


SOA and WS-BPEL

Composing Service-Oriented Solutions with PHP and 
ActiveBPEL

Yuli Vasiliev

 

  BIRMINGHAM - MUMBAI



SOA and WS-BPEL

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the author, Packt Publishing, 
nor its dealers or distributors will be held liable for any damages caused or alleged to 
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2007

Production Reference: 1040907 

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-70-7

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)



Credits

Author

Yuli Vasiliev

Reviewer

Robert Mark

Acquisition Editor

Priyanka Baruah

Technical Editor

Akshara Aware

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator 

Shantanu Zagade

Cover Designer

Shantanu Zagade



About the Author

Yuli Vasiliev is a software developer, freelance author, and consultant 
currently specializing in open-source development, Oracle technologies, 
and service-oriented architecture (SOA). He has over 10 years of software 
development experience as well as several years of technical writing experience. 
He wrote a series of technical articles for Oracle Technology Network (OTN) and 
Oracle Magazine.



About the Reviewer

Robert Mark is a Senior Programmer at the McGill University in Montreal, 
Canada. He completed his B.A. in Environmental Studies specializing in 
Geographical Information Systems at the University of Winnipeg in 1995. He then 
went on to complete a Computer Programmer Analyst Diploma at Humber College 
in Toronto, Canada. He has written articles for Oracle Technical Network and  
php|architect and has been a reviewer of several journals, technical papers,  
and books.





Table of Contents
Preface 1
Chapter 1: Web Services, SOA, and WS‑BPEL Technologies 5

Web Services 6
Communicating via SOAP 6
Binding with WSDL 10
Using XML Schema Types within WSDL Definitions 14

Service‑Oriented Architecture 17
Basic Principles of Service Orientation 17
Applying SOA Principles  19
SOA Compositions 25

Orchestration 25
Choreography 26

WS‑BPEL 28
WS-BPEL Processes 28
WSDL Definitions for Composite Services 30
Tools for Designing, Deploying, and  
Testing Solutions Based on WS-BPEL 36

Summary 37
Chapter 2: SOAP Servers and Clients with PHP SOAP Extension 39

Building Service Providers and Service Requestors 39
Setting Up the Database 41
Developing the PHP Handler Class  43
Designing the WSDL Document 44
Building the SOAP Server 46
Building the Service Requestor 46
Testing the Service 48



Table of Contents

[ ii ]

Using XML Schemas with WSDL 49
Including XML Schema Data Type Definitions in WSDL 49
Importing XML Schemas into WSDL Documents 52
Getting Data Types Defined in the XML Schema 54

Transmitting Complex Type Data  55
Exchanging Complex Data Structures with PHP SOAP Extension 56
Structuring Complex Data for Sending 60
Converting SOAP Messages' Payloads to XML 62
Using PHP SOAP Extension Tracing Capabilities 65
Dealing with Attributes 66
Transforming XML Documents with XSLT 75

Extending PHP SOAP Extension Predefined Classes  81
Defining Parameter‑Driven Operations 83
Summary 87

Chapter 3: Designing Data‑Centric Web Services 89
Which Database to Choose 90
Using MySQL 93

Building a Service Interacting with MySQL 94
Storing XML Data in Relational Tables 97

Using Oracle Database XE 103
Using XML Schemas with Oracle XML DB 104
XML Schema Validation Considerations 111

Defining Parameter‑Driven Operations on Data‑Centric Services 117
Defining XSD Types for Parameters 117
Moving Conditional Logic into the Database 119

Summary 123
Chapter 4: Building Web Service Applications 125

Defining Parameter‑Driven Operations on Fine‑Grained Services 125
Putting Info on Fine-Grained Services in a Separate XML File 127
Building Fine-Grained Services 128
Creating the Coarse-Grained Service 132
Testing the Application 134

Exposing Application Logic as a Web Service 135
Sharing the Same PHP Handler Class Between Services 136
Choosing the Appropriate Level of Service Granularity 139

Securing Services 143
Implementing Message-Level Security 143
Using SOAP Message Headers 150
Using WS-Security for Message-Level Security 157

Summary  161



Table of Contents

[ iii ]

Chapter 5: Composing SOA Solutions with WS‑BPEL 163
Getting Started with WS‑BPEL 163

How it Works 164
The Structure of a WS-BPEL Definition 165
An Example of a WS-BPEL Definition 167

Using ActiveBPEL Engine 174
Taking Advantage of the ActiveBPEL Open-Source Engine Project 176
Your First ActiveBPEL Project 176

Structure of the Business Process Archive (BPR) to  
be Deployed to the ActiveBPEL Engine 177
Designing WSDL for the WS-BPEL Process Service 178
Creating the WSDL Catalog 180
Designing the WS-BPEL Process Definition 180
Creating the Process Deployment Descriptor (PDD) Document 182
Deploying the WS-BPEL Process Service 182
Testing the WS-BPEL Process Service 186

Implementing Service‑Oriented Orchestrations 187
Creating the WSDL Definition Describing the WS-BPEL Process 187

Creating the WSDL Catalog 189
Creating the WS-BPEL Business Definition Containing Conditional Logic 189
Creating the PDD Document 193

Deploying the WS-BPEL Process Service 194
Testing the WS-BPEL Process Service 195

Summary  196
Chapter 6: ActiveBPEL Designer 197

Getting Started with ActiveBPEL Designer 197
Overview of ActiveBPEL Designer's User Interface 198
Your First Project in ActiveBPEL Designer 200

Creating the Project 200
Adding the WSDL Definition 201
Creating the WS-BPEL Process 203
Creating the Deployment Descriptor 207
Creating the Deployment Archive 208
Deploying the WS-BPEL Service to the ActiveBPEL Server  
Shipped with ActiveBPEL Designer 210
Testing the WS-BPEL Process Service 212

Implementing Service‑Oriented Orchestrations with  
ActiveBPEL Designer 212

Creating the Project 213
Adding the WSDL Describing the WS-BPEL Process 213
Adding the WSDL Definitions Describing the Partner Services 214
Creating the Process Definition 214
Creating the Process Deployment Descriptor 223
Deploying the WS-BPEL Process Service 226



Table of Contents

[ iv ]

Testing the WS-BPEL Process Service 227
Summary 228

Chapter 7: WS‑BPEL Process Modeling 229
Concurrency, Synchronization, and  
Asynchronous Communication in WS‑BPEL 229

Parallel Processing versus Sequential Processing 230
Parallel Processing in a Loop 231
Asynchronous Communication 232

Implementing Concurrency with the Flow Container 234
Defining Partner Services 234
Creating the Project 237
Creating the WSDL Describing the WS-BPEL Process 237
Adding Partner WSDL Definitions as Web References 239
Creating the Process Definition 240
Creating the Process Deployment Descriptor 243
Deploying the Process Service 245
Testing the Sequential Version of the WS-BPEL Process 246
Replacing Sequence with Flow 247
Testing the WS-BPEL Process Using a Parallel Flow  
to Handle Partner Services 248

Implementing a Parallel Loop 249
Defining the Partner Service Being Called from within the Loop 249
Creating the Project 251
Creating the WSDL Describing the WS-BPEL Process 252
Adding WSDL Definitions as Web References 255
Creating the Process Definition 255
Creating the PDD Descriptor 258
Deploying the WS-BPEL Process Service 260
Testing the Sequential Form of the forEach Activity 261
Moving to a Parallel forEach 263
Testing the Parallel forEach 264

Building an Asynchronous WS‑BPEL Process Service 265
Creating the Project 265
Creating the WSDL Describing the Asynchronous WS-BPEL Process 266
Creating the WSDL Describing the WS-BPEL Process Calling the 
Asynchronous WS-BPEL Process 267
Creating the Process Definition for the Calling Process 270
Creating the Process Definition for the Called Process 273
Creating the PDD Descriptor for the Calling Process 275
Creating the PDD Descriptor for the Called Process 278



Table of Contents

[ v ]

Deploying the Example 279
Testing the Asynchronous Example 280
If Something Goes Wrong  281

Summary 284
Appendix A: Setting Up Your Work Environment 285

Installing Apache HTTP Server 285
Installing PHP 287

Installing PHP on Windows 287
Installing PHP on Unix-Like Systems 288

Installing MySQL 289
Installing MySQL on Windows 290
Installing MySQL on Linux 291

Installing Oracle Database Express Edition (XE) 291
Installing Oracle Database XE on Windows 292
Installing Oracle Database XE on Linux 293

Installing Apache Tomcat 5.5 293
Installing Apache Tomcat 5.5 on Windows 294
Installing Apache Tomcat 5.5 on Linux 294

Installing the ActiveBPEL Engine 295
Installing ActiveBPEL Designer 296

Index 299





Preface
Web services, while representing independent units of application logic, of course, 
can be used as stand-alone applications fulfilling requests from different service 
requestors. However, the real power of web services lies in the fact that you can 
bind them within service compositions, applying the principles and concepts of 
Service-Oriented Architecture. Ideally, web services should be designed to be loosely 
coupled so that they can potentially be reused in various SOA solutions and used for 
a wide range of service requestors.

When utilized within an SOA, services are part of a business process determining the 
logical order of service activities—logical units of work performed by one or more 
services. Today, the most popular tool for organizing service activities into business 
processes is Web Services Business Process Execution Language (WS-BPEL), a 
language defining an execution format for business processes operating on services. 
While it is not a trivial task to create a business process definition with WS-BPEL 
from scratch, using a graphical WS-BPEL tool can significantly simplify this process.

It's fairly obvious that examples and practice are much more valuable than 
theory when it comes to discussions of how to build applications using specific 
development tools. Unlike many other books on SOA in the market, SOA and  
WS-BPEL: Composing Service-Oriented Solutions with PHP and ActiveBPEL is not 
focused on architecture. Instead, with the help of many examples, it discusses 
practical aspects of SOA and WS-BPEL development, showing you how to apply 
architecture in practice. The examples in this book are presented in a way that 
anyone can understand and apply.

