3 + b1X
2 + b2X + b3)

′ ̸= 0, that is, b0X3 + b1X
2 + b2X + b3 has no triple

root in K. It is not difficult to prove that if b0X3 + b1X
2 + b2X + b3 has a double root a and a simple

root b, both in K, then they must belong to K. However, in this case f(X) would not be a square free

polynomial. Therefore, b0X3 + b1X
2 + b2X + b3 must be a separable polynomial.

It is possible to use the previous result to give a normal form for absolutely elliptic genus two regular

curves C over a field K of characteristic three, as we will do below. Notice that C is birationally equivalent

to an affine plane curve given by

Y 2 − (X3 − α)(f0X
3 + f1X

2 + f2X + f3) (3.2)

with α, f0, f1, f2, f3 ∈ K, α ̸∈ K3 and f0X
3+f1X

2+f2X+f3 separable. In this way K(C) = K(x, y)

where x and y are the residue classes of X and Y modulo Y 2 − (X3 − α)(f0X
3 + f1X

2 + f2X + f3),

respectively.

Let us consider L = K(β) where β ∈ K is such that β3 = α. We can write

y2 = (x− β)3(f0(x− β)3 + f1(x− β)2 + (f2 − βf1)(x− β) + (f3 + f2β + f1β
2 + f0β

3))

in L(C ⊗K L) = L · K(C) = L(x, y). By considering z = 1/(x − β) and w = z3y we obtain that

L(C ⊗K L) = L(z, w) with z and w satisfying the identity

w2 = a0z
3 + a2z

2 + a4z + a6 (3.3)

where a0 = f3 + f2β + f1β
2 + f0β

3, a2 = f2 − βf1, a4 = f1 and a6 = f0. Therefore, C ⊗K L is

an elliptic curve over L with Weierstrass form given by the above relation between z and w. We refer

20



the reader to [Si] and [La] for results about elliptic curves over non-algebraically closed fields. The

discriminant associated to the Weierstrass form (3.3) is

∆ = −a0a
3
4 + a22a

2
4 − a32a6 = −f3f

3
1 + f2

2 f
2
1 − f3

2 f0

which is the discriminant of the separable polynomial f0X3 + f1X
2 + f2X + f3. Hence it is nonzero

and the elliptic curve is smooth.

In the following we derive useful properties about some coefficients of the Weierstrass form (3.3) and

its j-invariant.

Lemma 3.2. If w2 = a0z
3 + a2z

2 + a4z + a6 is a Weierstrass form obtained as in (3.3), then a2 ̸= 0

and a0 ∈ L \K.

Proof. By construction we have that L is a K-vector space with base {1, β, β2}. Since f3 + f0β
3 ∈ K it

follows that f3+ f2β+ f1β
2+ f0β

3 ∈ K if and only if there exists g ∈ K such that g+ f2β+ f1β
2 = 0,

which is possible only when g = f2 = f1 = 0. By the same reason we have a2 = f2 − f1β = 0 only

when f2 = f1 = 0. But this is not possible because, otherwise, f0X3 + f1X
2 + f2X + f3 = f0X

3 + f3

would not be separable.

The j-invariant associated to the Weierstrass form (3.3) is given by

j =
a62
a20∆

=
(f3

2 − f3
1β

3)2

(f3 + f2β + f1β2 + f0β3)2(−f3f3
1 + f2

2 f
2
1 − f3

2 f0)
∈ L.

Hence we have the following consequence of the last lemma.

Corollary 3.3. If w2 = a0z
3+a2z

2+a4z+a6 is a Weierstrass form obtained as in (3.3), then j ∈ L\K
and L = K(j).

Proof. Since j = a62/a
2
0∆ and a62,∆ ∈ K, then j ∈ K would imply that a20 ∈ K. In this case,

[K(a0) : K] would be a common divisor between 2 and [L : K] = 3, that is, [K(a0) : K] = 1. But this

is not possible by the previous lemma. Since j ∈ L \K it follows immediately that L = K(j).

Remark 3.4. Since [L : K] = 3, it follows from the previous corollary that K(β) = L = K(j). We can

write j with respect to the base {1, β, β2} as follows.

j =
a62
a20∆

=
a62
a30∆

a0 = g(f3 + f0β
3) + gf2β + gf1β

2

where g =
a62
a30∆

∈ K \ {0}.

We notice that we can write j = aβ+b
cβ+d where ad − bc ̸= 0. Indeed, this is possible if and only if

(g(f3 + f0β
3) + gf2β + gf1β

2)(cβ + d) = aβ + b, or equivalently, if and only if a, b, c and d form a

solution for the system 
−a+ c0c+ c1d = 0

−b+ c2β
3c+ c0d = 0

c1c+ c2d = 0

where c0 = g(f3 + f0β
3), c1 = gf2 and c2 = gf1. Such system admits a = c0c2 − c21, b = c22α− c0c1,

c = c2 and d = −c1 as solution. Moreover, ad− bc = c31 − c32β
3 = g3a32 ̸= 0 from the last lemma.
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Now we present a normal form for absolutely elliptic curves of genus two.

Proposition 3.5 (Borges Neto). Let C be a regular, complete and geometrically integral curve of genus

two over a field K, of characteristic 3, birational to an affine plane curve given by (3.2). Then it is

birational to the affine plane curve given by the polynomial

Y 2 − h(X3 − j3)(X3 − j3X − j3)

in K[X,Y ], with h = (αf3
1 − f3

2 )∆ ∈ K, j ∈ K1/3 \ K where ∆ and j being the discriminant and

j-invariant of the Weierstrass form (3.3), respectively. In this case, if we denote L = K(j), then C ⊗K L

is birational to the affine smooth elliptic curve defined by the polynomial

W 2 + h(j4Z3 + j3Z2 − 1)

in L[Z,W ], which admits a rational point at infinity.

Proof. As we have already seen K(C) = K(x, y) where y2 = (x3 − α)(f0x
3 + f1x

2 + f2x + f3).

If we extend the base field K to L, then we will get an elliptic curve with Weierstrass form w2 =

a0z
3 + a2z

2 + a4z + a6 where a0 = f3 + f2β + f1β
2 + f0β

3, a2 = f2 − βf1, a4 = f1 and a6 = f0. It

follows from Corollary 3.3 that j ̸= 0.

By Theorem 3.6.4 in [G], K(x) is the unique subfield of K(x, y) of index 2. In this way we

will produce an automorphism of K(x, y) induced by an automorphism of K(x). Let us consider the

automorphism φ of K(x) defined by φ(x) = Ax+B
Cx+D where A = d, B = −b, C = −c, D = a and a, b, c

and d are defined as in the previous remark. By applying φ on (x3 − α)(f0x
3 + f1x

2 + f2x+ f3) we

obtain

(A3 − αC3)∆g3

(Cx+D)6
(x3 − j3)(x3 − j3x− j3) =

(αf3
1 − f3

2 )∆g6

(Cx+D)6
(x3 − j3)(x3 − j3x− j3)

where g =
(
−∆
a52

)3
. Therefore, we have K(x, y) = K(x, y′) where y′ = (Cx+D)3y/g3 satisfies

y′2 = h(x3 − j3)(x3 − j3x− j3)

with h = (αf3
1 − f3

2 )∆.

Now we are going to study the relation between birational classes of absolutely elliptic regular curves

of genus two and those of corresponding elliptic curves. In contrast with the general case, it is shown by

Borges Neto in [BN] that the birational class of a regular but non-smooth curve is determined by that of

its smoothing.

Remark 3.6. Let us consider E and E1 two elliptic curves over a field F of characteristic three given,

respectively, by the Weierstrass forms

w2 = a0z
3 + a2z

2 + a4z + a6 and w2
1 = b0z

3
1 + b2z

2
1 + b4z1 + b6, (3.4)

with a2b2 ̸= 0. If we apply the isomorphism of E given by z = z2
a0

+ a4
a2

, w = w2
a0

then we can

normalize a4 = 0 and a0 = 1. After doing the same kind of normalization for E1 we can use the

isomorphism described in paragraph 2, pg. 301, of [La] to obtain that E and E1 are isomorphic if

and only if j = j1 and a2
b2

= u2 ∈ F 2. Moreover, the isomorphism between E and E1 is induced by

φ : F (z, w) → F (z1, w1) given by

φ(z) = u2z1 and φ(w) = u3w1.
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In the particular case where the above Weierstrass forms are as in Proposition 3.5 we can simplify the

isomorphisms between the elliptic curves as follows.

Remark 3.7. Let us consider E and E1 two elliptic curves over a field F of characteristic three given,

respectively, by the Weierstrass forms

w2 = −h(j4z3 + j3z2 − 1) and w2
1 = −h1(j

4
1z

3
1 + j31z

2
1 − 1), (3.5)

with h, h1, j, j1 ∈ F \ {0}. By the above remark we obtain that E and E1 are isomorphic if and

only if j = j1 and h
h1

= u2 ∈ F 2. Moreover, the isomorphism between E and E1 is induced by

φ : F (z, w) → F (z1, w1) given by

φ(z) = z1 and φ(w) = uw1.

The following proposition characterizes when two absolutely elliptic genus two curves are isomorphic

in terms of their normal forms given in Proposition 3.5.

Proposition 3.8 (Borges Neto). Let us consider C and C1 two absolutely elliptic curves of genus two

over a field K, of characteristic three, with normal forms Y 2 − h(X3 − j3)(X3 − j3X − j3) and

Y 2
1 −h1(X

3
1 − j31)(X

3
1 − j31X1− j31), respectively, with j, j1 ∈ K1/3 \K. Then C and C1 are isomorphic

if and only if j = j1 and h
h1

∈ K2. In particular, C and C1 are isomorphic if and only if the elliptic

curves obtained from their respective base extensions, as in Proposition 3.5, are isomorphic.

Proof. If C and C1 are isomorphic then the elliptic curves C ⊗K K1/3 and C1 ⊗K K1/3 are also

isomorphic. From Remark 3.7 we obtain j = j1 and h
h1

∈
(
K1/3

)2 ∩K = K2.

Conversely, if j = j1 and h
h1

= u2 ∈ K2, then φ : K(x, y) → K(x1, y1) given by

φ(x) = x1 and φ(y) = uy1

is the required isomorphism of function fields.

In order to identify generic fibers of fibrations we will need a slightly more flexible notion of

isomorphisms of curves naturally adapted from the notion of equivalent fibrations, where we need to allow

automorphisms of targets (see Definition 2.1). The facts presented from now on reflect such flexibility

that was not needed in [BN].

Definition 3.9. We say that two regular, complete and geometrically integral curves C|K and C1|K1, over

the fields K and K1 respectively, are isomorphic when their function fields K(C)|K and K1(C1)|K1 are

isomorphic. In other words, when there are isomorphisms of fields σ : K → K1 and σ̃ : K(C) → K1(C1)

commuting the following diagram.

K(C)
σ̃ // K1(C1)

K
σ // K1

We notice that the above proposition and the last two remarks remain working with the following

modification.
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Remark 3.10. Two elliptic curves E|F and E1|F1 over fields of characteristic three given, respectively,

by the Weierstrass forms as in 3.4 (with ai ∈ F , bj ∈ F1 and a2b2 ̸= 0) are isomorphic if and only if

there exists an isomorphism σ : F → F1 such that σ(j) = j1 and σ(a2)
b2

= u2 ∈ F 2
1 . Moreover, the

isomorphism σ̃ : F (E) → F1(E1) is given by σ̃(z) = u2z1 and σ̃(w) = u3w1.

Remark 3.11. Two elliptic curves E|F and E1|F1 over fields of characteristic three given, respectively,

by the Weierstrass forms as in 3.5 (with h, j ∈ F \ {0}, h1, j1 ∈ F1 \ {0} are isomorphic if and only

if there exists an isomorphism σ : F → F1 such that σ(j) = j1 and σ(h)
h1

= u2 ∈ F 2
1 . Moreover, the

isomorphism σ̃ : F (E) → F1(E1) is given by σ̃(z) = z1 and σ̃(w) = uw1.

Proposition 3.12. Two absolutely elliptic curves C|K and C1|K1 of genus two over the fields of charac-

teristic three K and K1, respectively, are isomorphic if and only if the elliptic curves obtained from their

respective base extensions, as in Proposition 3.5, are isomorphic.

Next results characterize elliptic curves that are smoothings of regular but non-smooth curves of genus

two.

Lemma 3.13. Let F be a field of characteristic three and let E|F be a smooth elliptic curve with

Weierstrass form w2 = a0z
3 + a2z

2 + a4z+ a6 where j = a62
a20∆

̸= 0. Then E is isomorphic to the elliptic

curve E1|F given by the Weierstrass form

w2
1 = −g(j4z31 + j3z21 − 1)

where g = − a32
j3a60

=
(
−∆
a52

)3
.

Proof. Indeed we just need to consider the isomorphism E1
∼−→ E induced by φ : F (z, w) → F (z1, w1)

such that φ(z) = a+ bz1 and φ(w) = ew1, where a = a4
a2

, b = j a2a0 and e = a20j.

Proposition 3.14. Let F be a field of characteristic three and let E|F be a smooth elliptic curve with

Weierstrass form w2 = a0z
3 + a2z

2 + a4z + a6 where a0 ̸= 0. Then there exists an absolutely elliptic

curve C|F 3 of genus two such that C⊗F 3 F is isomorphic to E if and only if the j-invariant of E belongs

to F \ F 3.

Proof. If j ∈ F \ F 3, then by Lemma 3.13 we have that E is isomorphic to an elliptic curve with

Weierstrass form given by w2
1 = −g(j4z31 + j3z21 − 1) where g =

(
−∆

a52

)3
∈ F 3, that is, E is isomorphic

to the extension of the plane affine curve given by the polynomial Y 2 − g(X3 − j3)(X3 − j3X − j3) in

F 3[X,Y ]. This curve is regular but non-smooth of genus 2 since j ∈ F \ F 3.

Now if C is a regular but non-smooth curve over F 3 then, by the above proposition, C is birational

to an affine curve given by the polynomial Y 2 − h(X3 − j3)(X3 − j3X − j3) ∈ F 3[X,Y ] where

j ̸∈ F 3 is the j-invariant of the smooth elliptic curve C ⊗F 3 F 3(j). Hence C ⊗F 3 F is an elliptic curve

whose Weierstrass forms are inherited from the Weierstrass forms of C ⊗F 3 F 3(j) and so with the same

j-invariant.
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CHAPTER 4

Rational elliptic surfaces with
Mordell-Weil rank zero

In this chapter we return to our main interest introduced in the end of Chapter 2, namely the description

of the set H of equivalence classes of absolutely elliptic fibrations by singular curves f : S → P1 on

surfaces S, such that the total spaces S1 of the Shimada’s smoothings f1 are rational surfaces. Here we

are considering the total space and the base of fibrations as varieties over an algebraically closed field k of

characteristic three.

The Frobenius morphism FP1,k corresponds to the base field extension k(P1)1/3 = k(t)1/3 = k(T )

of k(t), where T 3 = t. Hence we can consider K = k(t) and L = k(T ) in Proposition 3.5 in order to

view the generic fibers of the fibrations involved in Shimada’s process as the curves studied in Chapter 3.