As the name implies, the main idea behind this book is to demonstrate how  
you can implement service-oriented solutions using PHP and ActiveBPEL 
Designer—free software products allowing you to effectively distribute service 
processing between the web/PHP server and ActiveBPEL orchestration engine. 
When it comes to building data-centric services, the book explains how to use 
MySQL or Oracle Database XE, the most popular free databases.



Preface

[ 2 ]

What This Book Covers
Chapter 1, Web Services, SOA, and WS-BPEL Technologies is an introductory chapter 
that provides an overview of the service-oriented technologies used throughout the 
book, explaining how these technologies can be utilized in a complementary way.

Chapter 2, SOAP Servers and Clients with PHP SOAP Extension begins with a simple 
example on how to use the PHP SOAP Extension to build a service requestor and 
service provider, using the request-response message exchange pattern. Then, 
it moves on to a complicated case study showing how the predefined classes of 
the PHP SOAP Extension can be extended when implementing complex message 
exchange patterns.

Chapter 3, Designing Data-Centric Web Services explains how to use the two most 
popular databases today, MySQL and Oracle, when building data-centric Web 
services, and how to move some part of the web service logic into the database to 
benefit from distributing the processing between the web/PHP and database servers.

Chapter 4, Building Web Services Applications shows how to combine a set of  
services into a composition without defining an orchestration process. It also 
provides an example of how message-level security can be implemented in a Web 
services application.

Chapter 5, Composing SOA Solutions with WS-BPEL discusses how to leverage the 
concepts behind service orientation with WS-BPEL, with an emphasis on how to 
implement service-oriented orchestrations. It shows how you can achieve better 
reusability by shredding business process logic into a series of primitive activities.

Chapter 6, ActiveBPEL Designer explains in detail how to compose service-oriented 
solutions with ActiveBPEL Designer—a free, fully-functional, graphical tool for 
WS-BPEL process design, debugging, and simulation.

Chapter 7, WS-BPEL Process Modeling focuses on how to implement parallel 
processing of activities within a WS-BPEL process. It also discusses asynchronous 
communication as an efficient way to call partner services without blocking the 
execution of the calling WS-BPEL process.

Appendix A, Setting Up Your Working Environment walks through the steps needed to 
install and configure the software components required to follow the book examples.



Preface

[ 3 ]

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can 
include other contexts through the use of the include directive."

A block of code will be set as follows: 

<?php 
 //File: SoapClient_typed.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost/WebServices/wsdl/po_imp.wsdl";

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items will be made bold:

<?php
 //File purchaseOrder_typed.php
 require_once 'obj2Dom.php';

 class purchaseOrder {
   function placeOrder($po) {

New terms and important words are introduced in a bold-type font. Words that you 
see on the screen, in menus or dialog boxes for example, appear in our text like this: 
"clicking the Next button moves you to the next screen". 

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book, what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of. 



Preface

[ 4 ]

To send us general feedback, simply drop an email to feedback@packtpub.com, 
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a 
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the Example Code for the 
Book
Visit http://www.packtpub.com/support, and select this book from the list of titles 
to download any example code or extra resources for this book. The files available 
for download will then be displayed. 

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in text or 
code—we would be grateful if you would report this to us. By doing this you can 
save other readers from frustration, and help to improve subsequent versions of 
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering 
the details of your errata. Once your errata are verified, your submission will be 
accepted and the errata added to the list of existing errata. The existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
some aspect of the book, and we will do our best to address it. 



Web Services, SOA, and 
WS-BPEL Technologies

Service-Oriented Architecture (SOA), as an architectural platform, is adopted today 
by many businesses as an efficient means for integrating enterprise applications 
built of Web services—loosely coupled pieces of software that encapsulate their 
logic within a distinct context and can be easily combined into a composite 
solution. Although building applications that enable remote access to resources and 
functionality is not new, doing so according to the principles of service orientation, 
such as loose coupling, represents a relatively new approach to building  
composite solutions.

Nowadays, the most common way to build composite applications based on 
service-oriented principles is to use the Service-Oriented Architecture, Web  
services, and WS-BPEL (Web Services Business Process Execution Language) 
technologies together.

While Web Services is a technology that defines a standard mechanism for exposure 
and consumption of data and application logic over Internet protocols such as HTTP, 
WS-BPEL is an orchestration language that is used to define business processes 
describing Web services' interactions, thus providing a foundation for building SOA 
solutions based on Web services. So, to build an SOA solution utilizing Web services 
with WS-BPEL, you have to perform the following steps:

Build and then publish Web services to be utilized within an SOA solution
Compose the Web services into business flows with WS-BPEL

This chapter gives an overview of the Web services, SOA, and WS-BPEL technologies 
and how these technologies are interrelated. It also contains references to related 
documentation and other chapters of this book, which discuss the topics touched 
upon in this introductory chapter in greater detail. If you already have a basic 
knowledge of the above technologies, feel free to skip this chapter.

•

•



Web Services, SOA, and WS-BPEL Technologies

[ 6 ]

Web Services
The Web Services technology provides an efficient way to share application logic 
across multiple machines running various operating systems and using different 
development environments. To achieve this, Web Services utilizes the SOAP, WSDL, 
XML Schema, and some other XML-based technologies, providing a standards-based 
approach to overcoming the platform and language differences.

The following sections give you an overview of these technologies, explaining how 
they fit into the big picture.

Communicating via SOAP
In a nutshell, SOAP is a messaging protocol used to transfer application data in XML 
format over a transport protocol, such as HTTP. Nowadays, Web service applications 
employ SOAP as a standard protocol for exchanging information in a decentralized, 
distributed manner.

For detailed information about SOAP, you can refer the W3C SOAP 
Recommendation documents. Links to these documents can be found at 
http://www.w3.org/TR/soap/.

SOAP-based interfaces interact with each other by means of SOAP messages that are 
specially formatted XML documents used to carry data and metadata. The general 
structure of a SOAP message is shown below:

<SOAP-ENV:Envelope ...>
   <SOAP_ENV:Header>
   ...
   ...
   </SOAP_ENV:Header>
   <SOAP_ENV:Body>
   ...
   ...
   </SOAP_ENV:Body>
</SOAP-ENV:Envelope ...>

As you can see in the previous code snippet, an XML document representing a SOAP 
message consists of the following elements:

An Envelope element wrapping the entire message.
A Header element, which is actually optional and may contain subelements 
carrying metadata associated with the message.

•

•



Chapter 1

[ 7 ]

A Body element, which contains the payload of the message. This element 
may contain an optional fault element, which describes an error if it occurs.

While SOAP messages may be used in various message exchange scenarios, the most 
popular one is the request/response pattern, which is normally used when calling a 
remote function exposed by a Web service. Diagrammatically, the request/response 
scenario might look like the following figure:

Service requestor Service providerSOAP request
message

SOAP response
message

business
logic

business
logic

message
processing

message
processing

As you can see in the above figure, both the service requestor and service provider 
include the message processing logic required to send/receive and process SOAP 
messages involved in the request/response scenario used here. If the service 
requestor is calling a remote function exposed by the service provider, the request 
message is supposed to carry the values of the parameters passed to the exposed 
function. After the request message is received, the service provider processes it, 
extracting the payload (in this case, the parameters passed to the function) from the 
envelope. Then, the requested function is invoked, utilizing the parameters specified. 
Once the function result is ready, the service provider wraps this result in a SOAP 
envelope and sends it back to the service requestor in the response message. The 
service requestor in turn extracts the function result from the response message and 
sends it to the calling code.

In Chapter 2, you will learn how to implement service providers and 
service requestors with PHP using the PHP SOAP extension.

Now that you have a rough idea of how the remote procedure call (RPC) scenario 
works with SOAP, let's look at an example.

Suppose you have a Web service that exposes the getOrderStatus function, taking 
the number of a purchase order as the parameter and returning the status of that 
order as the result.

•



Web Services, SOA, and WS-BPEL Technologies

[ 8 ]

It is important to understand that the getOrderStatus function 
discussed in this example may be implemented in any programming 
language and run on any platform, provided they allow you to expose 
this function through SOAP. The fact is that Web services hide the details 
of underlying logic from their consumers, publicly exposing only their 
interfaces. In the following chapters, you will see a few examples of 
implementing service underlying logic with PHP.

The following figure depicts a scenario where a service requestor invokes the 
getOrderStatus function exposed as a Web service:

Service provider
SOAP request

message
US-247860

Shipped
SOAP response

message

getOrderStatus()
{

}

message
processing

The general steps performed at run time are the following:

1. The service requestor sends a SOAP request message containing the number 
of a purchase order to the service provider.

2. The service provider processes the request message, extracting the PO 
number from the SOAP envelope.

3. The service provider invokes the getOrderStatus underlying function, 
passing the extracted PO number as the parameter.

4. The service provider encapsulates the result produced by the 
getOrderStatus function into a SOAP response message.

5. The service provider sends the SOAP response message back to  
the requestor.

In this example, the SOAP request message sent to the Web service provider might 
look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">



Chapter 1

[ 9 ]

 <SOAP-ENV:Body>
  <SOAP-ENV:getOrderStatus>
   <body>US-247860</body>

  </SOAP-ENV:getOrderStatus>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, the body of the above SOAP message contains the purchase order 
number passed as the parameter to the getOrderStatus function. The response to 
this message might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
  <SOAP-ENV:getOrderStatusResponse>
   <body>Shipped</body>

  </SOAP-ENV:getOrderStatusResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The getOrderStatus function may be designed so that it throws a SOAP exception 
when something goes wrong. For example, an exception may be thrown upon a 
failure to connect to the database that contains information about the purchase 
orders placed. A fault message generated by the Web service exposing the 
getOrderStatus function might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
  <SOAP-ENV:Fault>

   <faultcode>SOAP-ENV:Server</faultcode>

   <faultstring>Failed to determine the order status</faultstring>

  </SOAP-ENV:Fault>

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, the fault section resides within the body section of the message,  
and includes two subelements detailing the fault that occurred, namely: faultcode  
and faultstring.



Web Services, SOA, and WS-BPEL Technologies

[ 10 ]

Binding with WSDL
Looking through the SOAP request message discussed in the preceding section, 
you may notice that it carries only the parameter for the getOrderStatus function 
exposed by the service. The message doesn't actually contain any information about 
how to get to the service, what remote function is to be invoked, and what that 
function is to return. Obviously, there must be another document that describes the 
Web service, providing all this information to consumers of the service.

Web Services Description Language (WSDL) provides a mechanism to describe 
Web services, making them available for external consumption. A WSDL service 
description is an XML document that defines how to communicate with the Web 
service, describing the way in which that Web service has to be consumed.

For detailed information about WSDL, you can refer to the Web  
Services Description Language (WSDL) W3C Note available at  
http://www.w3.org/TR/wsdl.

Actually, a WSDL service description document consists of two parts: logical and 
physical. The logical part of a WSDL describes the abstract characteristics of a Web 
service and includes the following sections:

types is an optional section in which you can define types for the data being 
carried, normally using the XSD type system.
message contains one or more logical parts representing input and output 
parameters being used with an operation.
operation describes an action performed by the service, specifying input and 
output messages being used as parameters of the operation.
portType establishes an abstract set of operations supported by the service.

The physical part of a WSDL describes the concrete characteristics of a Web service 
and includes the following sections:

binding associates a concrete protocol and message format specifications to 
operations and messages defined within a particular port type established in 
the logical part of the document.
port establishes an endpoint by associating a binding with a concrete 
network address.
service contains one or more port elements representing related endpoints.

Turning back to the example discussed in the preceding section, the WSDL 
description document that describes the Web service exposing the getOrderStatus 
function might look like the following:

•

•

•

•

•

•

•



Chapter 1

[ 11 ]

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
        targetNamespace="http://localhost/WebServices/ch1/poService">
    <message name="getOrderStatusInput">
        <part name="body" element="xsd:string"/>
    </message>
    <message name="getOrderStatusOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poServicePortType">
        <operation name="getOrderStatus">
           <input message="tns:getOrderStatusInput"/>
           <output message="tns:getOrderStatusOutput"/>
        </operation>
    </portType>
    <binding name="poServiceBinding" type="tns:poServicePortType">
        <soap:binding style="rpc" 
               transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="getOrderStatus">
           <soap:operation 
              soapAction=
                "http://localhost/WebServices/ch1/getOrderStatus"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poService">
        <port name="poServicePort" binding="tns:poServiceBinding">
           <soap:address 
              location=
                "http://localhost/WebServices/ch1/SOAPserver.php"/>
        </port>
    </service>
</definitions>



Web Services, SOA, and WS-BPEL Technologies

[ 12 ]

Let's go through this document in detail to understand the format of a WSDL 
description document.

The definitions element is the root in every WSDL document, wrapping all the 
WSDL definitions used in the document. Also, it houses the namespaces used within 
the document:

<definitions name ="poService"
           xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
           xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
           xmlns:xsd="http://www.w3.org/2001/XMLSchema"
           xmlns="http://schemas.xmlsoap.org/wsdl/"  
              targetNamespace=
                  "http://localhost/WebServices/ch1/poService">

Next, you define the abstract definitions for the messages to be used for exchanging 
data. Here is the abstract definition for the message that will be used for carrying the 
input parameter for the getOrderStatus function:

    <message name="getOrderStatusInput">
        <part name="body" element="xsd:string"/>
    </message>

Here is the abstract definition for the message to be used for sending back the result 
of the getOrderStatus function:

    <message name="getOrderStatusOutput">
        <part name="body" element="xsd:string"/>
    </message>

Once you have messages defined, you can group them into operations, which in turn 
are grouped into a service interface. Here is the portType section representing an 
abstract view of the service interface, which, in this example, supports only  
one operation:

    <portType name="poServicePortType">
        <operation name="getOrderStatus">
           <input message="tns:getOrderStatusInput"/>
           <output message="tns:getOrderStatusOutput"/>
        </operation>
    </portType>

Now that you have an abstract service interface defined, you can go ahead and 
specify physical details of the data exchange. In a binding section, you map the 
abstract service interface defined within a portType section earlier into a concrete 
format, specifying the concrete protocol for data transmission and message 



Chapter 1

[ 13 ]

format specifications. In this example, the binding section is used to deploy the 
getOrderStatus operation—the only operation supported by the service:

    <binding name="poServiceBinding" type="tns:poServicePortType">
        <soap:binding style="rpc" 

          transport="http://schemas.xmlsoap.org/soap/http"/>

        <operation name="getOrderStatus">
           <soap:operation soapAction=
              "http://localhost/WebServices/ch1/getOrderStatus"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>

In the above snippet, you define a SOAP binding of the request-response RPC 
operation over HTTP and specify the concrete URI indicating the purpose of the 
SOAP HTTP request.

Finally, you use the service element hosting the port element to specify the physical 
address of the service.

    <service name="poService">
        <port name="poServicePort" binding="tns:poServiceBinding">
           <soap:address location= 
               "http://localhost/WebServices/ch1/SOAPServer.php"/>
        </port>
    </service>

In the above example, the getOrderStatus function exposed as a Web service takes 
only one input parameter. But what if you need to pass more than one parameter to 
a Web service? Suppose you modify the getOrderStatus function so that it takes 
one more parameter, say, poDate specifying the date an order was placed. If so, you 
have to include a new part element to the message construct describing the logical 
abstract content of an input message in the WSDL document:

<definitions name ="poService"
            xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
            xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
            xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns="http://schemas.xmlsoap.org/wsdl/" 
            targetNamespace= 
                         "http://localhost/WebServices/ch1/poService">



Web Services, SOA, and WS-BPEL Technologies

[ 14 ]

  <message name="getOrderStatusInput">
        <part name="poNumber" element="xsd:string"/>

        <part name="poDate" element="xsd:string"/>

    </message>
    <message name="getOrderStatusOutput">
        <part name="body" element="xsd:string"/>
    </message>

...

</definitions>

Now, a SOAP message issued by a service requestor when calling the 
getOrderStatus remote function would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
  <SOAP-ENV:getOrderStatus>
   <poNumber>US-247860</poNumber>

   <poDate>21-jan-07</poDate>

  </SOAP-ENV:getOrderStatus>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Using XML Schema Types within WSDL 
Definitions
As you might notice, the WSDL document discussed in the preceding section doesn't 
contain the types construct. It is OK in this particular example because you don't 
actually need any custom XML Schema Definition (XSD) types when defining 
message parts in the WSDL document. Instead, you use the native XSD schema  
type string.

However, in some situations you may find it useful to utilize custom XML Schema 
types within a WSDL document. You can define custom XSD types within the types 
construct of a WSDL document and then reference them within message elements. 
For example, you might define a complex XSD type in the types section of the 
WSDL document discussed in the previous section and then reference this XSD type 
when creating the abstract definition of the output message:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 



Chapter 1

[ 15 ]

             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd1="http://localhost/WebServices/schema/"

             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             targetNamespace= 
                           "http://localhost/WebServices/ch1/po.wsdl">
   <types>

    <xsd:schema 

      targetNamespace="http://localhost/WebServices/schema/">

     <xsd:element name="poInfo">

        <xsd:complexType>

         <xsd:sequence>

           <xsd:element name="pono" type="xsd:string" />

           <xsd:element name="shippingDate" type="xsd:string" />

           <xsd:element name="status" type="xsd:string" />

         </xsd:sequence>

        </xsd:complexType>

     </xsd:element>

    </xsd:schema>

   </types>

  <message name="getOrderStatusInput">
        <part name="poNumber" element="xsd:string"/>
        <part name="poDate" element="xsd:string"/>
    </message>
    <message name="getOrderStatusOutput">
        <part name="poStatus" element="xsd1:poInfo"/>

    </message>

...

</definitions>

In this example, a response message sent by the service to a service requestor might 
look as follows:

<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
  <SOAP-ENV:getOrderStatusResponse>
   <poStatus>

    <pono>US-247860</pono>

    <shippingDate>21-jan-07</shippingDate>

    <status>Shipped</status>

   </poStatus>



Web Services, SOA, and WS-BPEL Technologies

[ 16 ]

  </SOAP-ENV:getOrderStatusResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

While this example shows how to define custom XML Schema types within the 
types construct of a WSDL document, you can achieve better reusability by putting 
XSD type definitions in a single XSD document.

Continuing with this example, you might remove the contents of the types construct 
into a separate file so that it's available, say, at http://localhost/WebServices/
schema/po.xsd. The contents of this file should look as follows:

<?xml version="1.0"?>
 <schema targetNamespace="http://localhost/WebServices/schema/"
                          xmlns="http://www.w3.org/2001/XMLSchema">
   <element name="poInfo">
      <complexType>
       <sequence>
         <element name="pono" type="string" />
         <element name="shippingDate" type="string" />
         <element name="status" type="string" />
       </sequence>
      </complexType>
     </element>
 </schema>
</schema>

With that done, you can make use of the import statement in the WSDL document 
in order to associate the namespace representing the custom XSD schema with the 
location of the above document, thus making the contents of the schema available 
within the WSDL document:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd1="http://localhost/WebServices/schema/"

             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             targetNamespace= 
                           "http://localhost/WebServices/ch1/po.wsdl">
   <import namespace="http://localhost/WebServices/schema/"

           location="http://localhost/WebServices/schema/po.xsd"/>

  <message name="getOrderStatusInput">
        <part name="poNumber" element="xsd:string"/>



Chapter 1

[ 17 ]

        <part name="poDate" element="xsd:string"/>
    </message>
    <message name="getOrderStatusOutput">
        <part name="poStatus" element="xsd1:poInfo"/>
    </message>

...