As we have seen in Proposition 3.12, the study of the generic fibers of fibrations by absolutely elliptic

curves of genus two, is equivalent to the study of the generic fibers of their smoothings. In this way, by

using Proposition 3.14, we can change our viewpoint from H to E , the set of equivalence classes of

elliptic fibrations (see below) on rational surfaces whose j-invariants of their generic fibers are not cubic

powers in k(T ).

Now we briefly recall some basic terminology on the theory of rational elliptic surfaces. Let E be a

smooth projective surface over k. We say that E is a rational elliptic surface when E is a rational surface

and there is an elliptic fibration π : E → P1, that is, a fibration such that almost all fibers are elliptic

curves and no fiber contains an exceptional curve of first kind. We assume that π has a global section O.

For instance, the resolution of base points of a pencil of plane cubic curves gives rise to a rational elliptic

surface. Actually, it follows, from [CD] Theorem 5.6.1, that any elliptic fibration on rational surfaces is

equivalent to a fibration arising in this way.

Remark 4.1. Notice that each smoothing of absolutely elliptic fibration of genus two possesses a section

induced by the rational point mentioned in Proposition 3.5.

Our strategy to describe E will use birational invariants of generic fibers of elliptic fibrations. To do

this, we need to recall some basic information about elliptic curves.

Let E denote the generic fiber of π, which is an elliptic curve over the function field k(P1) = k(T ).

It can be given by a Weierstrass equation

y2 = x3 + a2x
2 + a4x+ a6
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with a2, a4, a6 ∈ k[T ] and deg ai ≤ i (see [Shi] p. 32). In this case the discriminant ∆ = −a22(a2a6 −
a24)− a34 is a polynomial of degree at most 12.

The group E(k(T )) of k(T )-rational points of E is in a natural one-to-one correspondence with the

sections of π and is called the Mordell-Weil group of E. From [Shi], Theorem 1.1 and Theorem 10.3, we

know that E(k(T )) is a finitely generated abelian group with rank

rkE(k(T )) = 8−
∑
v∈R

(mv − 1) (4.1)

where R = {v ∈ P1 |Fv := π−1(v) is reducible} and mv is the number of components of Fv. The

possible special fibers, including the reducible fibers can be seen in the following table.

Kodaira Symbol I1 Im II III

Special fiber

Kodaira Symbol IV I∗0 I∗m

Special fiber

Kodaira Symbol IV ∗ III∗ II∗

Special fiber

Remark 4.2. Recall that we have the following association among root lattices, special fibers and

numbers of its components.

Root Lattice Am−1 (m ≥ 4) Dm+4 E8 E7 E6 A2 A1

Kodaira Symbol Im I∗m II∗ III∗ IV ∗ I3 and IV I2 and III

♯ Components m m+ 5 9 8 7 3 2

Table 4.1: Root Lattices, special fibers and numbers of components

We also recall the correspondence below (cf. [JLRRSP] Table 1), among a special fiber Fv = π−1(v)

and the order δ of v as a root of ∆.
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Kodaira Symbol Im II III I∗0 I∗1 I∗2 I∗4 III∗ II∗ IV

δ m ≥ 3 3 6 7 8 10 9 11 or 12 ⩾ 5

Table 4.2: Root Orders of ∆

Denoting by Tv the root lattice associated to a reducible fibre Fv. In a elliptic surface the lattice

T =
⊕

v∈R Tv, called trivial lattice, determines the Mordell-Weil group. Indeed, Shioda shows in [Shi]
that the Mordell-Weil group of an elliptic surface is isomorphic to its Néron-Severi group quotiented by

its trivial lattice. In [OS] Oguiso and Shioda give all the possible structures for the Mordell-Weil group

E(k(T )) of a rational elliptic surface.

Since the Mordell-Weil group is invariant under our notion of equivalence of fibrations, we may

stratify the set

E =
8⊔

i=0

Ei

where Ei is the subset of E of equivalence classes of elliptic fibrations with Mordell-Weil rank i. In this

work we will be concerned with the part E0.

We state below only the rank zero information of Oguiso-Shioda’s theorem.

Theorem 4.3. The trivial lattice T and the Mordell-Weil lattice E(k(T )) of a rational elliptic surface

with Mordell-Weil rank zero are given by the following list.

1. T = E8 and E(k(T )) = 0;

2. T = A8 and E(k(T )) = Z/3Z;

3. T = D8 and E(k(T )) = Z/2Z;

4. T = E7 ⊕A1 and E(k(T )) = Z/2Z;

5. T = A5 ⊕A2 ⊕A1 and E(k(T )) = Z/6Z;

6. T = A⊕2
4 and E(k(T )) = Z/5Z;

7. T = A⊕4
2 and E(k(T )) = (Z/3Z)2;

8. T = E6 ⊕A2 and E(k(T )) = Z/3Z;

9. T = A7 ⊕A1 and E(k(T )) = Z/4Z;

10. T = D6 ⊕A⊕2
1 and E(k(T )) = (Z/2Z)2;

11. T = D5 ⊕A3 and E(k(T )) = Z/4Z;

12. T = D⊕2
4 and E(k(T )) = (Z/2Z)2;

13. T = (A3 ⊕A1)
⊕2 and E(k(T )) = Z/4Z⊕ Z/2Z;

Using the previous remark we can remove from this list the cases arising from fibrations whose generic

fibers have cubic j-invariant. More precisely:
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Lemma 4.4. Over an algebraically closed field k of characteristic 3 we have the following possibilities

for special fibers of rational elliptic surfaces with Mordell-Weil rank 0 and j-invariant in k(T ) \ k(T )3.

1. II∗, I1 when T = E8;

2. I∗4 , 2I1 when T = D8;

3. III∗, I2, I1 when T = E7 ⊕A1;

4. 2I5, 2I1 when T = A⊕2
4 ;

5. I8, I2, 2I1 when T = A7 ⊕A1;

6. I∗2 , 2I2 when T = D6 ⊕A⊕2
1 ;

7. I∗1 , I4, I1 when T = D5 ⊕A3;

8. 2I4, 2I2 when T = (A3 ⊕A1)
⊕2.

Proof. To begin with we eliminate the cases of Theorem 4.3 having cubic j-invariant. Notice that the cases

2, 5, 7 and 8 admit at least two points of order dividing 3. On the other hand these points correspond to flex

points in a Weierstrass equation. From [La] (2.6) pg. 302, an elliptic curve over a field of characteristic 3,

with j-invariant different from zero, admits a Weierstrass equation of the form y2z = x3 + a2x
2z + a6z

3

with ∆ = −a32a6 and j = −a32/a6. Hence its flex points are (0 : 1 : 0), (−a
1/3
6 : a

1/2
2 : 1) and

(−a
1/3
6 : −a

1/2
2 : 1), over k(T ), and we may conclude that elliptic curves E with at least two order

three points in E(k(T )) must have j-invariant in k(T )3. Indeed, the points (−a
1/3
6 : a

1/2
2 : 1) and

(−a
1/3
6 : −a

1/2
2 : 1) will be the two order three points in E(k(T )), so a6 ∈ k(T )3. We do not need to

consider case 12 either, since each D4 is associated to a special fiber of type I∗0 and, from the second table

of previous remark, we deduce that ∆ and consequently j belongs to k(T )3.

For all root lattices appearing in the statement of this lemma, but item 5, if we compare special fibers

and their possible orders δ as roots of ∆ (summing up to 12), together with (4.1), we obtain, when j is

not a cubic power, that the special fibers are necessarily as described. At last, for the case 5 this analysis

provides the two possibilities I8, I2, 2I1 and I8, III, I1 as special fibers when T = A7 ⊕A1. However a

rational elliptic surface with special fibers I8, III, I1 does not exist, from [JLRRSP] 4.2.7(28).

Under the same assumptions as in the previous lemma we have:

Corollary 4.5. Mordell-Weil rank zero elliptic fibrations with distinct root lattices can not be equivalent.

Proof. Since the Mordell-Weil group is invariant under birational equivalence we may restrict our attention

to the cases with same group. Besides, since automorphisms of P1 preserve root orders of the discriminant

∆, Lemma 4.4 and Table 4.2 say that fibrations with T = D8 and T = E7⊕A1 (respectively T = D5⊕A3

and T = A7 ⊕A1) are not equivalent.

As a consequence from this corollary

E0 =
8⊔

ℓ=1

E0,ℓ
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where E0,ℓ is the subset of E0 consisting of equivalence classes of elliptic fibrations with lattice as in

Lemma 4.4 item ℓ. From now on we will focus our attention to describe each E0,ℓ.

We say that a base point P ∈ P2 of a pencil Λ of plane curves with no common components is a point

with index n when the intersection index at P between any two distinct members of Λ is equal to n.

Theorem 4.6. Let E be a rational elliptic surface over an algebraically closed field k of characteristic 3

with Mordell-Weil rank 0, j-invariant in k(T ) \ k(T )3 and trivial lattice T . Then the elliptic fibration

π : E → P1 is equivalent to a fibration obtained from the resolution of base points of a pencil Λ as

described below.

1. If T = E8, then Λ = ⟨D, 3L⟩, where D is an irreducible nodal cubic curve and L is its inflectional

line (cf. Figure 4.1);

2. If T = D8, then Λ = ⟨D,L1 + 2L2⟩ where D is an irreducible nodal cubic curve, L1 is its

inflectional line and L2 is the line passing through the flex point, tangent to D at a smooth point (cf.

Figure 4.2);

3. If T = E7 ⊕A1, then Λ = ⟨D,L1 + 2L2⟩, where D is an irreducible nodal cubic curve, L1 is the

line through the node and the flex point of D and L2 is the inflectional line (cf. Figure 4.4);

4. If T = A⊕2
4 , then Λ = ⟨D,Q1 + S1⟩, where D is an irreducible nodal cubic curve, Q1 is an

irreducible conic curve intersecting D at the node and the flex with indices 5 and 1, respectively,

and S1 is the flex line (cf. Figure 4.6);

5. If T = A7 ⊕ A1, then Λ = ⟨D,L1 + L2 + L3⟩, where D is an irreducible nodal cubic, L1 is its

inflectional line and L2, L3 are lines with their intersections represented in Figure 4.10;

6. If T = D6 ⊕ A⊕2
1 , then Λ = ⟨D,L1 + 2L2⟩, where D is an irreducible nodal cubic curve, L1 is

the line through the flex and the node and L2 is the line through the flex, tangent at a smooth point

of D (cf. Figure 4.22);

7. If T = D5 ⊕A3, then Λ = ⟨D,Q1 + S1⟩, where D is an irreducible nodal cubic curve, Q1 is an

irreducible conic curve intersecting D at the node and the flex with indices 4 and 2, respectively,

and S1 is the flex line (cf. Figure 4.14);

8. If T = (A3 ⊕A1)
⊕2, then Λ = ⟨Q1 + L1, Q2 + L2⟩, where Q1, Q2 are irreducible conic curves

and L1, L2 are lines with their intersections represented in Figure 4.19.

Proof. We describe the strategy of our proof. To begin with, for each special fiber appearing in Lemma

4.4 we collect all possibilities (C,P, nP ) of singular plane cubic curves C with marked singular points P

- and indices nP attached to them - for which there exists a sequence of
∑

nP blowing-ups at the marked

points, whose total transforms provide the given special fiber. (cf. Appendix A)

The second step in our proof will be to select, for each T , the pencils generated by two cubic curves

appearing as contractions of the two special fibers with higher number of components. This choice of

generators can be made up to an automorphism of P1 and will restrict the values the Mordell-Weil rank

may reach. Yet some of these pencils will give rise to rational elliptic surfaces with rank higher than zero

and will be discarded.
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The third and final step is to study the equivalence between two fibrations, with same T , obtained

from distinct pencils. To this end we will need to identify the group of sections of the elliptic fibrations -

or, equivalently, the group E(k(T )) - since we will reach the equivalence by blowing-up base points of

a pencil and contracting, in a different way, the sections and components of special fibers to obtain the

second pencil.

Now we list the possible contractions for each special fiber appearing in Lemma 4.4.

Fibers (a) (b) (c) (d) (e) (f) (g)

I1

I2

I4

I5

I8

I∗1

I∗2

I∗4

III∗
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Fibers (a) (b) (c) (d) (e) (f) (g)

II∗

Table 4.3: Contractions

In the remaining of the proof we will analyze each case separately. To organize the analysis we will

use the notation below.

If P (l)
r is a base point with index nr of a pencil Λl of plane cubic curves, we will denote, when s < nr,

by E
(l)
r,s the exceptional divisor of the s-th blow-up over Pr, and by σ

(l)
r the exceptional divisor of the

nr-th blow-up over Pr. Also, we refer to the Table 4.3 in the following way: by (I5, (d)) we will mean

the contraction of the fiber I5 illustrated in column (d).

We notice that the exceptional divisors σ
(l)
r determine disjoint sections of the elliptic fibration or,

equivalently, distinct elements in E(k(T )). However the number of these σ
(l)
r is sometimes smaller than

the order of E(k(T )) and, in this case, we need to find its remaining elements. Also, as a general principle

used to discard pencils in our analysis, we observe that a base point P of a pencil Λ with smooth general

member can be a singular point of at most one member of Λ.

T = E8 By Lemma 4.4, we have a fiber of type I1 and a fiber of type II∗. It is immediate to notice

from the figures (II∗, (a)) and (I1, (a)) that the pencil is generated by Λ1 = ⟨D, 3L⟩, where L is the

inflectional line of the nodal irreducible cubic D. A configuration of the intersection of generators and

resolution of the base point can be seen in Figure 4.1.

Figure 4.1: Resolution of Λ1

T = D8 By Lemma 4.4, we have a fiber of type I∗4 and two fibers of type I1. We have two pencils

Λ1 = ⟨D,L1 + 2L2⟩ and Λ2 = ⟨D′, Q+ L⟩, where D,D′ are like in (I1, (a)) and L1 + 2L2, Q+ L are

like in (I∗4 , (a)), (I
∗
4 , (b)), respectively.

In order to determine the geometric configuration of Λ1 we need to analyze the possibilities of having

base points like in (I∗4 , (a)). For that it will be enough to analyze if the point P (1)
1 , as a smooth point of D,

is either an inflectional point or not to obtain intersection index 5. It is immediate to see that the only way

to get both indices right is if L1 is the inflectional line to D and L2 is the line through the flex and tangent

to D at another smooth point. For the geometric configuration of Λ2 we do a similar analysis for the

tangency point, P (2)
1 , between Q and L. The only way to get index 8 at P (2)

1 is if it is a non-inflectional

point of D′ and the irreducible conic Q intersects D′ with index 6 and L the tangent line at this point. In
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figures 4.2 and 4.3 we can see representations of each configuration together with the resolution of the

respective base points.

Figure 4.2: Resolution of Λ1

Figure 4.3: Resolution of Λ2

Now we will show that a fibration produced by a pencil as in Λ2 is equivalent to a fibration induced

by Λ1. To do this we just need to contract the resolution of Λ2 as in the sequence

σ
(2)
1 → E

(2)
1,7 → E

(2)
1,6 → Q → σ

(2)
2 → L → E

(2)
1,2 → E

(2)
1,3 → E

(2)
1,4 ,

to obtain the pencil ⟨D′, E
(2)
1,1 + 2E

(2)
1,5⟩ which has same geometric configuration of Λ1.

T = E7 ⊕A1 By Lemma 4.4, we have special fibers of type III∗, I2 and I1. Hence the two

fibers with higher number of components are III∗ and I2. The combinations (III∗, (a)), (I2, (a)) and

(III∗, (b)), (I2, (b)) can not occur. Indeed, according to the general principle, the singular points of

(III∗, (a)) and (I2, (b)) must be smooth points of the other curve in each respective pair. However this

together with the prescribed indices would provide a contradiction to Bézout’s theorem. The remaining

combinations give rise to pencils Λ1 = ⟨D,L1 + 2L2⟩ and Λ2 = ⟨Q + L, 3L′⟩, where L1 + 2L2, 3L′,

Q+ L, D are like in (III∗, (a)), (III∗, (b)), (I2, (a)) and (I2, (b)), respectively. In Λ1, to obtain index

2 at the node of D, the simple line L1 must be a line through the node of D which is not in its tangent

cone. So the only way of having a base point of index 7 is if L1 also intersects D at the flex point and

L2 is the inflectional line. In Λ2 we just need the triple line to be tangent to Q at some smooth point of

Q+L. By Table 4.2 and the fact that sum of orders as roots of ∆ is equal to 12, both pencils must contain

a nodal cubic curve as in (I1, (a)). In figures 4.4 and 4.5 we can see representations of each configuration

together with the resolution of the respective base points.
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Figure 4.4: Resolution of Λ1

Now we will show that a fibration produced by a pencil as in Λ2 is equivalent to a fibration induced

by Λ1. To do this we just need to contract the resolution of Λ2 as in the sequence

σ
(2)
1 → E

(2)
1,5 → E

(2)
1,4 → E

(2)
1,3 → E

(2)
1,2 → L′ → E

(2)
2,1 → σ

(2)
2 → L,

to obtain the pencil ⟨Q,E
(2)
2,2 + 2E

(2)
1,1⟩ which has same geometric configuration of Λ1, where the curve Q

becomes a nodal cubic curve.

Figure 4.5: Resolution of Λ2

T = A⊕2
4 By Lemma 4.4, we have two special fibers of type I5 and two of type I1. The two fibers

with higher number of components are the two I5. We start by analyzing which pairs of contractions of

fibers of type I5 can generate pencils of generically smooth cubic curves. In what follows a pair ((·), (·))
will mean the pair ((I5, (·)), (I5, (·))).

((a), (a)) Let L1 + L2 + L3 and L′
1 + L′

2 + L′
3 be the curves and let P1 and P2 be the marked points, both

having index 3, where P1 is the intersection point of L1 and L2 and P2 is the intersection point

of L′
1 and L′

2. We can not have a pencil with this configuration of curves and indices since we

need the marked points to be base points, which can be singular points of only one member of

the pencil, by the general principle. However this implies IP1(L1 + L2 + L3, L
′
1 + L′

2 + L′
3) =

IP2(L1 + L2 + L3, L
′
1 + L′

2 + L′
3) = 2 and we need both intersection indices to be equal to 3;

((a), (b)) Let L1 + L2 + L3 and L′
1 + L′

2 + L′
3 be the curves and let P1, P2 and P3 be the marked points

of indices 3, 2 and 2, respectively, where P1 is the intersection point of L1 and L2, P2 is the

intersection point of L′
1 and L′

2 and P3 is the intersection point of L′
1 and L′

3. For the same reason

as the previous case, it is not possible to obtain a geometric configuration in which P1 is a base

point of index 3;
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((a), (c)) Let L1 +L2 +L3 and Q+S be the curves and let P1 and P2 be the marked points of indices 3 and

4 respectively, where P1 is the intersection point of L1 and L2, P2 is one of the intersection points

of Q and S. It is not possible to obtain a pencil in which P2 is a base point of index 4 since Bézout’s

theorem implies that Q+ S intersect L1 + L2 + L3 at a smooth point with index at most 3;

((a), (d)) This case occurs and will be discussed below;

((a), (e)) Let L1 + L2 + L3 and D be the curves and let P1 and P2 be the marked points of indices 3 and 5

respectively, where P1 is the intersection point of L1 and L2, P2 is the node of D. It is not possible

to obtain a pencil in which P2 is a base point of index 5 since Bézout’s theorem implies that D can

intersect L1 + L2 + L3 at a smooth point with index at most 3;

((b), (b)) This case occurs and will be discussed below;

((b), (c)) Let L1 + L2 + L3 and Q+ S be the curves and let P1, P2 and P3 be the marked points of indices

2, 2 and 4, respectively, where P1 is the intersection point of L1 and L2, P2 is the intersection point

of L1 and L3 and P3 is one of the intersection points of Q and S. It is not possible to obtain a

pencil in which P3 is a base point of index 4 since Bézout’s theorem implies that Q+ S intersect

L1 + L2 + L3 at a smooth point with index at most 3;

((b), (d)) Let L1 + L2 + L3 and Q+ S be the curves and let P1, P2, P3 and P4 be the marked points 2, 2, 2

and 3. Where P1 is the intersection point of L1 and L2, P2 is the intersection point of L1 and

L3, and P3 and P4 are the intersection points of Q and S. It is not possible to obtain a pencil

in which P1 and P2 are base points of index 2 and P4 is a base point of index 3. Indeed, from

IP1(L1 + L2 + L3, Q + S) = IP2(L1 + L2 + L3, Q + S) = 2 we have IPi(Lj , Q + S) ≥ 1 for

i = 1, 2 and j = 1, 2, 3, so Bézout’s theorem implies IP4(Lj , Q+ S) ≤ 2 for j = 1, 2, 3;

((b), (e)) Let L1 + L2 + L3 and D be the curves and let P1, P2 and P3 be the marked points of indices 2, 2

and 5, respectively, where P1 is the intersection point of L1 and L2, P2 is the intersection point of

L1 and L3 and P3 is the node of D. It is not possible to obtain a pencil in which P3 is a base point

of index 5 since Bézout’s theorem implies D can intersect L1 + L2 + L3 at a smooth point with

index at most 3;

((c), (c)) Let Q1 + S1 and Q2 + S2 be the curves and let P1 and P2 be the marked points both of index 4.

Where P1 is one of the intersection points of Q1 and S1 and P2 is one of the intersection points

of Q2 and S2. It is not possible to obtain a pencil in which P1 and P2 are base points of index 4.

Indeed, on one hand we should have P1 ∈ Q2 \ S2, by the general principle, on the other hand

we should have IP1(Q1, Q2) = 3, by Bézout’s theorem. By an analogous argument we also get

IP2(Q1, Q2) = 3. However these two equalities contradict Bézout’s theorem;

((c), (d)) This case occurs and will be discussed below;

((c), (e)) This case occurs and will be discussed below;

((d), (d)) Let Q1 + S1 and Q2 + S2 be the curves and let P1, P2, P3 and P4 be the marked points of indices

2, 3, 2 and 3, respectively, where P1 and P2 are the intersection points of Q1 and S1 and P3 and

P4 are the intersection points of Q2 and S2. It is not possible to obtain a pencil having P1, P2, P3
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and P4 as base points with the given indices, since the general principle would make the sum of

intersection indices be at least 10 which contradicts Bézout’s theorem;

((d), (e)) Let Q+ S and D be the curves and let P1, P2 and P3 be the marked points of indices 2, 3 and 5,

respectively, where P1 and P2 are the intersection points of Q and S and P3 is the node of D. It is

not possible to obtain a pencil having P1, P2 and P3 as base points with the given indices, since

the general principle would make the sum of intersection indices be at least 10 which contradicts

Bézout’s theorem;

((e), (e)) Let D1 and D2 be the curves and let P1 and P2 be the marked points, both of index 5. Where P1 is

the node of D1 and P2 is the node of D2. It is not possible to obtain a pencil having P1 and P2 as

base points with the given indices, since the general principle would make the sum of intersection

indices be at least 10 which contradicts Bézout’s theorem.

Now we will describe the geometric configurations making the following pencils possible: Λ1 =

⟨D,Q1+S1⟩, Λ2 = ⟨L1+L2+L3, Q2+S2⟩, Λ3 = ⟨R1+R2+R3, R
′
1+R′

2+R′
3⟩, Λ4 = ⟨Q′

1+S′
1, Q

′
2+

S′
2⟩, where L1 +L2 +L3, R1 +R2 +R3, R′

1 +R′
2 +R′

3, Q1 + S1, Q
′
1 + S′

1, Q2 + S2, Q
′
2 + S′

2 and D

are like in (I5, (a)), (I5, (b)), (I5, (b)), (I5, (c)), (I5, (c)), (I5, (d)), (I5, (d)) and (I5, (e)), respectively.

By Table 4.2 and the fact that sum of orders as roots of ∆ is equal to 12, these pencils must contain two

curves as in (I1, (a)). In Λ1 the only way of obtaining index 5 at the node P (1)
1 of D, is if P (1)

1 ∈ Q1 \ S1

and the only way of obtaining index 4 at a singular point P (1)
2 of Q1 + S1 is if P (1)

2 is the flex of D and

S1 is be the inflectional line, since we already have Q1 transversal to D at P (1)
2 , by Bézout’s theorem. In

Λ2, let P (2)
1 be the intersection point of L1 and L2, for it to have index 3 we must have P

(2)
1 ∈ Q2 \ S2

with Q2 being tangent to L2, without loss of generality, and L1 intersects Q2 at another point P (2)
2 . From

here it is immediate to notice that we need Q2 to be tangent to L3 at a point P (2)
3 and S2 will be the line

through P
(2)
2 and P

(2)
3 . In Λ3, let P (3)

1 and P
(3)
2 be the points where R3 meets R1 and R2, respectively.

Let P (3)
3 be another point of R1 and P

(3)
4 another point of R2, then we can take R′

1 as the line through

P
(3)
1 and P

(3)
4 , R′

2 as the line through P
(3)
2 and P

(3)
3 and R′

3 as the line through P
(3)
3 and P

(3)
4 . In Λ4, let

P
(4)
1 be one of the intersection points of Q′

1 and S′
1, for it to be a base point of index 4 we must have, by

the general principle, P (4)
1 ∈ Q′

2 \ S′
2 and Q′

1 intersects Q′
2 with index 3 at this point. In figures 4.6, 4.7,

4.8 and 4.9 we can see representations of each configuration together with the resolution of the respective

base points.

Figure 4.6: Resolution of Λ1
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Figure 4.7: Resolution of Λ2

Figure 4.8: Resolution of Λ3

Figure 4.9: Resolution of Λ4

In the resolution of Λ1 the sections σ(1)
3 , σ(1)

4 and σ
(1)
5 are, respectively, the proper transforms of the

tangent line to Q1 at P (1)
1 , the line through P

(1)
1 and P

(1)
2 and the irreducible conic curve intersecting D

with index 2 at the flex P
(1)
2 and intersecting Q1 with index 3 at the node P

(1)
1 of D. In the resolution of

Λ2 the section σ
(2)
5 is the proper transform of the line through P

(2)
1 and P

(2)
3 . In the resolution of Λ4 the

sections σ(4)
4 and σ

(4)
5 are, respectively, the proper transforms of the tangent line to Q1 at P (4)

1 and the

line through P
(4)
1 and P

(4)
2 .

As before we show that fibrations obtained from Λi, i = 2, 3, 4, are equivalent to a fibration induced

by a pencil Λ1. We do this by contracting each resolution in an appropriate order.

We contract the resolution of Λ2 as in the sequence

σ
(2)
4 → L2 → L3 → L1 → E

(2)
1,1 → σ

(2)
1 → Q2 → E

(2)
3,2 → E

(2)
3,1 .

For Λ3 we have the sequence

σ
(3)
2 → E

(3)
2,1 → R3 → E

(3)
1,1 → R1 → σ

(3)
4 → E

(3)
4,1 → R′

3 → E
(3)
3,1 .

For Λ4 we have the sequence

σ
(4)
1 → E

(4)
1,3 → Q′

1 → S′
1 → E

(4)
1,1 → σ

(4)
4 → S′

2 → E
(4)
2,2 → E

(4)
2,1 .
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After these contractions we get the pencils ⟨E(2)
1,2 , E

(2)
2,1 + S2⟩, ⟨R2, R

′
1 +R′

2⟩, ⟨E
(4)
1,2 , E

(4)
3,1 +Q′

2⟩, respec-

tively, all with same geometric configuration of Λ1, where the irreducible nodal cubic curves are the

images of E(2)
1,2 , R2, E

(4)
1,2 and the irreducible conic curves are the images of E(2)

2,1 , R
′
1 and E

(4)
3,1 .

T = A7 ⊕A1 By Lemma 4.4, we have one special fiber of type I8, one of type I2 and two of type

I1. The two fibers with higher number of components are the I8 and the I2. We start by analyzing which

pairs of contractions of these two special fibers can generate pencils of generically smooth cubic curves

having this set of special fibers. In what follows a pair ((·), (·)) will mean the pair ((I8, (·)), (I2, (·))).

((a), (a)) Let L1 +L2 +L3 and Q+S be the curves and let P1 and P2 be the marked points of indices 4 and

3, respectively, where P1 is the intersection point of L1 and L2 and P2 is the intersection point of

L1 and L3. Since a line can intersect a conic curve with index at most 2, it is not possible to obtain a

geometric configuration in which P1 is a base point of index 4 being singular only in L1+L2+L3;

((a), (b)) This case occurs and will be discussed below;

((b), (a)) This case occurs and will be discussed below;

(((b), (b)) Let L1 + L2 + L3 and D be the curves and let P1, P2, P3 and P4 be the marked points of indices

3, 3, 2 and 2, respectively.Where P1, P2 and P3 are the singular points of L1 + L2 + L3 and P4 is

the node of D. It is not possible to obtain a pencil having these points as base points with the given

indices, since the general principle would make the sum of intersection indices be at least 10 which

contradicts Bézout’s theorem;

((c), (a)) Let Q1 + S1 and Q2 + S2 be the curves and let P1, one of the intersection points of Q1 and S1, be

the marked point of index 7. It is not possible to obtain a pencil having P1 as a base points with the

given index, since the general principle requires it to be a smooth point of Q2 + S2, however this

contradicts Bézout’s theorem.