</definitions>

As you no doubt have realized, having XSD type definitions in separate 
files allows you to build more flexible, reusable, and modular solutions. 
In Chapter 3, you will see how the XSD documents referenced in WSDL 
can be then reused by an Oracle database holding and processing SOAP 
messages data.

Service‑Oriented Architecture
While using Web services allows you to achieve interoperability across applications 
built on different platforms with different languages, applying service-oriented 
concepts and principles when building applications based on using Web services can 
help you create robust, standards-based, interoperable SOA solutions.

It is interesting to note that Service-Oriented Architecture, while 
providing architectural foundation for building service-oriented solutions, 
is not tied to a concrete technology or technology set. In contrast, it may 
be implemented with various technologies, such as DCOM, CORBA, or 
Web Services. However, only the Web Services technology set is currently 
the primary way to put SOA into practice.

Basic Principles of Service Orientation
As mentioned, to build an SOA solution based on Web services, you need to 
follow the service-orientation principles when pulling the services together into an 
application. Here are some of the key principles of service-orientation you need to 
keep in mind when designing SOA solutions:

Loose coupling represents a relationship that allows the underlying logic 
of a service to change with minimal or no impact on the other services 
utilized within the same SOA. Loose coupling is the key principle of service 
orientation. Implementing services as loosely coupled pieces of software 
allows you to keep up with the other key principles of service orientation, 
such as service reusability, service autonomy, and service statelessness.

•



Web Services, SOA, and WS-BPEL Technologies

[ 18 ]

Service contract represents service descriptions and other documents 
describing how a service can be programmatically accessed. In the Binding 
with WSDL section earlier in this chapter, you saw an example of a WSDL 
service description document that describes a service, defining the contract 
for that service.
Abstraction of underlying logic means that a service publicly exposes only 
logic described in the service contract, hiding the implementation details 
from service consumers. This means that services interact with each other 
only via their public interfaces. As you learned in the preceding example, 
the WSDL descriptor describing a service actually provides the interface for 
service consumers.
Autonomy means that services control only the logic they encapsulate. 
Dividing application logic into a set of autonomous services allows you 
to build flexible SOA solutions, achieving loose coupling, reusability, and 
composability.
Reusability in service-orientation is achieved by distributing application 
logic among services so that each service can be potentially used by more 
than one service requestor. Building reusable services supports the principle 
of composability.
Composability represents the ability of services to be grouped into 
composite services that coordinate an exchange of data between services 
being aggregated. For example, using an orchestration language, such 
as WS-BPEL, allows you to compose fine-grained services into more 
coarse-grained ones. WS-BPEL is discussed in the WS-BPEL section later in 
this chapter.
Statelessness means that services don't maintain their state specific to an 
activity. Building stateless services encourage loose coupling, reusability,  
and composability.
Interoperability between services is easily achieved as long as the 
services interact with each other through interfaces that are platform- and 
implementation-independent.
Discoverability refers to standard mechanisms that make it possible 
for service descriptions describing services to be discovered by service 
requestors. Universal Description, Discovery, and Integration (UDDI) 
specification provides such a mechanism, which allows for publishing 
service descriptions documents in an XML-based registry, thus making them 
available for public use.

•

•

•

•

•

•

•

•



Chapter 1

[ 19 ]

As you can see, most of these principles are tightly related. For example, if you bear 
the autonomy principle in mind when dividing application logic into services to be 
utilized within an SOA, you will have reusable, composable, and loosely coupled 
pieces of software that can be reused in future projects.

On the other hand, ignoring at least one principle of service-orientation makes it 
very hard to keep up with the others. For example, if you ignore the principle of 
statelessness when designing services, you will end up with less reusable and less 
composable building blocks for your SOA solutions.

Applying SOA Principles 
Now that you know the key principles of service orientation, it's time to look at 
how these principles can be applied when designing SOA solutions. This section 
briefly discusses process of designing a service-oriented application, applying the 
service-orientation principles outlined in the preceding section.

The service-oriented analysis phase is the first one in the process of designing a 
service-oriented application. Regardless of whether you are going to build an SOA 
solution upon the existing application logic or build it from scratch, you have to 
consider the following questions:

Which services are required to satisfy business requirements?
How should application logic be divided between services?
How should services be composed to implement the required SOA solution?

The easiest way to understand what has to be done at this stage is by taking up  
an example.

Imagine you run an online magazine that specializes in publishing technical articles 
submitted by technical people working on a contract basis. When a potential author 
submits an article proposal, you look through it and then either accept it or reject 
it, depending on your current editorial needs and some other things. Here are the 
general steps you perform upon accepting a proposal:

1. Save the proposal in the database.
2. Save information about the author (for new authors only).
3. Notify the author about accepting the proposal.
4. Issue a PO.
5. Send the PO to the author.

Now, suppose you want to design an SOA solution automating this process.

•

•

•



Web Services, SOA, and WS-BPEL Technologies

[ 20 ]

As mentioned earlier, the first thing you have to determine is which services have to 
be built. Keeping in mind the service-orientation principles outlined in the preceding 
section, you might create the following services to be then used as building blocks in 
the SOA solution being designed:

Proposal service
Author service
Purchase order service
Notification service

As you can see, the first three services in the above list are entity-centric, representing 
corresponding business entities.

There are two main approaches for designing services representing 
business logic: entity-centric and task-centric. While a task-centric service 
is tightly bound to a specific task and so has a poor chance of reuse, an 
entity-centric service represents a specific business entity, standing a good 
chance of being reused in solutions dealing with the same business entity. 
Both the approaches are discussed in more detail later in Chapter 7, which 
focuses on issues related to service-oriented business modeling.

An entity-centric service usually provides a full set of operations required to 
manipulate an instance of a specific business entity. For example, the Proposal 
service might support the following set of operations to fulfill processing 
requirements:

saveProposal

getProposalById

getProposalByTitle

getProposalsByAuthor

getProposalsByTopic

Assuming that submitted proposal documents have a certain structure (say, each 
proposal includes the Topic and Outline sections), the above list of operations 
supported by the Proposal service might need to be expanded to include some 
operations responsible for retrieving specific parts of a proposal.

However, it is important to realize that including new operations impacts on the  
service interface, making you edit the WSDL document describing the service 
each time you add a new operation. One way to work around this issue is to use 
parameter-driven operations that invoke the required piece of underlying logic 
depending on the arguments passed in. In this case, the function encapsulating the 
underlying logic of a parameter-driven operation delegates the work to some other 
function where the real work is done.

•
•
•
•

•

•

•

•

•



Chapter 1

[ 21 ]

For example, you might expose a single operation for getting the contents of a 
proposal, passing parameters identifying whether to find the proposal document by 
ID or title and which part of the proposal must be returned. In this case, a request 
message issued by a requestor to invoke the getProposal operation might look  
as follows:

<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
  <SOAP-ENV:getProposal>
    <IdType>title</IdType>

    <IdValue>Building services with PHP and Oracle XML DB</IdValue>

    <DocPart>all</DocPart>

  </SOAP-ENV:getProposal>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you no doubt have guessed, the parameters used in this example tell the service 
provider to return the entire document representing the proposal whose title is 
"Building services with PHP and Oracle XML DB". If you recall from the example 
discussed in the Binding with WSDL section, the message construct describing the 
logical abstract content of an input or output message that will be used with an RPC 
operation contains part elements to define parameters belonging to the operation. 
So, the message construct describing the above input message in the WSDL 
document might look as follows:

<definitions ...>

...

  <message name="getProposalInput">
        <part name="IdType" element="xsd:string"/>

        <part name="IdValue" element="xsd:string"/>

        <part name="DocPart" element="xsd:string"/>

    </message>

...

</definitions>

When the getProposal operation is executed, the input parameters arriving with 
the request message are passed to the underlying controller method, which in turn 
invokes an appropriate getProposal* underlying method, depending on the values 
of parameters passed in.



Web Services, SOA, and WS-BPEL Technologies

[ 22 ]

This approach allows you to cut down the number of operations exposed by a 
service while still providing the required functionality. Now, you may add a new 
method to the underlying layer of the service (normally, this layer is represented by 
a class) and make that method available for the service requestors without having to 
edit the WSDL document defining the service interface.

In Chapter 2, you will learn how to implement this approach when 
encapsulating the underlying logic of a service in a PHP class. When 
continuing with this discussion in Chapter 3, you will see an example  
of how you can improve the extensibility of parameter-driven  
service operations by passing operation parameters as XML. Then, 
Chapter 4 explains in detail how to build services providing generic, 
parameter-driven operations upon more fine-grained services, rather than 
directly upon classes or individual functions encapsulating entity-specific 
logic. With this approach, you actually employ two service layers to 
implement application logic manipulating business entities. The first 
layer includes the services that provide nothing but contact points to the 
specific operations supported by the services belonging to the second, 
underlying layer, allowing you to achieve a high level of loose coupling, 
composability, and reusability.