((c), (b)) This case occurs and will be discussed below;

((d), (a)) Let Q1 + S1 and Q2 + S2 be the curves and let P1 and P2, the intersection points of Q1 and S1, be

the marked point of indices 6 and 2, respectively. It is not possible to obtain a pencil having P1 as

a base points with the given index, since the general principle requires it to be a smooth point of

Q2 + S2, however this contradicts Bézout’s theorem;

((d), (b)) Let Q + S and D be the curves and let P1, P2 and P3 be the marked points of indices 6, 2 and

2, respectively, where P1 and P2 are the singular points of Q + S and P3 is the node of D. It

is not possible to obtain a pencil having these points as base points with the given indices, since

the general principle would make the sum of intersection indices be at least 10 which contradicts

Bézout’s theorem;

((e), (a)) This case occurs and will be discussed below;

((e), (b)) Let Q + S and D be the curves and let P1, P2 and P3 be the marked points of indices 5, 3 and

2, respectively, where P1 and P2 are the singular points of Q + S and P3 is the node of D. It

is not possible to obtain a pencil having these points as base points with the given indices, since

the general principle would make the sum of intersection indices be at least 10 which contradicts

Bézout’s theorem;
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((f), (a)) Let Q + S and D be the curves and let P1, P2 and P3 be the marked points of indices 5, 3 and

2, respectively, where P1 and P2 are the singular points of Q + S and P3 is the node of D. It

is not possible to obtain a pencil having these points as base points with the given indices, since

the general principle would imply P1, P2 ∈ Q2 \ S2 and IP1(Q1, Q2) = IP2(Q1, Q2) = 3 which

contradicts Bézout’s theorem;

((f), (b)) Let Q + S and D be the curves and let P1, P2 and P3 be the marked points of indices 4, 4 and

2, respectively, where P1 and P2 are the singular points of Q + S and P3 is the node of D. It

is not possible to obtain a pencil having these points as base points with the given indices, since

the general principle would make the sum of intersection indices be at least 10 which contradicts

Bézout’s theorem;

((g), (a)) Let D and Q+ S be the curves and let P1, the node of D, be the marked point of index 8. It is not

possible to obtain a pencil having P1 as a base point with the given index since the general principle

requires it to be a smooth point of Q+ S, however this contradicts Bézout’s theorem;

((g), (b)) Let D1 and D2 be the curves and let P1 and P2 be the marked points of indices 8 and 2, respectively,

where P1 is the node of D1 and P2 is the node of D2. It is not possible to obtain a pencil having

these points as base points with the given indices, since the general principle would make the sum

of intersection indices be at least 10 which contradicts Bézout’s theorem.

There are other four contractions of a fiber of type I8 not appearing in the list since they can not be

part of a generically smooth pencil. They are:

• The union of an irreducible conic curve and a transversal line with the two intersection points being

base points of index 4;

• The union of three lines in general position with one of the intersection points being a base point of

index 6;

• The union of three lines in general position with one of the intersection points being a base point of

index 5 and another of index 2;

• The union of three lines in general position with one of the intersection points being a base point of

index 4 and the other two of index 2.

Now we will describe the geometric configurations making the following pencils possible: Λ1 =

⟨D,L1 + L2 + L3⟩, Λ2 = ⟨Q1 + S1, R1 +R2 +R3⟩, Λ3 = ⟨Q′
1 + S′

1, Q2 + S2⟩, Λ4 = ⟨D′, Q3 + S3⟩,
where L1+L2+L3, R1+R2+R3, Q3+S3, Q2+S2, Q1+S1, Q′

1+S′
1, D and D′ are like in (I8, (a)),

(I8, (b)), (I8, (c)), (I8, (e)), (I2, (a)), (I2, (a)), (I2, (b)) and (I2, (b)), respectively. By Table 4.2 and the

fact that sum of orders as roots of ∆ equals 12, these pencils must contain two curves as in (I1, (a)).

In Λ1, the geometric configuration becomes easy to determine after noticing that the only one way of

obtaining intersection index 4 at one of the singular points of the curve L1 + L2 + L3 - while satisfying

the general principle - is if the intersection point is the flex point of the nodal cubic curve and one of the

lines, say L1, is the inflectional line. In Λ2, the geometric configuration is determined knowing that one

can only obtain index 3 at a singular point of the curve R1 +R2 +R3 when the conic curve Q1 is tangent

to one of the lines through this singular point. In Λ3, the geometric configuration is determined knowing
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that one can only obtain index 5 at a singular point of the curve Q2 + S2 when both conic curves intersect

at this point with index 4. In Λ4, the geometric configuration is determined knowing that one can only

obtain index 7 at a singular point of the curve Q3 +S3 when the conic curve Q3 intersects the nodal cubic

curve D′ with index 6 and this intersection point is not a flex point of D′. The geometric configuration of

these pencils and their resolutions can be seen in the figures 4.10, 4.11, 4.12 and 4.13.

Figure 4.10: Resolution of Λ1

Figure 4.11: Resolution of Λ2

Figure 4.12: Resolution of Λ3

In the resolution of Λ1 the section σ
(1)
4 is the proper transform of the line through the flex P

(1)
1 and

the node P
(1)
3 of D. In the resolution of Λ3 the section σ

(3)
4 is the proper transform of the tangent line to

Q1 at P (3)
1 . In the resolution of Λ4 the sections σ(4)

3 and σ
(4)
4 are, respectively, the proper transform of the

tangent line to D′ at P (4)
1 and the proper transform of the irreducible conic curve intersecting Q3 and D′

at P (4)
1 both with index 3 and intersecting D′ at the node P

(4)
2 with index 2.

39



Figure 4.13: Resolution of Λ4

For Λ2 we have the sequence

σ
(2)
1 → S1 → σ

(2)
3 → E

(2)
3,2 → R1 → σ

(2)
2 → E

(2)
2,2 → E

(2)
2,1 → R2.

For Λ3 we have the sequence

σ
(3)
2 → S′

1 → σ
(3)
1 → E

(3)
1,4 → Q2 → σ

(3)
3 → S2 → E

(3)
1,1 → E

(3)
1,2 .

For Λ4 we have the sequence

σ
(4)
2 → E

(4)
2,1 → σ

(4)
3 → E

(4)
1,2 → E

(4)
1,1 → σ

(4)
1 → E

(4)
1,6 → E

(4)
1,5 → E

(4)
1,4 .

After these contractions we obtain the pencils ⟨Q1, E
(2)
1,1 + R3 + E

(2)
3,1⟩, ⟨Q′

1, E
(3)
2,1 + E

(3)
2,2 + E

(3)
1,3⟩,

⟨D′, Q3 + S3 + E
(4)
1,3⟩, respectively, all with same geometric configuration of Λ1, the irreducible nodal

cubic curves being the images of Q1, Q′
1 and D′.

T = D5 ⊕A3 By Lemma 4.4, we have one special fiber of type I∗1 , one of type I4 and one of type

I1. The two fibers with higher number of components are the I∗1 and the I4. We start by analyzing which

pairs of contractions of fibers of type I5 can generate pencils of generically smooth cubic curves. In what

follows a pair ((·), (·)) will mean the pair ((I∗1 , (·)), (I4, (·))).

((a), (a)) Let R1+2R2 and L1+L2+L3 be the curves and let P1, P2 and P3 be the marked points of indices

4, 2 and 2, respectively, where P1 and P2 are distinct points in R2 and P3 is the intersection point

of L1 and L2. It is not possible to obtain a pencil in which P1 is a base point of index 4 since 2R2

can only intersect L1 + L2 + L3 at a smooth point with index 2;

((a), (b)) This case occurs and will be discussed below;

((a), (c)) Let R1 + 2R2 and Q+ S be the curves and let P1, P2, P3 and P4 be the marked points of indices 4,

2, 2 and 2, respectively, where P1 and P2 are distinct points in R2 and P3 and P4 are the intersection

points of Q and S. It is not possible to obtain a pencil having these points as base points with the

given indices, since the general principle would make the sum of intersection indices be at least 10

which contradicts Bézout’s theorem;

((a), (d)) Let R1 +2R2 and D be the curves and let P1, P2 and P3 be the marked points of indices 4, 2 and 4,

respectively, where P1 and P2 are distinct points in R2 and P3 is the node of D. It is not possible to

obtain a pencil having these points as base points with the given indices, since the general principle

would make the sum of intersection indices be at least 10 which contradicts Bézout’s theorem;
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((b), (a)) This case occurs and will be discussed below;

((b), (b)) Let R1 + 2R2 and Q+ S be the curves and let P1, P2, P3 and P4 be the marked points of indices

3, 2, 2 and 3, respectively, where P1 is the intersection point of R1 and R2, P2 and P3 are distinct

points in R2 and P4 is one of the intersection points of Q and S. It is not possible to obtain a pencil

having these points as base points with the given indices, since the general principle would make

the sum of intersection indices be at least 10 which contradicts Bézout’s theorem;

((b), (c)) Let R1 + 2R2 and Q + S be the curves and let P1, P2, P3, P4 and P5 be the marked points of

indices 3, 2, 2, 2 and 2, respectively, where P1 is the intersection point of R1 and R2, P2 and P3

are distinct points in R2 and P4 and P5 are the intersection points of Q and S. It is not possible to

obtain a pencil having these points as base points with the given indices, since the general principle

would make the sum of intersection indices be at least 10 which contradicts Bézout’s theorem;

((b), (d)) Let R1 + 2R2 and D be the curves and let P1, P2, P3 and P4 be the marked points of indices 3,

2, 2 and 4, respectively, where P1 is the intersection point of R1 and R2, P2 and P3 are distinct

points in R2 and P4 is the node of D. It is not possible to obtain a pencil having these points as

base points with the given indices, since the general principle would make the sum of intersection

indices be at least 10 which contradicts Bézout’s theorem;

((c), (a)) Let Q+ S and L1 + L2 + L3 be the curves and let P1 and P2 be the marked points of indices 5

and 2, respectively, where P1 is the intersection point of Q and S and P2 is the intersection point of

L1 and L2. It is not possible to obtain a pencil in which P1 is a base point of index 5 since Q+ S

can only intersect L1 + L2 + L3 at a smooth point with index at most 2 (S can not be a component

of L1 + L2 + L3);

((c), (b)) This case occurs and will be discussed below;

((c), (c)) Let Q1 + S1 and Q2 + S2 be the curves and let P1, P2 and P3 be the marked points of indices 5, 2

and 2, respectively, where P1 is the intersection point of Q and S and P2 and P3 are the intersection

points of Q2 and S2. It is not possible to obtain a pencil having these points as base points with the

given indices, since, on one side, to obtain index 5 at P1 we need P1 ∈ Q2 \ S2, on the other side,

P2 and P3 are also in Q2. This means that we should have the sum of intersection indices between

Q1 + S1 and Q2 being at least 7 which contradicts Bézout’s theorem;

((c), (d)) This case occurs and will be discussed below;

((d), (a)) Let R1 + R2 + R3 and L1 + L2 + L3 be the curves and let P1 and P2 be the marked points of

indices 4 and 2, respectively, where P1 is the common intersection point of R1, R2 and R3 and P2

is the intersection point of L1 and L2. It is not possible to obtain a pencil in which P1 is a base

point of index 4 since R1 +R2 +R3 can only intersect L1 +L2 +L3 at a smooth point with index

at most 3 (Ri can not be a component of L1 + L2 + L3, for i = 1, 2, 3);

((d), (b)) Let R1 +R2 +R3 and Q+ S be the curves and let P1 and P2 be the marked points of indices 4

and 3, respectively, where P1 is the common intersection point of R1, R2 and R3 and P2 is one of

the intersection point of Q and S. It is not possible to obtain a pencil having these points as base

points with the given indices, since to obtain index 4 at P1 ∈ Q \ S where Q is tangent to one of
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the three lines, say R1, which implies we can not obtain index 3 at P2 since both R2 and R3 would

be transversal to Q;

((d), (c)) This case occurs and will be discussed below;

((d), (d)) Let R1 +R2 +R3 and D be the curves and let P1 and P2 be the marked points of indices 4 and 4,

respectively, where P1 is the common intersection point of R1, R2 and R3 and P2 is the node of D.

It is not possible to obtain a pencil in which P2 is a base point of index 4 since D can only intersect

R1 +R2 +R3 at a smooth point with index at most 3.

Now we will describe the geometric configurations making the following pencils possible: Λ1 =

⟨D,Q1+S1⟩, Λ2 = ⟨L1+L2+L3, R1+2R2⟩, Λ3 = ⟨Q2+S2, R3+2R4⟩, Λ4 = ⟨Q′
2+S′

2, Q
′
1+S′

1⟩,
Λ5 = ⟨Q3 + S3, L4 + L5 + L6⟩, where R3 + 2R4, R1 + 2R2, Q1 + S1, Q′

1 + S′
1, L4 + L5 + L6,

L1 + L2 + L3, Q2 + S2, Q′
2 + S′

2, Q3 + S3 and D are like in (I∗1 , (a)), (I
∗
1 , (b)), (I

∗
1 , (c)), (I

∗
1 , (c)),

(I∗1 , (d)), (I4, (a)), (I4, (b)), (I4, (b)), (I4, (c)) and (I4, (d)), respectively. By Table 4.2 and since the

sum of orders as roots of ∆ equals 12, all these pencils must contain a curve as in (I1, (a)). In Λ1 the

geometric configuration becomes easy to determine after noticing that the node of D must be in Q1 \ S1

and to obtain index 5 at the intersection point of Q1 and S1, it needs to be the flex point of D and S1 is

its inflectional line. In Λ2, the intersection point of L1 and L2 is a point of R1, the intersection point of

each of these lines with R2 is a base point of index 2 and L3 is a third line through the intersection point

of R1 and R2. In Λ3 the geometric configuration becomes easy to determine after noticing that the only

way of obtaining index 4 at a point of R4 \ R3 is if Q2 is tangent R4 at this point, and to obtain index

3 at one of the intersection points of Q2 and S2 we need Q2 to be tangent to R3 at this point. In Λ4 the

geometric configuration is determined knowing that one can only obtain index 5 at the singular point of

the curve Q′
1 + S′

1 when both conic curves intersect at this point with index 3. In Λ5 to obtain index 4 at

the singular point of the curve L4 +L5 +L6 when the conic curve Q3 is tangent to one of the lines at this

point and the S3 is the line through the intersection points of Q3 with the components of L4 + L5 + L6.

The geometric configurations of these pencils and the resolution of their base points can be seen in the

figures 4.14, 4.15, 4.16, 4.17 and 4.18.

Figure 4.14: Resolution of Λ1
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Figure 4.15: Resolution of Λ2

Figure 4.16: Resolution of Λ3

Figure 4.17: Resolution of Λ4

Figure 4.18: Resolution of Λ5

In the resolution of Λ1 the sections σ(1)
3 and σ

(1)
4 are, respectively, the proper transform of the line

through the flex P
(1)
1 and the node P

(1)
2 of D and the proper transform of the tangent line to Q1 at P (1)

2 .

In the resolution of Λ3 the section σ
(3)
4 is the proper transform of the line through P

(3)
1 and P

(3)
3 . In the

resolution of Λ4 the section σ
(4)
4 is the proper transform of the line through P

(4)
1 and P

(4)
2 .