Now, assuming that you apply the above approach to all the business services 
mentioned earlier in this section, you might significantly cut down on the number of 
operations exposed by these services, publicly exposing only generic operations as 
shown in the following figure:

Proposal
service

Author
service

Purchase order
service

Notification
service

addProposal
getProposal
getProposalsList

addProfile
updateProfile
getProfile

addOrder
getOrder
getOrderStatus
printOrder

sendMessage

As you can see, each service depicted in the figure, except for the Notification 
service, supports more than one operation. This means that unlike the WSDL 
document discussed in the Binding with WSDL section, the WSDL documents 
describing the services discussed here will contain multi-operation portType and 
binding sections. 



Chapter 1

[ 23 ]

For example, the WSDL document describing the Proposal service might look like 
the following:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="proposalService"
       xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
       xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
       xmlns:xsd1="http://localhost/WebServices/schema/"
       xmlns:xsd="http://www.w3.org/2001/XMLSchema"
       xmlns="http://schemas.xmlsoap.org/wsdl/" 
  targetNamespace="http://localhost/WebServices/ch1/proposal.wsdl">
   <import namespace="http://localhost/WebServices/schema/"
         location="http://localhost/WebServices/schema/proposal.xsd"/>
    <message name="addProposalInput">
        <part name="body" element="xsd1:proposalEntireDoc"/>
    </message>
    <message name="addProposalOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <message name="getProposalInput">
        <part name="body" element="xsd1:proposalDetails"/>
    </message>
    <message name="getProposalOutput">
        <part name="body" element="xsd1:proposalDoc"/>
    </message>
    <message name="getProposalsListInput">
        <part name="body" element="xsd1:proposalsDetails"/>
    </message>
    <message name="getProposalsListOutput">
        <part name="body" element="xsd1:proposalsList"/>
    </message>
    <portType name="proposalServicePortType">
        <operation name="addProposal">

           <input message="tns:addProposalInput"/>

           <output message="tns:addProposalOutput"/>

        </operation>

        <operation name="getProposal">

           <input message="tns:getProposalInput"/>

           <output message="tns:getProposalOutput"/>

        </operation>

        <operation name="getOrderStatus">

           <input message="tns:getProposalListInput"/>

           <output message="tns:getProposalListOutput"/>



Web Services, SOA, and WS-BPEL Technologies

[ 24 ]

        </operation>
    </portType>
    <binding name="proposalServiceBinding" 
      type="tns:proposalServicePortType">
        <soap:binding style="document" 
           transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="addProposal">
           <soap:operation 
          soapAction="http://localhost/WebServices/ch1/addProposal"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
        <operation name="getProposal">
           <soap:operation 
          soapAction="http://localhost/WebServices/ch1/getProposal"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
        <operation name="getProposalLists">
           <soap:operation 
     soapAction="http://localhost/WebServices/ch1/getProposalLists"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="proposalService">
        <port name="proposalServicePort" 
          binding="tns:proposalServiceBinding">
           <soap:address 
         location="http://localhost/WebServices/ch1/SOAPServer.php"/>
        </port>
    </service>
</definitions>



Chapter 1

[ 25 ]

Note that this WSDL document assumes that the data  
type definitions used when defining the messages involved  
are described in a separate XSD document located at  
http://localhost/WebServices/schema/proposal.xsd.

As you can see, in this WSDL document the portType construct contains three 
operation elements, each of which represents an abstract definition of an operation 
supported by the Proposal service. The binding information for each of these 
operations is then specified with a corresponding operation element defined within 
the binding construct.

SOA Compositions
Once you have created all the services needed to automate the process of submitting 
proposals, it's time to think about how to put them into action.

Actually, there are several ways in which services can be organized to compose an 
SOA solution. For example, you might create a composite service as a PHP script 
exposed as a Web service, and which programmatically invokes other services as 
necessary. However, the most common way to build an SOA composition is by 
using WS-BPEL, an orchestration language that allows you to create orchestrations—
composite, controller services defining how the services being consumed will 
interoperate to get the job done.

Orchestration
An orchestration assembles services into an executable business process that is to be 
executed by an orchestration engine. Schematically, an orchestration might look like 
the following figure:

Controller
service

Proposal
service

Author
service

Purchase
order

service

Notification
service



Web Services, SOA, and WS-BPEL Technologies

[ 26 ]

As you can see, the previous figure illustrates an assembly of services coordinated 
by the logic encapsulated in the controller service. This controller service may be a 
WS-BPEL business process, which when executed against the orchestration engine 
completes a certain business task. In this particular example, the controller service 
may be organized so that it completes the steps outlined at the beginning of the 
preceding section Applying SOA Principles.

Built with WS-BPEL orchestration language, a controller service, like any 
other service, should have a corresponding WSDL document describing 
the service to its consumers. Building WSDL definitions for composite 
services built with WS-BPEL is discussed in the WSDL Definitions for 
Composite Services section later in this chapter.

You can create an orchestration to be used as a service within another, larger 
orchestration. For example, the orchestration depicted in the previous figure  
might be a part of an WS-BPEL orchestration automating the entire editorial 
process—from accepting the proposal to publishing the article.

Choreography
The Web Services Choreography specification along with its corresponding Web 
Services Choreography Description Language (WS-CDL) provides another way to 
building SOA compositions. While WS-BPEL is used to orchestrate services into 
composite solutions usually expressing organization-specific business process flows, 
WS-CDL allows you to describe peer-to-peer relationships between Web services 
and/or other participants within or across trust boundaries.

Unlike an orchestration, choreography does not imply a centralized control 
mechanism, assuming control is shared between the interacting participants. What 
this means is that an orchestration represents an executable process to be executed by 
an orchestration engine in one place, whereas choreography in essence represents a 
description of how to distribute control between the collaborating participants, using 
no single engine to get the job done.

To define choreography, you create a WS-CDL choreography description document 
that will serve as the contract between the interacting participants. Specifically, a 
WS-CDL document describes the message exchanges between the collaborating 
participants, defining how these participants must be used together to achieve 
a common business goal. For example, there may be a choreography enabling 
collaboration between an orchestration, a controller service representing a WS-BPEL 
process, and a client service interacting with that controller service. 



Chapter 1

[ 27 ]

Schematically, this might look like the following figure:

Controller
service WS-BPEL

orchestration

WS-CDL
Description
Document

WS-CDL
choreography

Orchestration layer

Choreography layer

Business services layer

Proposal
service

Author
service

Purchase
order

service

Notification
service

Client
service

In the scenario depicted in the figure, the choreography layer is used to specify the 
peer-to-peer collaborations of two services. In particular, the WS-CDL choreography 
document describes message exchanges between the composite service discussed in 
the preceding section and one of its consumers.

A full discussion of the Choreography specification and its corresponding 
WS-CDL language is outside the scope of this book. To learn more about 
these subjects, you can refer to the W3C document on WS-CDL, which 
can be found at http://www.w3.org/TR/ws-cdl-10/.



Web Services, SOA, and WS-BPEL Technologies

[ 28 ]

WS‑BPEL
As mentioned earlier, WS-BPEL is an orchestration language used to describe 
execution logic of Web services applications by defining their control flows and 
providing a way for partner services to share a common context. To clarify, partner 
services are those that interact with the WS-BPEL process.

It is interesting to note that although WS-BPEL is currently the most 
popular executable business process language, it is not the only way to 
define execution logic of an application based on Web services. There are 
some other specifications, such as XLANG, WSFL, XPDL, and BPML, each 
of which might be used as an alternative to WS-BPEL.

WS-BPEL is based on several specifications, such as SOAP, WSDL, and XML Schema, 
where WSDL perhaps is the most important one. WSDL is what makes a service 
usable within composite services based on WS-BPEL. WS-BPEL allows you to define 
business processes interacting with cooperating services through WSDL descriptions. 
This will be explained in detail in the WSDL Definitions for Composite Services  
sub-section later in this section.

WS‑BPEL Processes
With WS-BPEL, you build a business process by integrating a collection of Web 
services into a business process flow. A WS-BPEL business process specifies how  
to coordinate the interactions between an instance of that process and its  
partner services. 



Chapter 1

[ 29 ]

The following figure illustrates an example of a workflow diagram representing a 
WS-BPEL business process:

START

Receive

Proposal

Save

Proposal

Save

Author’s profile

No

Author’s

Profile exist?

Yes

Send

Notification

Issue

PO

Send

PO to author

STOP



Web Services, SOA, and WS-BPEL Technologies

[ 30 ]

As you can see, the WS-BPEL process depicted in the figure integrates the services 
required to complete the steps performed after accepting a proposal into an  
end-to-end process, as outlined at the beginning of the Applying SOA Principles 
section earlier. In this particular example, the process integrates four Web services, 
as depicted in the figure shown in the Orchestration section earlier. As you will see in 
the next section, a WS-BPEL process connects to a Web service through a partner link 
defined in the WSDL document.

Apart from the ability to invoke multiple services, a WS-BPEL process may 
manipulate XML data and perform parallel execution, conditional branching, and 
looping to control the flow of the process. For example, in this process you use a 
switch activity, setting up the two branches. If the proposal being processed has 
been submitted by a new author, the process will call the Author service's operation 
responsible for saving the information about the author in the database. Otherwise, 
this step is omitted.

For simplicity's sake, this section illustrates only a workflow diagram of 
the WS-BPEL process, rather than executable BPEL code of that process. 
You will have plenty of opportunities to get your hands dirty with  
WS-BPEL code in Chapter 5. Then, in Chapter 6 you will learn how to 
design WS-BPEL processes with ActiveBPEL Designer.

WSDL Definitions for Composite Services
In the Binding with WSDL section earlier in this chapter, you learned how to use 
WSDL, providing a way for a service consumer to get knowledge of a service 
provider. Actually, WSDL plays a major role in SOA development. As mentioned, 
even a WS-BPEL orchestration can be associated with WSDL definitions, thus 
making it possible to treat that orchestration as a service itself that can be invoked by 
another service or can be a part of another orchestration or choreography.