For Λ2 we have the sequence

σ
(2)
1 → L2 → L1 → E

(2)
4,1 → σ

(2)
3 → E

(2)
3,1 → R2 → E

(2)
1,1 → R1.
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For Λ3 we have the sequence

σ
(3)
2 → S2 → E

(3)
3,1 → E

(3)
3,2 → σ

(3)
1 → E

(3)
1,3 → E

(3)
1,2 → R4 → R3.

For Λ4 we have the sequence

σ
(4)
3 → S′

2 → E
(4)
2,2 → E

(4)
2,1 → σ

(4)
1 → E

(4)
1,4 → E

(4)
1,3 → E

(4)
1,2 → E

(4)
1,1 .

For Λ5 we have the sequence

σ
(5)
1 → Q3 → E

(5)
2,1 → S3 → σ

(5)
3 → L6 → E

(5)
1,1 → E

(5)
1,2 → L5.

After these contractions we obtain the pencils ⟨L3, E
(2)
2,1 + E

(2)
1,2⟩, ⟨Q2, E

(3)
1,1 + E

(3)
2,1⟩, ⟨Q′

2, Q
′
1 + S′

1⟩,
⟨E(5)

3,1 , L4 +E
(5)
1,3⟩, respectively, all with same geometric configuration of Λ1, where the irreducible nodal

cubic curves are the images of L3, Q2, Q
′
2 and E

(5)
3,1 and the irreducible conic curve are the images of

E
(2)
2,1 , E

(3)
1,1 , Q

′
1 and L4.

T = (A3 ⊕A1)
⊕2 By Lemma 4.4, we have two special fibers of type I4 and two of type I2. Hence

the two fibers with higher number of components are the two I4. Differently from all cases above, almost

every pair of contractions of these two special fibers will yield a pencil, some of the pairs will have

multiple ways of intersecting which imply multiple pencils having two special fibers of type I4. However,

most of them will yield elliptic surfaces with a set special fibers different from the one we are looking for.

Indeed, the two fibers of type I4 only indicate two roots of ∆ of order 4, that is, we have a degree 4 factor

of ∆ which we do not know its factorization. We need to impose the existence of certain cubic curves

in the pencil, corresponding to the fibers of type I2. We do this by choosing generators G1, G2 with a

specific geometric configuration so that there are cubic curves C, not necessarily irreducible, satisfying

IP (C,G1) = IP (C,G2) = IP (G1, G2) for all P ∈ P2. By Noether’s Fundamental Theorem (see [F],

Section 5.5) we guarantee that these curves are members of the pencil.

We will list every configuration in which each pair of generators G1, G2 can intersect. In what follows

a pair ((·), (·)) will mean the pair ((I4, (·)), (I4, (·))).

((a), (a)) In this case we have one geometric configuration giving a pencil generated by curves L1 +L2 +L3

and L′
1+L′

2+L′
3. Let P1 be the intersection point of L1 and L2 and P2 be the intersection point of

L′
1 and L′

2. The geometric configuration is determined, up to reordering the components, by putting

P1 in L′
2 and P2 in L2 and every remaining component should intersect the other curve in three

distinct points. We can not have any contraction of a fiber of type I2 in this pencil. Indeed, since

every line through three base points is one of the components of the generators which implies we

can not have a contraction as in (I2, (a)), on the other hand each base point of index 2 is a singular

point of a generator which implies we can not have a contraction as in (I2, (b)) either.

((a), (b)) In this case we have multiple geometric configurations giving pencils generated by curves L1 +

L2 + L3 and Q+ S, depending on how they intersect. We must have the intersection point P1 of

L1 and L2, without loss of generality, as the base point of index 2 and P2, one of the intersection

points of Q and S as the base point of index 3. We have only one way of obtaining index 3 in a

smooth point of L1 + L2 + L3, that is, when Q is tangent to L3. On the other hand, we have two

ways of obtaining intersection index 2 at a smooth point of Q+ S, either P1 ∈ Q \ S with Q being

transversal to both L1 and L2 or P1 ∈ S \Q.
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P1 ∈ Q \ S In this case we have a pencil that can not contain any contraction of a fiber of type I2 since

any line through three base points will be a component of the generators and the only base

point of index two is a singular point of a generator.

P ∈ S \Q This case will still have multiple configurations depending on how Q intersects the components

L1 and L2 of the first generator.

1. Suppose Q is not tangent to L1 nor L2. In this case we have a pencil that can not contain

any contraction of a fiber of type I2 since any line through three base points will be

a component of the generators and the only point of index 2 is a singular point of a

generator.

2. Suppose Q is tangent to only one the components, say L1. In this case the pencil may

contain only one contraction of a fiber of type I2 as in (I2, (b)) since we have a base

point of index 2 being smooth on both generators.

3. Suppose Q is tangent to both L1 and L2 at points P3 and P4, respectively. In this case the

pencil will contain two contraction of a fiber of type I2 as in (I2, (b)) since we have two

points of index 2 being smooth on both generators. The special fibers over these order

two points will be of type I2 because, on one hand, they can only add up to order 4 in the

factorization of ∆, on the other hand, the Lemmas D and G in [JLRRSP] imply that in

characteristic three a rational elliptic fibration having two fibers of type I4 must have the

remaining fibers of type In with n < 3.

(((a), (c)) In this case we have multiple geometric configurations giving pencils generated by curves L1 +

L2+L3 and Q+S. Let P1 be the intersection point of L1 and L2 and P2 and P3 be the intersection

points of Q and S. For P1 to be a base point of index 2 we must have P1 ∈ Q, since we already

have P2, P3 ∈ S. On the other hand, for P2 and P3 to be base points of index 2 each we have two

possibilities. Firstly we can assume, without loss of generality, P2 ∈ L1 then either P3 ∈ L2 or

P3 ∈ L3.

(P3 ∈ L2) Here we have another two possibilities depending on how Q intersects L3.

1. Suppose Q is not tangent to L3. In this case we have a pencil that may contain only one

contraction of a fiber of type I2 if the tangent line to Q at P1 intersects L3 at the same

point as S then there will be an irreducible conic tangent to L1 at P2 and tangent to L3 at

P3. But since every other line through three base points is component of one generator

and every base point of index 2 is a singular point of a generator, we can not have another

contraction of a fiber of type I2.

2. Suppose Q is tangent to L3 at a point P4. In this case we have a pencil that may contain

two contractions of a fiber of type I2. One of those will be a nodal cubic curve as in

(I2, (b)) with node at P4 and the second one will be as in (I2, (a)) if tangent line to Q at

P1 intersects L3 at the base point P5, the intersection point of L3 and S.

(P3 ∈ L3) In this case we have a pencil that can not contain any contraction of a fiber of type I2 since

any line through three base points will either be a component of the generators or intersect

each generator with a different index at one of its points and the only base point of index 2 is

a singular point of a generator;
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((a), (d)) Let L1 + L2 + L3 and D be the curves and let P1 and P2 be the marked points of indices 2 and

4, respectively, where P1 is the intersection point of L1 and L2 and P2 is the node of D. It is not

possible to obtain a pencil having P2 as a base point with the given index since the general principle

requires it to be a smooth point of L1 + L2 + L3, however this contradicts Bézout’s theorem;

((b), (b)) In this case we have three geometric configurations giving pencils generated by curves Q1 +S1 and

Q2+S2. Let P1 (respectively P2) be one of the intersection points between Q1 and S1 (respectively

Q2 and S2). In order to obtain index 3 at P1 (respectively at P2) we have two possibilities, either

Q1 (resp. Q2) is tangent to S2 (resp. S1) or tangent to Q2 (resp. Q1) at P1 (resp. P2). Combining

these possibilities we obtain the three configurations. It is immediate to see that none of them can

contain a contraction of a fiber of type I2, since there are no base points of index 2 on the pencils

and the only line intersecting both curves just on base points which is not one of their components is

P1P2, but since this line intersects each generator with a different index it can not be a component

of a member of the pencil.

((b), (c)) In this case we have multiple geometric configurations giving pencils generated by curves Q1 + S1

and Q2 + S2. Let P1 be one of the intersection points between Q1 and S1 and P2 and P3 be the

intersection points between Q2 and S2. In order to obtain index 3 at P1 we have two possibilities,

either Q1 is tangent to S2 or Q2 at this point. On the other hand, there is only one way of obtaining

intersection indices 2 at P2 and P3, that is, Q2 is transversal to Q1 at P2 and P3.

1. Suppose Q1 is tangent to S2 at P1, then Q1 and Q2 will intersect at four distinct points

P1, P2, P3 and P4. In this case the pencil will not contain any contraction of a fiber of type

I2 since the only base points of index 2 are P2 and P3, that are singular points of Q2 + S2

and the only lines intersecting both generators just at base points are P1P2 and P1P3 but they

intersect each generator with a different index, so it can not be a component of any member of

the pencil.

2. Suppose Q1 is tangent to Q2 at P1. In this case the pencil may contain two contractions of a

fiber of type I2, both as in (I2, (a)), if the both tangent lines to Q1 at P2 and P3 intersect Q2

at the base point P4, the intersection point of Q2 and S1. For the tangent line at P2 we have

the irreducible conic curve tangent to Q1 at P1 and P3 and going through the intersection

point P5 of S1 and S2, while the conic curve for the other tangent line is obtained in the same

way by taking P2 instead of P3.

((b), (d)) In this case we have two geometric configurations giving pencils generated by curves Q+ S and D.

Let P1 be one of the intersection points between Q and S and P2 be the node of D. For P2 to be a

base point of index 4 we must have P2 ∈ Q \ S. To obtain index 3 at P1 we have two possibilities,

either Q or S intersect D with index 2 at P1. Firstly notice that can not contain a member as in

(I2, (b)) since they do not have a base point of index 2.

1. Suppose D is tangent to Q at P1. In this case the pencil may contain only one member

as in (I2, (a)) since the only way of obtaining a line different from S through base points

intersecting each curve with the same index is if P1 is the flex of D, so the member would be

formed by the inflectional line and the irreducible conic intersecting D and Q with index 4 at

P1 and intersecting D at the other two intersection points of D and S.
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2. Suppose D is tangent to S at P1. In this case the pencil can not contain any member as in

(I2, (a)) since there is no line through three base points intersecting both generators with the

same index.

((c), (c)) In this case we have only one geometric configuration giving a pencil generated by curves Q1 + S1

and Q2+S2. Let P1 and P2 be the singular points of Q1+S1 and let P3 and P4 be the singular points

of Q2 + S2. Since all four points must be base points of index 2 we must have P1, P2 ∈ Q2 \ S2

and P3, P4 ∈ Q1 \ S1. However, with this configuration, we can not have any contraction of a fiber

of type I2 since each base point of index 2 is a singular point of a generator and there is no line

through base points intersecting both generators with the same index.

((c), (d)) In this case we have only one geometric configuration giving a pencil generated by curves Q+ S

and D. Let P1 and P2 be the singular points of Q+ S and let P3 be the node of D. For P3 to be a

base point of index 4, we must have P3 ∈ Q \ S. To obtain indices 2 at P1 and P2 the line S must

be transversal to D. With this configuration, we can not have any contraction of a fiber of type I2

since each base point of index 2 is a singular point of a generator and there is no line through base

points intersecting both generators with the same index.

((d), (d)) In this case we can have only one pencil generated by curves D1 and D2. Let P1 be the node of D1

and let P2 be the node of D2. Since P1 and P2 must have index 4, we can not have any contraction

of a fiber of type I2 because, on one side, we do not have any index 2 base point and, on the other

side, we can not have two index 4 base points being smooth points of an irreducible conic curve.

Now we will highlight the pencils that we are interested in assuming the conditions that allow the

two special fibers of type I2 in their resolutions and we will relabel the generators and the base points

according to the pencil they are in for further use.

• Λ1 = ⟨Q1 + S1, Q2 + S2⟩, where the generators are as in item 2 of the case ((b), (c)), and we

assume the tangent lines to Q1 at the base points P (1)
2 and P

(1)
3 intersecting Q2 at the same point as

S1. We will call S3 the tangent line to Q1 at P (1)
2 , Q3 the conic curve tangent to Q1 at P (1)

1 and

P
(1)
3 , S4 the tangent line to Q1 at P (1)

3 and Q4 the conic curve tangent to Q1 at P (1)
1 and P

(1)
2 .

• Λ2 = ⟨R1 +R2 +R3, Q+ S⟩, where the generators are as in item 2 of the case ((a), (c)), and we

assume the tangent line, S5, to Q at P (2)
1 intersects R3 at the same point as S. We will call Q5 the

conic curve tangent to R1, R2 and R3 at P (2)
4 , P

(2)
3 and P

(2)
2 , respectively, and D the nodal cubic

curve with node at P (2)
4 .

• Λ3 = ⟨L1 + L2 + L3, Q6 + S6⟩, where the generators are as in item 3 of the case ((a), (b)). We

call D1 the nodal cubic curve with node at P (3)
3 and D2 the nodal cubic curve with node at P (3)

4 .

The geometric configurations of these pencils and the resolution of their base points can be seen in the

figures 4.19, 4.20 and 4.21.
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Figure 4.19: Resolution of Λ1

Figure 4.20: Resolution of Λ2

Figure 4.21: Resolution of Λ3

In the resolution of Λ1 the sections σ(1)
6 , σ

(1)
7 and σ

(1)
8 are, respectively, the proper transforms of the

tangent line to Q1 at P (1)
1 , the line through P

(1)
1 and P

(1)
2 and the line through P

(1)
1 and P

(1)
3 . In the

resolution of Λ2 the sections σ(2)
6 , σ

(2)
7 and σ

(2)
8 are, respectively, the proper transforms of the line through

P
(2)
1 and P

(2)
4 , the line through P

(2)
2 and P

(2)
4 and the line through P

(2)
3 and P

(2)
4 . In the resolution of

Λ3 the sections σ(3)
5 , σ

(3)
6 , σ

(3)
7 and σ

(3)
8 are, respectively, the proper transforms of the line through P

(3)
2

and P
(3)
3 , the line through P

(3)
2 and P

(3)
4 , the line through P

(3)
3 and P

(3)
4 and the irreducible conic curve

through all base points, tangent to R3 at P (3)
2 .

Now we can follow the sequences below to find pencils with the same configuration of Λ1.
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For Λ2 we have the sequence

σ
(2)
6 → E

(2)
1,1 → R3 → σ

(2)
8 → E

(2)
3,1 → σ

(2)
2 → E

(2)
2,1 → σ

(2)
4 → σ

(2)
5 .

For Λ3 we have the sequence

σ
(3)
8 → E

(3)
1,1 → L2 → σ

(3)
4 → Q7 → σ

(3)
5 → E

(3)
2,1 → σ

(3)
2 → σ

(3)
6 .

After these contractions we obtain the pencils ⟨R1 + R2, Q5 + S5⟩ and ⟨L1 + L3, S7 + E
(3)
2,2⟩,

respectively, both having the same geometric configuration of Λ1. The pairs of irreducible conic curves

are, respectively, the images of R1, S5 and L1, E
(3)
2,2 .