Being a service itself, a WS-BPEL process should have a corresponding WSDL 
document, making it possible for client services to invoke the process. For example, 
the WS-BPEL process depicted in the previous figure might be associated with the 
following WSDL definition:

<?xml version="1.0" encoding="utf-8"?>
<definitions name="proposalProcessingService" 
     xmlns="http://schemas.xmlsoap.org/wsdl/"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
     xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     xmlns:xsd1="http://localhost/WebServices/schema/"



Chapter 1

[ 31 ]

     xmlns:plink=

                "http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

     targetNamespace=
              "http://localhost/WebServices/ch1/proposalProcessing/">
   <types>
    <xsd:schema targetNamespace=
          "http://localhost/WebServices/ch1/proposalProcessing.wsdl">
    <xsd:import namespace="http://localhost/WebServices/schema/" 
      schemaLocation="http://localhost/WebServices/schema/ 
                                            propProc.xsd"/>
    </xsd:schema>
   </types>
   <message name="receiveProposalInput">
        <part name="body" element="xsd1:proposalDocType"/>
   </message>
   <message name="receiveProposalOutput">
        <part name="body" element="xsd:string"/>
   </message>
   <portType name="proposalProcessingServicePortType">
       <operation name="receiveProposal">
          <input message="tns:receiveProposalInput"/>
          <output message="tns:receiveProposalOutput"/>
       </operation>
   </portType>
   <plink:partnerLinkType name="proposalProcessingService">

         <plink:role name="proposalProcessingServiceRole">

           <portType="tns:proposalProcessingServicePortType"/>

        </plink:role>

   </plink:partnerLinkType>

</definitions>

As you can see, this WSDL document doesn't contain binding or service elements. 
The fact is that a WSDL document of a WS-BPEL process service contains only the 
abstract definition of the service and partnerLinkType sections that represent the 
interaction between the process service and its client services. In this particular 
example, the WSDL definition contains only one partnerLinkType section, 
supporting one operation used by a client to initiate the process.



Web Services, SOA, and WS-BPEL Technologies

[ 32 ]

A partnerLinkType section defines up to two roles, each of which 
in turn is associated with a portType defined within the WSDL 
document earlier. WS-BPEL uses the partner links mechanism to define 
a relationship between a WS-BPEL process and the involved parties. As 
you will learn later in this section, a WS-BPEL process definition contains 
partnerLink elements to specify the interactions between a WS-BPEL 
process and its clients and partners. Each partnerLink in a WS-BPEL 
process definition document is associated with a partnerLinkType 
defined in a corresponding WSDL document. Schematically, this looks 
like the following figure (shown overleaf).

Once you have created the WSDL definition for a process service, make sure  
to modify WSDL documents of the services that will be invoked during the  
process execution as partner services. To enable a service to be part of a  
WS-BPEL orchestration, you might want to add a partnerLinkType element to the 
corresponding WSDL document. For example, to enable the Notification service to 
participate in the orchestration depicted in the previous figure, you would need to 
create the following WSDL document:

<?xml version="1.0" encoding="utf-8"?>
<definitions name="notificationService" 
     xmlns="http://schemas.xmlsoap.org/wsdl/"
     xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
     xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     xmlns:plink= 
    "http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

     targetNamespace="http://localhost/WebServices/ch1/notification/">
   <message name="sendMessageInput">
        <part name="body" element="xsd:string"/>
   </message>
   <message name="sendMessageOutput">
        <part name="body" element="xsd:string"/>
   </message>
   <portType name="notificationServicePortType">
       <operation name="sendMessage">
          <input message="tns:sendMessageInput"/>
          <output message="tns:sendMessageOutput"/>
       </operation>
   </portType>
   <binding name="notificationServiceBinding" 
                    type="tns:notificationServicePortType">
       <soap:binding style="document" 
                 transport="http://schemas.xmlsoap.org/soap/http"/>



Chapter 1

[ 33 ]

      <operation name="sendMessage">
         <soap:operation soapAction= 
                 "http://localhost/WebServices/ch1/sendMessage"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
       </operation>
   </binding>
   <service name="notificationService">
        <port name="notificationServicePort"  
                  binding="tns:notificationServiceBinding">
           <soap:address 
         location="http://localhost/WebServices/ch1/SOAPserver.php"/>
        </port>
   </service>
   <plink:partnerLinkType name="notificationService">

         <plink:role name="notificationServiceRole">

           <portType="tns:notificationServicePortType"/>

        </plink:role>

   </plink:partnerLinkType>

</definitions>

Note the partnerLinkType block, which is highlighted. By including this section at 
the end of the WSDL document describing the service, you enable that service as a 
partner link, making it possible for it to be part of an orchestration.

As mentioned, WS-BPEL uses the partner links mechanism to model the services 
interacting within the business process. Here is a fragment of the definition of the 
WS-BPEL business process depicted in the previous figure and representing the 
proposalProcessingService process service, showing the use of partner links:

<process name="BusinessTravelProcess" 
   targetNamespace="http://localhost/WebServices/ch1/
proposalProcessing/"
      xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
         xmlns:prc="http://localhost/WebServices/ch1/
proposalProcessing/"
         xmlns:ntf="http://localhost/WebServices/ch1/notification/"
   

   <partnerLinks>
      <partnerLink name="client" 
                   partnerLinkType="prc:proposalProcessingService"
                   myRole="proposalProcessingServiceRole"/>



Web Services, SOA, and WS-BPEL Technologies

[ 34 ]

      <partnerLink name="sendingNotification" 
                   partnerLinkType="ntf:notificationService"
                   partnerRole="notificationServiceRole"/>
...
   </partnerLinks>
...
</process>

To save space, the above snippet shows only two partnerLink sections in the 
process definition. The first partnerLink section specifies the interaction between 
the WS-BPEL process and its clients, and the other partnerLink specifies the 
interaction between the WS-BPEL process and the Notification service that acts as a 
partner service here.

The following figure may help you gain a better understanding of how the partner 
links mechanism used in WS-BPEL work.

<portType name=”processServicePortType”>

<operation name=”serviceOperation”>

...

</operation>

</portType>

...

<plink:partnerLinkType name=”processService”>

<plink:role name=”processServiceRole”>

<portType=”processServicePortType”/>

</plink:role

</plink:partnerLinkType>

WSDL definition (fragment)

WS-BPEL process definition (fragment)

<partnerLink name=”client”

partnerLinkType=”processService”

myRole=”processServiceRole”/>

...

The example depicted in the figure represents the relationship between a 
partnerLinkType defined in the WSDL document describing a WS-BPEL process 
service and a partnerLink specified in the process definition. When defining the 
partnerLinkType, you use the myRole attribute to specify the role of the WS-BPEL 
process. In contrast, to specify the role of a partner, you would use the partnerRole 
attribute, as shown in the process definition document discussed above.



Chapter 1

[ 35 ]

Looking through the partnerLink sections in the process definition document 
discussed here, you may notice that they do not actually provide any information 
about the location of the WSDL documents containing the corresponding partner 
link types. This information is stored in the process deployment descriptor file. 
The format of this document varies depending on the WS-BPEL tool you are using. 
For example, if you are designing your SOA solution with Oracle BPEL Process 
Manager, the process deployment descriptor file is called bpel.xml and might look 
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<BPELSuitcase>
  <BPELProcess src="proposalProcess.bpel" id="proposalProcess">
    <partnerLinkBindings>
      <partnerLinkBinding name="client">
        <property name="wsdlLocation">proposalProcess.wsdl</property>
      </partnerLinkBinding>
      <partnerLinkBinding name="sendingNotification">
        <property name="wsdlLocation"> 
        http://localhost/WebServices/ch1/notification?wsdl</property>
      </partnerLinkBinding>
...
    </partnerLinkBindings>
  </BPELProcess>
</BPELSuitcase

In ActiveBPEL Designer, a process deployment descriptor file has the pdd extension. 
This description document contains the information required for the ActiveBPEL 
server to execute the corresponding WS-BPEL process. A pdd description specifies 
the location of the WSDL documents describing parties involved in the references 
section, as shown in the following snippet:

<?xml version="1.0" encoding="UTF-8"?>
<process ...>
 ...
   <references>
      <wsdl location="project:/proposalProcess/WSDL/ 
                                 proposalProcess.wsdl" 
   namespace="http://localhost/WebServices/ch1/proposalProcessing/"/>
      <wsdl location="project:/proposalProcess/WSDL/notification.wsdl" 
   namespace="http://localhost/WebServices/ch1/notification/"/>
   </references>
</process>



Web Services, SOA, and WS-BPEL Technologies

[ 36 ]

Tools for Designing, Deploying, and Testing 
Solutions Based on WS‑BPEL
Currently, the list of WS-BPEL engines and WS-BPEL modeling tools contains 
more than 20 items (http://en.wikipedia.org/wiki/List_of_BPEL_engines), 
including open-source and commercial implementations. The most significant 
commercial implementations of WS-BPEL engine and WS-BPEL business process 
management software include: Oracle BPEL Process Manager, IBM WebSphere 
Process Server, and Microsoft BizTalk Server.

The most popular open-source implementation of WS-BPEL engine is  
ActiveBPEL Engine. According to the FAQ on the Active Endpoints Website 
(http://www.active-endpoints.com/open-source-faq.htm), ActiveBPEL Engine 
is used by more organizations than any other WS-BPEL implementation. ActiveBPEL 
Designer is a visual tool for creating and testing WS-BPEL-based solutions to be 
executed against an ActiveBPEL engine.

As mentioned, Chapter 6 discusses how to compose SOAs with 
ActiveBPEL Designer, a tool whose 3.X version fully supports  
WS-BPEL 2.0.

Perhaps the most powerful WS-BPEL tool available on a commercial basis is Oracle 
BPEL Process Manager, which can be used as a standalone application or as part of 
Oracle SOA Suite—a set of designing, deploying, and monitoring tools enabling you 
to build service-oriented solutions and then deploy them to Oracle BPEL Server.

A discussion of Oracle BPEL Process Manager is outside the scope of 
this book. To learn how to build WS-BPEL based solutions with this 
powerful tool from Oracle, you can refer to the vendor documentation. 
To start with, you might visit the Oracle BPEL Process Manager page 
on the Oracle Technology Network Website at http://www.oracle.
com/technology/products/ias/bpel/ and the Service-Oriented 
Architecture page at http://www.oracle.com/technology/soa.



Chapter 1

[ 37 ]

Summary
This introductory chapter gave you the basics on what you must know to get started 
while designing your own service-oriented applications.

In particular, you learned about Web Services technology, which has great potential 
as a robust means of building platform-neutral applications. Then, you looked 
at the common service-orientation principles and how they can be applied when 
designing applications based on Web services. You also learned about Orchestration 
and Choreography, which represent two basic approaches to composing SOA 
solutions. You should now have a sufficient grasp of the ideas behind WS-BPEL, an 
orchestration language that provides a way of defining an orchestration level when 
building SOA solutions.

In the next chapter, you will learn how to create building blocks for SOA 
applications, services, using PHP as the underlying technology. These services will 
then be used as partner services when building WS-BPEL-based SOA solutions, as 
discussed in the following chapters.





SOAP Servers and Clients 
with PHP SOAP Extension

The PHP 5's SOAP extension is implemented as a set of predefined PHP classes that 
allow the developer to build SOAP servers and clients. In this chapter, you will learn 
how to use the PHP SOAP extension when building Web services that might then be 
utilized within SOA applications. In particular you will learn how to:

Expose application logic as a Web service
Build Web service providers and requestors 
Encapsulate the underlying logic of a Web service in a PHP class
Use the XML Schemas specification with WSDL
Transmit XML documents containing attributes
Extend predefined classes of the PHP SOAP Extension
Build Web services supporting parameter-driven operations

Building Service Providers and Service 
Requestors
Depending on the interaction scenario in which a Web service is involved, it can 
either act as a service provider or a service requestor. In the following sections, you 
will see how to build a Web service provider and a requestor that will consume the 
service provider.

•

•

•

•

•

•

•



SOAP Servers and Clients with PHP SOAP Extension

[ 40 ]

To start with, let's look at a simple example. Suppose that you need to implement an 
application based on Web services that performs the following sequence of steps:

1. Receives a purchase order (PO) document in XML format
2. Validates a PO against the appropriate XML schema
3. Stores a PO in the database
4. Sends a response message to the requestor

In a real-world situation, to build such an application, you would have to design 
more than one service and pull these services together into a composite solution. 
However, for simplicity's sake, the example discussed here uses the only service to 
handle all of the above tasks. 

Of course, the above service would be only a part of an entire real-world 
solution. A service requestor sending a PO document for processing 
to this service would act as a service provider itself towards another 
requestor, or would be part of a composite service built, for example,  
with WS-BPEL.

Diagrammatically, the scenario involving the PO Web service that performs the tasks 
described above might look like the following figure:

<?xml >
<xs:schema...

</xs:schema>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?php
class... {

?>

010001101
010001101
010001101

Web service
requestor

Web service
provider

Request SOAP
message with a

PO attached Extracted
PO document

Validated
PO document

Response
SOAP message

Database

PO XML
schema

1

4

2

3

SOAP
message

processing

PHP SOAP
extension

PHP
handler class

Service
business

logic

Here is the detailed explanation of the steps in the figure:

Step 1: The service requestor sends a PO XML document wrapped in a 
SOAP envelope to the service provider.

•



Chapter 2

[ 41 ]

Step 2: The service provider extracts the PO document received from the 
SOAP envelope and validates the extracted PO against the appropriate 
XML schema.
Step 3: The service provider stores the validated PO document in  
the database.
Step 4: The service provider sends the response message to the service 
requestor, informing it if the operations being performed have completed 
successfully or not.

To build the PO Web service depicted in the previous figure, you need to accomplish 
the following five general steps:

1. Set up a database to store incoming PO documents
2. Develop a PHP handler class implementing the PO Web service logic
3. Design an XML schema to validate incoming PO documents 
4. Design a WSDL document describing the PO Web service to its requestors
5. Build a SOAP server to handle incoming messages carrying POs

The following sections take you through each of the above steps. First, you will see 
how to create a simple PO Web service that actually performs no validation. Then, 
you will learn how the XML Schema feature can be used with WSDL to define types 
in messages being transmitted, making sure that transmitted data is valid with 
respect to a specific XML schema.

Setting Up the Database
Before we go any further, let's take a moment to set up the database required for this 
example. This example assumes that you are using Oracle Database Express Edition 
(XE)—a free edition of Oracle Database, or any other edition of Oracle database.

You can download a copy of Oracle Database from the Download  
page of the Oracle Technology Network (OTN) Website at  
http://www.oracle.com/technology/software/index.html. In 
Chapter 3, you will also see an example of using MySQL as the backend 
database in a Web services application. As for this particular example, 
Oracle is used because it provides native support for XML, which makes 
it easier for you to get the job done, allowing you to concentrate on using 
the PHP SOAP extension while building the application.

•

•

•



SOAP Servers and Clients with PHP SOAP Extension

[ 42 ]

To keep things simple, this section actually discusses how to create a minimal 
set of the database objects required only to store incoming PO documents. When 
continuing with this example in Chapter 3, you will learn how to leverage the Oracle 
XML Schema, an Oracle XML feature, to validate incoming POs inside the database.

The Oracle XML Schema is part of the Oracle XML DB, which is a set 
of Oracle XML features available in any edition of Oracle Database by 
default. The Oracle XML DB is discussed in extensive detail in Chapter 3.

With Oracle database, you have several options when it comes to creating, accessing 
and manipulating the database objects. You can use both the graphical and 
command-line tools shipped with Oracle Database. As for Oracle Database XE, you 
might use the Oracle Database XE graphical user interface, a browser-based tool that 
allows you to administer the database.

However, to create the database objects required for this example, it is assumed that 
you will make use of Oracle SQL*Plus, a command-line SQL tool, which is installed 
by default with every Oracle database installation. 

For information on Oracle database installation, see Appendix A, section 
Installing Oracle Database Express Edition (XE).

With SQL*Plus, you interact with the database server by entering appropriate SQL 
statements at the SQL> prompt.

Assuming that you have an Oracle database server installed and running, launch 
SQL*Plus and then follow these steps:

Set up a database account that will be used as a container for the database objects by 
issuing the following SQL statements: 

   //connect to the database as sysdba to be able to create a new 
   account
   CONN /as sysdba
   
   //create a user identified as xmlusr with the same password
   CREATE USER xmlusr IDENTIFIED BY xmlusr;
   
   //grant privileges required to connect and create resources
   GRANT connect, resource TO xmlusr;



Chapter 2

[ 43 ]

Issue the following SQL statements to create a table that will be used to store PO 
XML documents:

   //connect to the database using the newly created account
   CONN xmlusr/xmlusr;
   

   //create a purchaseOrders table to be used for storing POs
   CREATE TABLE purchaseOrders(
       doc VARCHAR2(4000)
);

As you can see, the purchaseOrders table created by the above statement contains 
only one column, namely doc of VARCHAR2. Using the VARCHAR2 Oracle data type is 
the simplest option when it comes to storing XML documents in an Oracle database. 
In fact, Oracle provides much more powerful options for storing XML data in the 
database. These options will be discussed in detail in Chapter 3.

Developing the PHP Handler Class 
Now that you have set up the database to store the incoming PO documents, it's 
time to create the PHP code that will perform just that operation: storing incoming 
POs into the database. Consider the purchaseOrder PHP class containing the PO 
Web service underlying logic. It is assumed that you will save this class in the 
purchaseOrder.php file in the WebServices\ch2 directory within the documentwithin the document 
directory of your Web server, so that it will be available at http://localhost/
WebServices/ch2/purchaseOrder.php.

<?php
 //File purchaseOrder.php
 class purchaseOrder {
   function placeOrder($po) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/xe')){
        throw new SoapFault("Server","Failed to connect to 
                                                       database"); 
    };
    $sql = "INSERT INTO purchaseOrders VALUES(:po)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>



SOAP Servers and Clients with PHP SOAP Extension

[ 44 ]

Looking through the code, you may notice that the purchaseOrder class actually 
contains the only method, namely placeOrder. As its name implies, the placeOrder 
method is responsible for placing an incoming PO document. What this method 
actually does is take a PO XML document as the parameter and then store it in the 
purchaseOrders table created in the preceding section. Upon failure to connect 
to the database or execute the INSERT statement, the placeOrder method stops 
execution and throws a SOAP exception.

For now, you should not necessarily have to understand in detail how 
the database-related code in the placeOrder method works. This will be 
discussed in greater detail in Chapter 3. 

Another important point to note here is that thethe placeOrder method doesn't doesn't  
contain any code required to validate an incoming PO document. For simplicity,  
this example assumes no validation for the moment. However, when continuing 
with the example in the next sections of this chapter, you will see how XML  
schema-based validation can be used with WSDL, defining types for parts of the 
messages described in WSDL definitions. Then, in Chapter 3, you will learn how the 
incoming PO documents can be automatically validated against a PO XML schema 
within the database, upon inserting them into the purchaseOrders table. As the 
Using XML Schemas with Oracle XML DB section in Chapter 3 will explain, to reach 
this goal, you need to create and register a PO XML schema against the database and 
then create an INSERT trigger on the purchaseOrders table.