T = D6 ⊕A⊕2
1 By Lemma 4.4, we have one special fiber of type I∗2 and two of type I2. Hence the

two fibers with higher number of components are the I∗2 and one of the I2. As in the previous case, we

have some pairs giving rise to pencils that yield elliptic surfaces with another set of special fibers. But in

this case it is simpler to identify the ones we want, since, given a such pencil, we just have some freedom

on a factor of degree 2 of ∆ which can only give us another fiber of I2 or two of type I1.

To find the pencils and conditions needed to obtain the second contraction of a fiber of type I2 as one

of its members, we will list every configuration in which a contraction of a fiber of type I∗2 can intersect a

contraction of a fiber of type I2. In what follows a pair ((·), (·)) will mean the pair ((I∗2 , (·)), (I2, (·))).

((a), (a)) In this case we have a geometric configuration giving a pencil generated by curves L1 + 2L2 and

Q+ S, where the intersection point P1 of L1 and L2 is a base point of index 4. Notice that the only

way of obtaining index 4 at P1 while being a smooth point of Q+ S is if the P1 ∈ Q \ S and L1 is

the tangent line to Q at this point. Let P2 be the second intersection point of Q and L2 and let P3

and P4 be the points where S intersects L1 and L2, respectively;

((a), (b)) In this case we have curves L1 + 2L2 and D where the intersection point P1 of L1 and L2 should

be a base point of index 4 and the node P2 of D should be a base point of index 2. To obtain a

pencil having these base points and giving rise to an elliptic surface, on one side, we would have

P2 ∈ L1 \ L2 and, on the other side, we would have D tangent to L1 at P1, but this contradicts

Bézout’s theorem;

((b), (a)) In this case we have a geometric configuration giving a pencil generated by curves L1 + 2L2 and

Q+ S, where the intersection point P1 of L1 and L2 is a base point of index 3 and we have another

point P2 ∈ L2 \ L1 of index 4. The only way these indices can be achieved, while satisfying the

general principle, is if Q is tangent to L2 at P2 and S is a line through P1 different from L1 and L2;

((b), (b)) In this case we have a geometric configuration giving a pencil generated by curves L1 + 2L2 and

D, where the intersection point P1 of L1 and L2 is a base point of index 3, the node P2 of D is a

base point of index 2 and we have another base point P3 ∈ L2 \ L1 of index 4. The only way all

these indices can be achieved is if P2 ∈ L1 \ L2, D is tangent to L2 at P3 and the tangent line to D

at P1 is different from L1 and L2;

((c), (a)) In this case we have a geometric configuration giving a pencil generated by curves Q1 + S1 and

Q2 + S2 where the intersection point P1 of Q1 and S1 is a base point of index 6. The only way of

obtaining this index is if Q1 and Q2 intersect at P1 with index 4;
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((c), (b)) In this case we have a geometric configuration giving a pencil generated by curves Q+ S and D

where the intersection point P1 of Q and S is a base point of index 6 and the node P2 of D is a

base point of index 2. The only way these indices can be achieved is if P2 ∈ Q \ S and D and Q

intersect at P1 with index 4;

((d), (a)) In this case we have curves L1 + L2 + L3 and Q+ S where the common intersection point P1 of

L1, L2 and L3 should be a base point of index 5 which can not be achieved on a smooth point of

Q+ S;

((d), (b)) In this case we have a geometric configuration giving a pencil generated by curves L1 + L2 + L3

and D where the common intersection point P1 of L1, L2 and L3 is a base point of index 5 and the

node P2 of D is a base point of index 2. To obtain these indices we need P1 to be the flex point of

D and one of the three lines, say L1, is its inflectional line and P2 is a point on another line, say L2;

Now we will show that it is possible to impose some restrictions to each configuration giving a pencil so

that it will contain a cubic curve yielding the extra special fiber of type I2. This will again be achieved

applying Max Noether’s Fundamental Theorem. We will relabel the generators and the base points

according to the pencil they are in for further use.

The respective pencils and their restrictions are:

• Λ1 = ⟨D,L1 + 2L2⟩, with D and L1 + 2L2 as in (I2, (b)) and (I∗2 , (b)), respectively, where the

line L1 intersects the nodal cubic curve D at the node P
(1)
1 and another point P (1)

2 and L2 is a line

through P
(1)
2 and tangent to D at a third point P (1)

3 . We need the following restriction: P (1)
2 must

be the inflectional point of D. In this way we shall have a member of Λ1 as in (I2, (a)) where the

line S is the inflectional line of D at P (1)
2 and the conic curve Q is the one tangent to L1 at P (1)

1

and intersecting D with index 4 at P (1)
3 . The configuration of generators and base points can be

seen in Figure 4.22.

• Λ2 = ⟨Q + S,L1 + 2L2⟩, with Q + S and L1 + 2L2 as in (I2, (a)) and (I∗2 , (b)), respectively,

where the lines S,L1 and L2 meet at a point P (2)
1 and the irreducible conic Q is tangent to L2 at a

point P (2)
2 . We need the following restriction: Q must be tangent to L1 at some point P (2)

3 . In this

way we shall have in Λ2 a member D as in (I2, (b)) where P
(2)
3 is the node, P (2)

1 is the flex point

and S is the inflectional line and D is tangent to L2 at P (2)
2 .

• Λ3 = ⟨Q′ + S′, R1 + 2R2⟩, with Q′ + S′ and R1 + 2R2 as in (I2, (a)) and (I∗2 , (a)), respectively,

where the irreducible conic curve Q′ is tangent to the line R1 at the intersection point P (3)
1 of R1

and R2, Q′ intersects R2 at another point P (3)
2 , while the line S′ intersects R2 at a third point P (3)

3

and intersects R1 at P (3)
4 . We need the following restriction: S′ must be chosen in a way that the

tangent line to Q′ at P (3)
2 also intersects R1 at P (3)

4 . In this way have another member Q′′ + S′′

of Λ3 as in (I2, (a)) where the line S′′ is the tangent line to Q′ at P (3)
4 and the conic curve Q′′ is

the one that intersects Q′ at P (3)
1 with index 4 and is tangent to S′ at P (3)

3 . The configuration of

generators and base points can be seen in Figure 4.23.

• Λ4 = ⟨D′, Q1 + S1⟩, with D′ and Q1 + S1 as in (I2, (b)) and (I∗2 , (c)), respectively, where the

nodal cubic curve D′ intersects the irreducible conic Q1 with index 4 at P (4)
1 , the tangency point

of Q1 and S1; the node P
(4)
2 of D′ is in Q1; S1 intersects D′ at another point P (4)

3 . We need the
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following restrictions: the point P (4)
1 in D′ must be chosen in a way that both tangent lines to Q1 at

P
(4)
1 and P

(4)
2 meet D′ at P (4)

3 . Thus we must have a member of Λ4 as in (I2, (a)) where the conic

curve Q′′′ is the one intersecting D′ and Q1 at P (4)
1 with indices 6 and 4, respectively, and the line

S′′′ is the tangent line to Q1 at P (4)
2 . The configuration of generators and base points can be seen in

Figure 4.24.

• Λ5 = ⟨Q′′′ + S′′′, Q1 + S1⟩, with Q′′′ + S′′′ and Q1 + S1 as in (I2, (a)) and (I∗2 , (c)), respectively,

where the irreducible conic curve Q′′′ intersects Q1 with index 4 at P (5)
1 , the tangency point of Q1

and S1; the line S′′′ intersects S1 at another point P (5)
2 . We need the following restriction: S′′′ must

be tangent to Q1 at a point P (5)
3 . Thus we shall have a member of Λ5 as in (I2, (a)) where the node

is the point P (5)
3 .

• Λ6 = ⟨D′′, L3 + L4 + L5⟩ with D′′ and L3 + L4 + L5 as in (I2, (b)) and (I∗2 , (d)), respectively,

where the nodal cubic curve D′′ has node P
(6)
1 over L3 and the intersection point P (6)

2 of the lines

L3, L4, L5 is the flex point of D′′ and L4 is its inflectional line. We need the following restriction:

L5 must be the line through P
(6)
2 that is tangent to D′′ at another point P (6)

3 . In this way Λ6 has

another member D′′′ as in (I2, (b)) with node P (6)
3 . The configuration of generators and base points

can be seen in Figure 4.25.

Notice that a pencil with generators as in Λ2 can be turned into a pencil of the form Λ1 via a Möbius

transformation. We have the same relation between Λ4 and Λ5. Thus we only need to show the contractions

for the pencils Λ3,Λ4 and Λ6.

Figure 4.22: Resolution of Λ1

In the resolution of Λ1 the section σ
(1)
4 is the proper transform of the line through P

(1)
1 and P

(1)
3 . In

the resolution of Λ4 the section σ
(4)
4 is the proper transform of the line through P

(4)
1 and P

(4)
2 . In the

resolution of Λ6 the section σ
(6)
4 is the proper transform of the line through P

(6)
1 and P

(6)
3 .

Now we can follow the sequences below to find pencils with the same configuration of Λ1.

For Λ3 we have the sequence

σ
(3)
1 → Q′ → σ

(3)
4 → R1 → E

(3)
1,2 → σ

(3)
3 → E

(3)
3,1 → R2 → E

(3)
2,1 .

For Λ4 we have the sequence

σ
(4)
4 → E

(4)
2,1 → σ

(4)
3 → S1 → E

(4)
1,2 → σ

(4)
1 → E

(4)
1,5 → E

(4)
1,4 → Q1.
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Figure 4.23: Resolution of Λ3

Figure 4.24: Resolution of Λ4

Figure 4.25: Resolution of Λ6

For Λ6 we have the sequence

σ
(6)
4 → E

(6)
1,1 → σ

(6)
2 → E

(6)
2,4 → E

(6)
2,3 → σ

(6)
3 → L5 → E

(6)
2,1 → L3.

After these contractions we obtain the pencils ⟨S′, E
(3)
1,3 + 2E

(3)
1,1⟩, ⟨D′, E

(4)
1,1 + 2E

(4)
1,3⟩ and ⟨D′′, L4 +

2E
(6)
2,2⟩, respectively, all having the same geometric configuration of Λ1. The irreducible nodal cubic

curves are, respectively, the images of S′, D′ and D′′.

Theorem 4.7. The sets of equivalence classes E0,ℓ are singletons consisting of the equivalence class of

the resolution of base points of the following pencils.
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(E0,1) ⟨z2x− y3 − y2x,−x3⟩;

(E0,2) ⟨z2x− y3 − y2x,−x(x+ y)2⟩;

(E0,3) ⟨z2x− y3 − y2x,−x2y⟩;

(E0,4) ⟨z2x− y3 − y2x,−x(xz + yz − xy)⟩;

(E0,5) ⟨z2x− y3 − y2x,−xz(x+ y)⟩;

(E0,6) ⟨z2x− y3 − y2x,−y(x+ y)2⟩;

(E0,7) ⟨z2x− y3 − y2x,−x(y2 − xy − xz)⟩;

(E0,8) ⟨(xz + x2 − y2)z,−(xz − x2 + y2)y⟩.

Our proof is a case by case analysis and we explain the general strategy, by splitting it in two situations.

The first is in the presence of an irreducible nodal cubic curve as the first generator of the pencil, which

occur in the first seven pencils in Theorem 4.6. In this event, we show that up to an automorphism of P2,

the second generator is uniquely determined by the first generator.

The second situation occurs only for the last pencil, where such a nodal cubic curve does not appear.

In this case we will apply Nagell’s algorithm ([C] and references therein) to show that a Weierstrass form

for each pencil as in item 8 of Theorem 4.6 is isomorphic to a Weierstrass form for the specific pencil

stated above. Since we need to apply Nagell’s algorithm we decided to summarize it in the following

remark.

Remark 4.8. Without loss of generality, we may assume that P = (0 : 0 : 1) is a point of the

general member H = F − TG of the pencil ⟨F,G⟩, which is an irreducible curve over K = k(T ).

Hence we can write H = H3 + H2z + H1z
2 with H1 = s8x + s9y, H2 = s5x

2 + s6xy + s7y
2 and

H3 = s1x
3+ s2x

2y+ s3xy
2+ s4y

3, where H1 is the tangent of H at P and s8 is assumed to be different

from 0. We consider the second common point Q = (−e2s9 : e2s8 : e3) between H1 and H , where

ei = Hi(s9,−s8) for i = 2, 3. If necessary we can change z 7→ y + z, which fixes P and H1, to assume

e3 ̸= 0. We make the change of variables

x = x1 − s9(e2/e3)z1, y = y1 + s8(e2/e3)z1, z = z1

which sends (0 : 0 : 1) to Q and (e2s9 : −e2s8 : e3) to P . Then, by doing

x1 = x2 + s9y2, y1 = −s8y2, z1 = z2

we change the tangent at Q to x2. In this system of coordinates H is sent to H ′ = H ′
3 +H ′

2z2 +H ′
1z

2
2 ,

where H ′
i ∈ K[x2, y2] is homogeneous of degree i. Writing h = H ′(x2, y2, 1), hi = H ′

i(x2, y2, 1) and

using the blow-up

x2 = x2, y2 = ux2

at Q = (0, 0) we obtain the curve x22h3(1, u) + x2h2(1, u) + h1(1, u), birationally equivalent to H . If

we define

v = −h3(1, u)x2 + h2(1, u)

we get a Weierstrass form given by v2 − (h2(1, u)
2 − h1(1, u)h3(1, u)), which is also birationally

equivalent to H .
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Proof. As we indicated in the strategy of our proof, in the seven first pencils of Theorem 4.6, the

irreducible nodal cubic curve D can be taken as z2x− y3 − y2x, up to change of coordinates of P2.

E0,1 In this case the inflectional line L is given by x. So E0,1 is the class given by the resolution of

the pencil ⟨z2x− y3 − y2x,−x3⟩.
E0,2 In this case the inflectional line L1 is given by x and the line L2 is given by x + y since

this is the tangent line at the unique (non-flex) smooth point (1 : −1 : 0) of the intersection of D

and its polar curve at the flex (0 : 0 : 1). So E0,2 is the class given by the resolution of the pencil

⟨z2x− y3 − y2x,−x(x+ y)2⟩.
E0,3 In this case, the line L1 trough the node (1 : 0 : 0) and the flex is given by y and the inflectional

line L2 is given by x. So E0,3 is the class given by the resolution of the pencil ⟨z2x− y3 − y2x,−x2y⟩.
E0,4 In this case the inflectional line S1 is given by x and the irreducible conic Q1 with the required

intersection indices can be either xz+ yz− xy or xz+ yz+ xy. Since both conic curves can be obtained

from each other via the P2-automorphism z 7→ −z, which fixes the curve D, we can choose Q1 to be given

by the first one. So E0,4 is the class given by the resolution of the pencil ⟨z2x−y3−y2x,−x(xz+yz−xy)⟩.
E0,5 In this case L1 is given by x and L2 is given by x+ y and L3 is given by z. So E0,5 is the class

given by the resolution of the pencil ⟨z2x− y3 − y2x,−xz(x+ y)⟩.
E0,6 In this case L1 is given by y and L2 is given by x+y. So E0,6 is the class given by the resolution

of the pencil ⟨z2x− y3 − y2x,−y(x+ y)2⟩.
E0,7 In this case S1 is given by x and Q1 can be either y2−xy−xz or y2−xy+xz. Since both conic

curves can be obtained from each other via the P2-automorphism z 7→ −z, we can choose Q1 to be given

by the first one. So E0,7 is the class given by the resolution of the pencil ⟨z2x−y3−y2x,−x(y2−xy−xz)⟩.
Now we will study the only case that does not have a nodal cubic curve in the pencil codifying the

prescribed geometric properties of the required fibration.

E0,8

Up to a projective change of coordinates, L1, L2 and the tangent line to Q1 at P (1)
1 are given by y, z

and x, respectively. With restrictions as in item 8 of Theorem 4.6, Q1 and Q2 are given respectively by

−x2 + a2y2 + bxz and x2 − a2y2 + bxz, with ab ̸= 0. Therefore each fibration with T = (A3 ⊕A1)
⊕2

is equivalent to a fibration obtained from the pencil ⟨z(x2 − a2y2 + bxz),−y(−x2 + a2y2 + bxz)⟩. If

we apply Nagell’s algorithm 4.8 to the curve Ha,b = z(x2 − a2y2 + bxz) + T (y(−x2 + a2y2 + bxz))

we obtain a birationally equivalent curve given by the Weierstrass form

v2 − (a2b4T 3u3 + (b4T 4 + a2b2T 2)u2 + b2T 3u)

having j-invariant

(b12T 12 − a6b6T 6 + a12)/(a4b8T 8 + a6b6T 6 + a8b4T 4).

If we also apply Nagell’s algorithm to the curve H1,1 followed by the Möbius transformation sending

T to
b

a
T we will obtain a Weierstrass form with (a2b4T 4 + a4b2T 2) being the coefficient of u2 and with

the same j-invariant as above. By the Remark 3.11 the elliptic curves given by these Weierstrass forms

are isomorphic. So E0,8 is the class given by the resolution of the pencil ⟨z(x2 − y2 + xz),−y(−x2 +

y2 + xz)⟩.

Example 4.9. We consider the pencils Λ1 = ⟨−x(y + x)(z − y), (x − y)(x2 − xy − xz + z2)⟩ and

Λ2 = ⟨−x(αy + x)(z − y), (x − y)(x2 − xy − xz + z2)⟩ where α is a primitive element for the field
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extension F38 |F3. Both pencils give rise to elliptic surfaces having the special fibers 2I4, I2, 2I1. This

means that their discriminants, ∆1 and ∆2, must have two roots of order 4, one of order 2 and two of

order 1. If they were equivalent there should exist a Möbius transformation sending ∆1 to ∆2. Since

such a transformation preserves the orders of roots, it should be determined by its action on roots of

order 2 and 4, resulting in two possibilities. However, a MAGMA check shows that neither sends the

roots of order 1 of ∆1 to those of ∆2. Our computations suggest that the space of non-equivalent elliptic

fibrations having this configuration of special fibers have positive dimension.
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CHAPTER 5

Vector fields on the projective plane
inducing fibrations by singular curves

Let us consider k an algebraically closed field of characteristic three. In this chapter we will deal with

the question:

Question 5.1. Given a pencil of generically smooth plane cubic curves (F : G) : P2 99K P1 how can we

build a 3-closed vector field D on P2 such that the rational map (P2)D 99K P1 induces a fibration by

singular curves of genus two?

In this chapter we will answer Question 5.1 for the pencils described in Theorem 4.7, which is enough

to answer for all pencils inducing fibrations by elliptic curves with Mordell-Weil rank zero.

Given a fibration f : S → P1 by singular curves of genus two whose smoothing is a fibration by

elliptic curves f1 : S1 → P1, we will construct a 3-closed vector field D1 on S1 such that we have a

commutative diagram

S = SD1
1

f
��

S1

f1
��

πD1oo

P1 P1
FP1,koo

where FP1,k : P1 → P1 is the relative Frobenius map of P1. More precisely we will find a k-derivation D1

of k(S1) whose kernel is k(S1)
D1 = k(S). Just to refresh our notations, the field of rational functions of

the source and the target of FP1,k are k(T ) and k(t), respectively, where T is a transcendental element

over k and t = T 3.

It follows from Proposition 3.5 that k(S) = k(x, y, t) and k(S1) = k(z, w, T ) where y2 = h(x3 −
j3)(x3 − j3x− j3), w2 = −h(j4z3 + j3z2 − 1), h ∈ k(t) and j ∈ k(T ) \ k(t). It also follows from the

proof of Proposition 3.5 that z = 1
x−j and w = z3y.

Lemma 5.2. With the above notations, we have k(S) = k(z3, w, T 3).

Proof. Notice that T 3 = t ∈ k(S). Moreover, z3, w ∈ k(S), since z3 = 1
x3−j3

and j3 ∈ k(S). Hence

k(S) ⊇ k(z3, w, T 3).
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For the other inclusion, since t = T 3 and y = w
z3

we have t, y ∈ k(z3, w, T 3) and it remains to prove

that x ∈ k(z3, w, T 3). From the equation relating x and y, namely y2 = h(x3 − j3)(x3 − j3x− j3) =

hz−3(z−3 − j3x), we obtain x = z−3 − z3y2h−1 with h ∈ k(T 3).

This lemma motivates us to look for a k-derivation D1 of k(z, w, T ) whose kernel is k(z3, w, T 3). A

natural candidate is to consider the extension to k(z, w, T ) of the derivation ∂
∂z of k(z, w). To define such

extension we just need to determine the derivation applied to T and we do this by considering the relation

w2 = −h(j4z3 + j3z2 − 1). To this end, if we write f(z, T ) = h(j4z3 + j3z2 − 1), then D1 is defined

by the k-derivation satisfying D1(z) = 1, D1(w) = 0 and such that

0 = 2wD1(w) = −(fz + fTD1(T ))

where fz and fT are the partial derivatives of f with respect to indicated variables in k(z, T ). Since

h ∈ k(T 3) it follows that fT = hj3j′z3 where j′ is the derivative of j with respect to T in k(T ). On the

other hand j ∈ k(T ) \ k(T 3) implies that j′ ̸= 0, that is, fT ̸= 0. Hence D1(T ) can be defined by − fz
fT

and, therefore

D1(g(z, w, T )) = gz −
fz
fT

gT =
gzfT − fzgT

fT
,

for every g(z, w, T ) ∈ k(z, w, T ).

Lemma 5.3. If D1 ∈ Derk(k(z, w, T )) is defined as above, then KerD1 = k(z3, w, T 3).

Proof. The definition of D1 implies k(z3, w, T 3) ⊆ KerD1 ⊆ k(z, w, T ). Moreover, from the previous

lemma k(z, w, T )|k(z3, w, T 3) is a field extension of degree 3 because k(z, w, T ) = k(x, y, t)k(T ).

Hence we may conclude k(z3, w, T 3) = KerD1 just observing that D1(z) ̸= 0.

Lemma 5.4. The derivation D1 satisfies D3
1 = 0 and, in particular, it is 3-closed.

Proof. Since D3
1 is also a k-derivation of k(z, w, T ) we have D3

1(g(z, w, T )) = gzD
3
1(z) + gwD

3
1(w) +

gTD
3
1(T ) for each g(z, w, T ) ∈ k(z, w, T ). Hence, it is enough to prove that D3

1 kills z, w and T . Clearly

D3
1(z) = D3

1(w) = 0. By direct computation we also check D3
1(T ) = 0. Indeed

D1(T ) =
hj3z

hj3j′z3
=

1

j′z2
and D2

1(T ) = D1

(
1

j′z2

)
= −j′′z2D1(T ) + j′2z

(j′z2)2
=

−j′′z2 + (j′)2z3

(j′z2)3

where j′′ is the second derivative of j with respect to T in k(T ). Therefore,

D3
1(T ) = D1

(
−j′′z2 + (j′)2z3

(j′z2)2

)
=

−j′′′D1(T )z
2 + j′′z − j′j′′D1(T )z

3

(j′z2)3
=

j′′z − j′′z

(j′z2)3
= 0

since the third derivative j′′′ of j is zero.

We summarize all facts above in the following result.

Proposition 5.5. Let f1 : S1 → P1 be the smoothing of an absolutely elliptic fibration f : S → P1 by genus

two singular curves, over an algebraically closed field k of characteristic three. Let k(S1) = k(z, w, T ),

with z, w, T satisfying the Weierstrass polynomial of Proposition 3.5 for K = k(t) and L = k(T ). Then

the 3-closed vector field D1 such that S = SD1
1 is given by

D1(g) =
fT gz − fzgT

fT
,

for every g ∈ k(z, w, T ), where f(z, T ) = h(j4z3 + j3z2 − 1) and fz, fT , gz, gT stand by the partial

derivatives of f and g with respect to the indicated variables.
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Now we will use the derivation D1 in order to answer Question 5.1 for each pencil appearing in

Theorem 4.7.

Theorem 5.6. Let Λℓ be the pencil in item ℓ of Theorem 4.7, for each ℓ = 1, . . . , 8. If D1,ℓ = Aℓ∂/∂x+

Bℓ∂/∂y is a 3-closed vector field, with coordinates x, y in the chart z ̸= 0 in P2, whose induced fibration

on (P2)D1,ℓ is by genus two singular curves, then Aℓ and Bℓ can be chosen as below.

1. A1 = x2 and B1 = y2;

2. A2 = x6 + x4y + x3y2 − x3y + x3 + x2y2 − x2 + xy3 − xy2 − y3 + y2

and

B2 = (y − 1)2(x3 − xy + x− y2 + y);

3. A3 = −x and B3 = (x+ y)(x− y3);

4. A4 = −(x4y2+x4y+x4+x3y4+x3y3+x3y2+x3y−x3−x2y5+x2y4+x2+xy6−xy5−y6)

and

B4 = −(x2y5 − x2y4 + x2y3 + x2y2 + x2 − xy6 − xy5 − xy3 + xy2 − xy + y7 − y6 − y5);

5. A5 = −(x4 + x3y3 + x3y + x2y4 + x2 − xy5 − y6)

and

B5 = x2y4 + x2y2 − x2 − xy5 + xy3 + xy + y6;

6. A6 = −x2 and B6 = y2;

7. A7 = −(x2y2 + x2y + xy3 − x+ y3)

and

B7 = −(y + 1)(y − 1)(xy + x+ y2 − y);

8. A8 = −xy(x+ y)(x− y) and B8 = (x2 − x2y2 + y4).

Proof. Our strategy here will be similar to the one used in case ℓ = 8 of Theorem 4.7. In this way we

will take, in each item of the mentioned theorem, a general member F − TG of the pencil and we apply

Nagell’s algorithm (see Remark 4.8) to reach a Weierstrass equation v2 = a0u
3 + a2u

2 + a4u+ a6 for

the generic fiber of the fibration induced by the pencil. After that we apply the map

z1 = a+ bu, w1 = ev

where a = a4/a2, b = ja2/a0 and e = a20j, as in Lemma 3.13, to obtain another Weierstrass form for the

generic fiber as in Proposition 3.5 - with z1 and w1 instead of z and w - since these are the coordinates

where D1 is known. To see the derivation D1 of k(z1, w1, T ) as a derivation of k(u, v, T ) we only need

to express D1(u), D1(v) and D1(T ) in terms of the generators u, v and T of the function field k(S1)|k.

We proceed similarly in each step of Nagell’s algorithm until reaching the derivation D1 expressed in the

coordinates x, y and T or equivalently only in x, y since T = F (x, y, 1)/G(x, y, 1). Along the previous

process, whenever we find it convenient, we substitute the derivation by a rational multiple in order to get
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simpler expressions in each step. All computations were performed using the algebra systems Magma

[BCP] and Maxima [Max].

Since each case has computations following the same pattern, we decided to show them only in case 8.

Applying Nagell’s algorithm to the pencil ⟨(xz+x2−y2)z,−(xz−x2+y2)y⟩, obtained in Theorem

4.7, we get a Weierstrass form with a0 = T 3, a2 = T 4 + T 2, a4 = T 3, a6 = 0 and j-invariant

(T 12 − T 6 + 1)/(T 8 + T 6 + T 4). After the map indicated at the beginning of the proof we get a normal

form over the field k(z1, w1, T ) where

D1,8(z1) = 1,

D1,8(w1) = 0,

D1,8(T ) = 1/(j′z21) = (T 13 − T 11 − T 7 + T 5)/((T 16 − T 12 − T 10 + T 6 + T 4 − 1)z21).

Then we take the equivalent derivation, also denoted D1,8, given by

D1,8(z1) = (T 16 − T 12 − T 10 + T 6 + T 4 − 1)z21 ,

D1,8(w1) = 0,

D1,8(T ) = T 13 − T 11 − T 7 + T 5.

Taking the inverse map we can compute D1,8(u), D1,8(v) and D1,8(T ) in terms of u, v, T . They have

T 4(T 2 − 1)3 as a common factor and cleaning up this factor we obtain an equivalent derivation given by

D1,8(u) = Tu2 − (T 2 + 1)u,

D1,8(v) = (T 2 + 1)v,

D1,8(T ) = T 3 − T.

Writing D1,8 in the next generators of k(S1) we see that T (u2 − 1) is the denominator of D1,8(x2).

Multiplying by this polynomial we obtain an equivalent derivation given by

D1,8(u) = T 2u4 + (−T 3 − T )u3 − T 2u2 + (T 3 + T )u,

D1,8(x2) = (−T 3u2 + T 2u− T )x2 − Tu2 + (−T 2 − 1)u− T,

D1,8(T ) = (T 4 − T 2)u2 − T 4 + T 2.

In terms of the next generators x2, y2 and T , x32 is the common denominator of D1,8. Hence the equivalent

derivation is given by

D1,8(x2) = (−T 3x22 − Tx2)y
2
2 + (T 2x32 + (−T 2 − 1)x22)y2 − Tx42 − Tx32,

D1,8(y2) = T 2y42 + ((T 3 − T )x2 − T )y32 + (−T 2 − 1)x2y
2
2 + (T 3x32 − Tx22)y2,

D1,8(T ) = (T 4 − T 2)x2y
2
2 + (T 2 − T 4)x32.

For the generators x1, y1, T we have

D1,8(x1) = (−T 3x21 − Tx1)y
2
1 + ((T 2 + 1)x21 − T 2x31)y1 − Tx41 − Tx31,

D1,8(y1) = −T 2y41 + ((T 3 − T )x1 − T )y31 + (T 2 + 1)x1y
2
1 + (T 3x31 − Tx21)y1

D1,8(T ) = (T 4 − T 2)x1y
2
1 + (T 2 − T 4)x31.

Finally we have to determine D1,8 in terms of x, y, T or equivalently in terms of x, y, because T =

F (x, y, 1)/G(x, y, 1). With these coordinates we get x3y(x2−y2)(x+y+1)2(x−y+1)2 as a common

factor of D1,8(x) and D1,8(y). Therefore D1,8 is equivalent to a derivation given by

A8 = D1,8(x) = −xy(x+ y)(x− y) and B8 = D1,8(y) = (x2 − x2y2 + y4).
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APPENDIX A

Blow-ups of smooth surfaces

In this appendix we will remember some facts about blow-ups of a smooth surface S at point P and

its relation with a pencil of curves in S (cf. [H] and [Mi]).
Let S be a smooth surface and let P ∈ S be a closed point. Then there exist a surfaces S̃ and a

morphism π : S̃ → S, which are unique up to isomorphism, such that

1. π |π−1(S−{P}) : π
−1(S − {P}) → S − {P} is an isomorphism;

2. π−1(P ) = E is isomorphic to P1.

We say that π is the blow-up of S at P and we call E its exceptional curve.

Lemma A.1. Let C be an irreducible curve on S that passes through P with multiplicity m. Then

π∗C = C̃ +mE, where C̃ is the closure of π−1(C − {P}) in S̃ called the proper transform of C.

Proposition A.2. Let S be a smooth surface, π : S̃ → S the blow-up of a point P ∈ S and E ⊂ S̃ the

exceptional curve. Let D,D′ be divisors on S, then

• (π∗D) · (π∗D′) = D ·D′;

• E · (π∗D) = 0;

• E2 = −1.

Proposition A.3. Let {Cλ} be a pencil curves (general member smooth) on a smooth surface S with a

base point P . Let π : S̃ → S be the blow-up of S at P , then

• {π∗Cλ − E} is the corresponding pencil on S̃;

• Given a member Cλ0 in S, the corresponding member in S̃ is C̃λ0 + (mP (Cλ0)− 1)E;

• If P is a base point of {Cλ} of index n ≥ 2 then there is a point P1 ∈ E which is a base point of

{π∗Cλ − E} of index n− 1;

• Let B be an irreducible component of Cλ0 , then B̃2 = B2 −mP (B)2;

• If P is a base point of index 1, then E is a global section in S̃, that is E is not a component of any

curve in {π∗Cλ − E} and intersects every curve of this pencil transversally.

60



We also can use this result to conclude that in a rational elliptic surface every component of a reducible

fiber has self-intersection equal to −2. Furthermore, if we look at these results from the view point of

contractions of curves with self-intersection equal to −1, we see that the self-intersection of a curve of a

pencil increase by as many as the number points this curve intersects the exceptional curve we contract.

We also increase the base point index by one.

To illustrate how to obtain the special fibers from the singular curves in the Table 4.3, we will present

the blow-ups of the curves in the row I∗2 . Since each marked singular point gives rise to a different

sequence of blow-ups, which gives us disjoint sequences of new components (or sections when the index

is equal to 1). We will see how the index and multiplicity of a point affect the new components. In each

figure the blue curve represents locally a smooth member of a pencil containing the singular curve as a

member. We will abuse notation and denote the proper transform of a curve C by C. We start with a point

of index 2 of the singular (I∗2 , (a)).

The base point is a point of index 2 and multiplicity 2 implies that the exceptional curve is a component

of multiplicity 1 of the curve above this and we have a base point of index 1 in the exceptional curve,

which give a section in the next blow-up.

Now we look at the point of index 4 in (I∗2 , (a)).

The base point is a point of index 4 and multiplicity 3 implies the exceptional curve is a component of

multiplicity 2 of the curve above this and we have a base point of index 3 in the exceptional curve, since
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blue curve is tangent to L1, this base point is also in the proper transform of L1.

The base point is a point of index 3 and multiplicity 3 implies the exceptional curve is a component of

multiplicity 2 of the curve above this and we have a base point of index 2 in the exceptional curve.

We have again a base point index 2 and multiplicity 2. So the next blow-up gives:

Putting all 3 sequences of blow-ups together we get essentially a fiber of type I∗2 , with possibly some

base points that are smooth in this curve.

Next we have the singular curve (I∗2 , (b)). We already know that the base point of index 3 and

multiplicity 3 will give the following configuration.

Now we look at the point of index 4 in (I∗2 , (b)).
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The base point of index 4 and multiplicity 2 implies that the exceptional curve is a component of

multiplicity 1 of the curve above this and we have a base point of index 3 in the exceptional curve, since

blue curve is tangent to L2, this base point is also in the proper transform of L2.

We have again a base point of index 3 and multiplicity 3. So the next blow-ups give:

Putting these 2 sequences of blow-ups together we get essentially a fiber of type I∗2 .

Next we have the singular curve (I∗2 , (c)).

The base point is a point of index 5 and multiplicity 3 implies the exceptional curve is a component of

multiplicity 2 of the curve above this and we have a base point of index 4 in the exceptional curve, since

blue curve has inflectional line L1, its proper transform is tangent to the proper transform of L2.
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We already know that the base point of index 4 and multiplicity 3 will give the following configuration.

And this is the configuration of a fiber of type I∗2 .

Finally we have the singular curve (I∗2 , (d)).

The base point is a point of index 6 and multiplicity 2 implies the exceptional curve is a component

of multiplicity 1 of the curve above this and we have a base point of index 5 in the exceptional curve,

since blue curve intersects the conic Q and the line with indices 4 and 2, respectively, its proper transform

intersects the proper transforms of Q and L with indices 3 and 1, respectively.
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And this is basically the configuration in the previous case, which gives our special fiber.
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APPENDIX B

Codes

In this appendix we show the codes used on the algebra systems MAGMA and MAXIMA.

We start by showing the following code used on the algebra system MAXIMA to apply Naggel’s

algorithm in the case E0,8 which appears in the proof of Theorem 4.7.

(% i2) F:y*(-xˆ 2+aˆ 2*yˆ 2+b*x*z);

G:z*(xˆ 2-aˆ 2*yˆ 2+b*x*z);

y
(
bxz + a2y2 − x2

)
(% o1)

z
(
bxz − a2y2 + x2

)
(% o2)

(% i3) H:num(ratsimp(F+t*G));

btxz2 +
(
−a2ty2 + bxy + tx2

)
z + a2y3 − x2y (% o3)

(% i6) H_3:coeff(H,z,0);

H_2:coeff(H,z,1);

H_1:coeff(H,z,2);

a2y3 − x2y (% o4)

−a2ty2 + bxy + tx2 (% o5)

btx (% o6)

(% i8) s_8:coeff(H_1,x);

s_9:coeff(H_1,y);

b t (% o7)

0 (% o8)
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(% i10) e_2:polymod(subst([x=s_9,y=-s_8],H_2),3);

e_3:polymod(subst([x=s_9,y=-s_8],H_3),3);

−a2b2t3 (% o9)

−a2b3t3 (% o10)

(% i14) x:x_1-s_9*(e_2/e_3)*z_1;

y:y_1+s_8*(e_2/e_3)*z_1;

z:z_1;

H_4:num(polymod(ratsimp(ev(H)),3));

x1 (% o11)

tz1 + y1 (% o12)

z1 (% o13)

(
a2t2y1 − btx1

)
z1

2 +
(
bx1y1 − a2ty1

2
)
z1 + a2y1

3 − x1
2y1 (% o14)

(% i18) x_1:x_2+s_9*y_2;

y_1:-s_8*y_2;

z_1:z_2;

H_5:polymod(ratsimp(ev(H_4)),3);

x2 (% o15)

−bty2 (% o16)

z2 (% o17)

(
−a2bt3y2 − btx2

)
z2

2 +
(
−a2b2t3y2

2 − b2tx2y2
)
z2 − a2b3t3y2

3 + btx2
2y2 (% o18)

(% i22) h:subst(z_2=1,H_5);

h_1:coeff(H_5,z_2,2);

h_2:coeff(H_5,z_2,1);

h_3:coeff(H_5,z_2,0);

−a2b3t3y2
3 − a2b2t3y2

2 + btx2
2y2 − b2tx2y2 − a2bt3y2 − btx2 (% o19)

−a2bt3y2 − btx2 (% o20)
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−a2b2t3y2
2 − b2tx2y2 (% o21)

btx2
2y2 − a2b3t3y2

3 (% o22)

(% i23) f:ratsimp(subst(y_2=u*x_2,h)/x_2);(
btu− a2b3t3u3

)
x2

2 +
(
−a2b2t3u2 − b2tu

)
x2 − a2bt3u− bt (% o23)

(% i24) v:-coeff(f,x_2,2)*x_2+coeff(f,x_2,1);(
a2b3t3u3 − btu

)
x2 − a2b2t3u2 − b2tu (% o24)

(% i25) W:polymod(ratsimp((coeff(f,x_2,1)ˆ 2-coeff(f,x_2,2)*coeff(f,x_2,0))),3);

a2b4t4u3 +
(
a2b2t4 + b4t2

)
u2 + b2t2u (% o25)

(% i26) ∆:-polymod(ratsimp(coeff(W,u,3)*coeff(W,u,1)ˆ 3

-coeff(W,u,1)ˆ 2*coeff(W,u,2)ˆ 2+coeff(W,u,0)*coeff(W,u,2)ˆ 3),3);

a4b8t12 + a2b10t10 + b12t8 (% o26)

(% i27) j:polymod(ratsimp(coeff(W,u,2)ˆ 6/(coeff(W,u,3)ˆ 2*∆)),3);

a12t12 − a6b6t6 + b12

a8b4t8 + a6b6t6 + a4b8t4
(% o27)

In the proof of Theorem 5.6 we analyze if we can swap a derivation with one of its rational multiples

in order to get simpler expressions for D1 applied to each system of generators of the function field. For

instance, if K(S1) = K(x1, x2, x3) and D1(x1), D1(x2), D1(x3) are polynomials, we use the following

code on the algebra systems MAGMA to search for any common factors.

L:=GF(38);

L < x1, x2, x3 >:=PolynomialRing(L,3);

Factorization(D1(x1));

Factorization(D1(x2));

Factorization(D1(x3));

68



Bibliography

[BCP] W. Bosma, J. Cannon, and C. Playoust,The Magma algebra system. I. The user language, J.

Symbolic Comput., 24 (1997), 235-265.

[BM] E. Bombieri, D. Mumford, Enriques’ classification of surfaces in characteristic p. III, Invent.

Math. 35 (1976) 197–232.

[BN] H. Borges Neto, Mudança de gênero e classificação de corpos de gênero 2, Tese de Doutorado,

Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1979).

[C] I. Connell, Elliptic Curve Handbook, (1999) http://www.math.mcgill.ca/connell/public/ECH1/.

[CD] Cossec, F. R., Dolgachev, I.V., Enriques Surfaces I, Progress in Mathematics, Birkhäuser, (1989).

[CS] A. S Cañate, K.-O, Stöhr, Fibrations by non-smooth projective curves of arithmetic genus two in

characteristic two, Journal of Pure and Applied Algebra 220 (2016) 3282-3299.

[F] W. Fulton ALGEBRAIC CURVES. An Introduction to Algebraic Geometry. (2008)

https://dept.math.lsa.umich.edu/ wfulton/CurveBook.pdf

[Fu] D. FusiConstruction of Linear Pencils of Cubics with Mordell-Weil Rank six and seven, Comment.

Math. Univ. St. Paul. 58 no. 2 (2006) 195-205.

[G] D. M. Goldschmidt Algebraic Functions and Projective Curves. Graduate Texts in Mathematics, vol

215. Springer, New York, NY (2006).

[H] R. Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, v. 52, Springer (1977).

[HRS] A. Hefez, J. H. O. Rodrigues and R. Salomão, The Milnor number of a hypersurface singularity

in arbitrary characteristic, Journal of Algebra 540 (2019) 20-41.

[JLRRSP] T. Jarvis, W. E. Lang, G. Rimmasch, J. Rogers, E. D. Summers, and N. Petrosyan, Clas-

sification of singular fibers on rational elliptic surfaces in characteristic three. Comm. Algebra,

33(12):4533-4566, (2005).

[La] S. Lang, Elliptic functions, Addison Wesley Comp (1973).

[Max] Maxima, a Computer Algebra System. Version 5.45.1 (2021).https://maxima.sourceforge.io/

69

http://www.math.mcgill.ca/connell/public/ECH1/
https://dept.math.lsa.umich.edu/~wfulton/CurveBook.pdf
https://maxima.sourceforge.io/


[Mi] R. Miranda, On the Stability of Pencils of Cubic Curves, American Journal of Mathematics 102, no.

6 (1980): 1177-1202.

[MP] Y. Miyaoka, T. Peternell, Geometry of higher-dimensional algebraic varieties, volume. 26 of DMV

Seminar. Birkhäuser Verlag, Basel (1997)

[Mum] D. Mumford, Introduction in ‘Oscar Zariski: collected papers I’, MIT Press (1972) 3-5.

[Muk] S. Mukai, Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics.

Kyoto J. Math. (2013) no. 2, 515–532.

[OS] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface. Comment. Math.

Univ. St. Paul., 40(1):83-99, (1991).

[Q] C.S. Queen, Nonconservative function fields of genus one. I, Arch. Math. 22 (1971) 612-623.

[R] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952) 169-191.

[Sa1] R. Salomão, Fibrations by non-smooth genus three curves in characteristic three, Journal of Pure

and Applied Algebra 215 (2011) 1967-1979.

[Sa2] R. Salomão, Fibrations by curves with more than one non-smooth point, Bull Braz Math Soc, New

Series 45 (2014) 267–292.

[Sal] C. SalgadoConstruction of linear pencils of cubics with Mordell–Weil rank five, Comment. Math.

Univ. St. Paul., 58 no. 2 (2009) 95–104.

[Sh] I. Shimada, On supercuspidal families of curves on a surface in positive characteristic, Math. Ann.,

292 (1992) 645-669.

[Shi] T. Shioda, On the Mordell-Weil Lattices, Comment. Math. Univ. St. Paul. 39 no. 2, 211-240 (1990).

[Si] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, v. 106, Springer

(2000).

[S1] K.-O. Stöhr, On singular primes in function fields, Arch. Math. 50 (1988) 156-163.

[S2] K.-O. Stöhr, On Bertini’s theorem in characteristic p for families of canonical curves in P(p−3)/2,

Proc. London Math. Soc. (3) 89 (2004) 291-316.

[S3] K.-O. Stöhr, On Bertini’s theorem for fibrations by plane projective quartic curves in characteristic

five, Journal of Algebra 315 (2007) 502-526.

[T] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952)

400-406.

[Ta] Y. Takeda, Fibration with moving cuspidal singularities, Nagoya Math. J. 122 (1991) 161-179.

[Z] O. Zariski, The theorem of Bertini on the variable singular points of a linear system of varieties,

Trans. Amer. Math. Soc. 56 (1944) 130-140.

[Zh] X. Zheng, Counterexamples of Kodaira vanishing for smooth surfaces of general type in positive

characteristic, Journal of Pure and Applied Algebra 221 (2017) 2431-2444.

70


	List of Figures
	List of Tables
	Introduction
	Smoothing and classification of fibration by singular curves
	Absolutely elliptic regular curves of genus two 
	Rational elliptic surfaces with Mordell-Weil rank zero
	Vector fields on the projective plane inducing fibrations by singular curves
	Blow-ups of smooth surfaces
	Codes
	Bibliography