Designing the WSDL Document
To expose the functionality of the purchaseOrder PHP class discussed in the 
preceding section as a Web service, you first need to create a WSDL document that 
will describe that Web service. Here is the WSDL that might serve this purpose. It 
is assumed that you will save this document as po.wsdl in the WebServices/wsdl 
directory within the document directory of your Web server.within the document directory of your Web server.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace= 
                          "http://localhost/WebServices/wsdl/po.wsdl">
    <message name="getPlaceOrderInput">
        <part name="body" element="xsd:string"/>
    </message>



Chapter 2

[ 45 ]

    <message name="getPlaceOrderOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poServicePortType">
        <operation name="placeOrder">
           <input message="tns:getPlaceOrderInput"/>
           <output message="tns:getPlaceOrderOutput"/>
        </operation>
    </portType>
    <binding name="poServiceBinding" type="tns:poServicePortType">
        <soap:binding style="document" transport= 
                             "http://schemas.xmlsoap.org/soap/http"/>
        <operation name="placeOrder">
           <soap:operation 
           soapAction="http://localhost/WebServices/ch2/placeOrder"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poService">
        <port name="poServicePort" binding="tns:poServiceBinding">
           <soap:address 
         location="http://localhost/WebServices/ch2/SOAPserver.php"/>
        </port>
    </service>
</definitions>

As you may notice, the getPlaceOrderInput message described in this document 
consists of a single part called body, which represents an element of xsd:string. 
Actually, the body part used here represents the parameter being passed to the 
placeOrder method of the purchaseOrder class discussed in the preceding section. 
So, this WSDL document implies that an incoming PO XML document will be passed 
from a service consumer to the PO Web service as a string.

As you no doubt have realized, the string XSD type is used in this 
example for simplicity's sake. In the Using XML Schemas with WSDL 
section later in this chapter, you will see an example of using the user-
defined XSD types when it comes to describing XML documents being 
transmitted between a service provider and service requestor.



SOAP Servers and Clients with PHP SOAP Extension

[ 46 ]

Building the SOAP Server
Now that you have created the WSDL definition document describing the PO Web 
service, the next step is to create a SOAP server that will be responsible for handling 
and transmitting SOAP messages via HTTP. Save the following PHP script as 
SoapServer.php in the WebServices/ch2 directory within the document directorywithin the document directory 
of your Web server.

<?php
 //File: SoapServer.php
 require_once "purchaseOrder.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

At the beginning of this script you add the contents of the purchaseOrder.php script 
discussed in the Developing the PHP Handler Class section earlier in this chapter. Then,earlier in this chapter. Then, 
you create an instance of the SoapServer class.

The SoapServer class, as well as SoapClient and SoapFault classes 
discussed in the next section, belongs to the PHP's SOAP extension 
library, which is not enabled by default. To enable the SOAP extension on 
a Unix-like platform, you need to recompile your PHP installation with 
the configure option --enable-soap. If you are a Windows user, you 
need to append the extension =php_soap.dll to the list of extensions in 
the php.ini configuration file. 

Once you have created an instance of SoapServer, you can export the methods of 
the PHP handler class stored in the purchaseOrder.php script. This is done with the. This is done with the with the 
help of the setClass method of the SoapServer instance.

Finally, you call the handle method of SoapServer, which is responsible for 
handling and processing SOAP requests, calling methods of the handler class, and 
sending responses back to service consumers.

Building the Service Requestor
Before you can test the PO Web service built as discussed in the preceding sections, 
you need to build a service requestor that will interact with the service. Here is a 
simple client to test the PO Web service. You may save this script in any directory. 
However, for simplicity's sake you might save it in the same directory as all the other 
scripts discussed previously.



Chapter 2

[ 47 ]

<?php 
 //File: SoapClient.php
 $wsdl = "http://localhost/WebServices/wsdl/po.wsdl";
 $handle = fopen("purchaseOrder.xml", "r");
 $po= fread($handle, filesize("purchaseOrder.xml"));
 fclose($handle);
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($po);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }}
?>

As you can see, this script loads a PO document from the purchaseOrder.xml 
file, which is supposed to be in the same directory as the script. Then, it creates an 
instance of the SoapClient class, passing a URI of the WSDL document to be used, 
as the parameter. Note that you use the same WSDL document you used for the 
server discussed in the preceding section. Finally, the script calls the placeOrder 
remote function as a method of the newly created SoapClient instance, surrounding 
that call in a try block. If something goes wrong during the placeOrder execution 
and a SoapFault exception is thrown, the catch block catches it.

A simplified version of a PO document stored in the purchaseOrder.xml file being 
used in this example might look as follows:

<purchaseOrder >
    <pono>108128476</pono>
    <billTo>
     <name>Tony Jamison</name>
     <street>24 Johnson Road</street>
     <city>Big Valley</city>
     <state>VA</state>
     <zip>23032</zip>
     <country>US</country>
    </billTo>
    <shipTo>
     <name>Janet Thomson</name>
     <street>11 Maple Street</street>
     <city>Small Valley</city>
     <state>VA</state>
     <zip>23037</zip>
     <country>US</country>
   </shipTo>



SOAP Servers and Clients with PHP SOAP Extension

[ 48 ]

   <items>
      <item>
       <partId>743</partId>
       <quantity>4</quantity>
       <price>15.50</price>
      </item>
      <item>
        <partId>235</partId>
       <quantity>7</quantity>
       <price>15.75</price>
      </item>
   </items>
</purchaseOrder>

In a real-world situation, a PO XML document might be derived from different 
sources, not necessarily from a file. For example, it might be created on the fly 
(dynamically) by a PHP script, with the help of the DOM API that is part of the  
PHP core.

You will see an example of building an XML document with the help of 
the PHP DOM extension in the Converting SOAP Messages' Payloads to 
XML section later in this chapter.

Testing the Service
Now you are ready to test the PO Web service. To do this, you simply need to point 
your browser at the service requestor discussed in the preceding section. If you 
saved the SoapClient.php script in the WebServices/ch2 directory within thewithin the 
document directory of your Web server, enter the following URL in the address box 
of your browser: http://localhost/WebServices/ch2/SoapClient.php.

If everything goes as planned, you will see a PO inserted! message in your browser. 
Otherwise, a SOAP fault message appears. For example, if the placeOrder method 
of the purchaseOrder class fails to connect to the database, you will see an error fails to connect to the database, you will see an error 
message that will look as follows:

Failed to connect to database

Turning back to the placeOrder method of the purchaseOrder class discussed 
in the Developing the PHP Handler Class section earlier, you may notice that it also 
throws a SOAP exception upon failure to insert the received PO into the database.



Chapter 2

[ 49 ]

If the request was successful, the purchaseOrders table was created as discussed 
in the Setting Up the Database section earlier should contain one more row. To make 
sure it does so, you can issue the following query from Oracle SQL*Plus or any other 
command-line tool you use to communicate with the database:

CONN xmlusr/xmlusr

SELECT * FROM purchaseOrders;

When executed, the above SELECT statement should output the string representing 
the same PO XML document as the one shown in the Building the Service Requestor 
section earlier. If so, this means the PO Web service has worked successfully.

Using XML Schemas with WSDL
The PO Web service discussed above represents a simplified example of a Web 
service provider. As mentioned, it receives a PO XML document as a simple string 
and saves it as it is in the database. In practice, of course, it is rarely as simple as this. 
When receiving an XML document of a specific structure from a consumer, a Web 
service wants to make sure that the received document has an appropriate structure, 
that is, the document conforms to a specific schema.

To solve this problem, WSDL allows you to include XML Schema definitions 
describing the data structures being transmitted between the service provider and 
its consumers. In WSDL, you can either enclose XML Schema data type definitions 
within the types element or import an XML schema stored in a separate file  
using the import statement. In the following sections, you will look at both  
these approaches.

Including XML Schema Data Type Definitions 
in WSDL
In the PO Web service, you might want to modify its WSDL document so that it 
includes an XSD data type definition for the PO XML document received with the 
input message. Assuming that the PO Web service expects to receive a PO XML 
document having the same structure as the one shown in the Building the Service 
Requestor section earlier, the WSDL document describing the PO Web service might 
look now as follows. It is assumed that you save this document as po_typed.wsdl in 
the WebServices/wsdl directory in which you saved po.wsdl document discussed 
in the Designing the WSDL Document section previously.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"



SOAP Servers and Clients with PHP SOAP Extension

[ 50 ]

             targetNamespace="http://localhost/WebServices/wsdl/po/"
             xmlns:tns="http://localhost/WebServices/wsdl/po/"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns:xsd1="http://localhost/WebServices/schema/"

             xmlns="http://schemas.xmlsoap.org/wsdl/">
    <types>

     <schema targetNamespace="http://localhost/WebServices/schema/"

        xmlns="http://www.w3.org/2001/XMLSchema">

       <element name="purchaseOrder">

        <complexType>

         <sequence>

          <element name="pono" type="xsd:string" /> 

          <element name="shipTo" type="xsd1:AddressType" /> 

          <element name="billTo" type="xsd1:AddressType"/>

          <element name="items" type="xsd1:LineItemsType"/>

         </sequence> 

        </complexType>

       </element> 

       <complexType name="AddressType">

        <sequence>

         <element name="name" type="xsd:string"/>

         <element name="street" type="xsd:string"/>

         <element name="city" type="xsd:string"/>

         <element name="state" type="xsd:string"/>

         <element name="zip" type="xsd:int"/>

         <element name="country" type="xsd:NMTOKEN" />

        </sequence>

       </complexType>

       <complexType name="LineItemsType">

        <sequence>

         <element minOccurs="1" maxOccurs="unbounded" name="item" 

                                     type="xsd1:LineItemType" />

        </sequence>

       </complexType>

       <complexType name="LineItemType">

        <sequence>

         <element name="partId" type="xsd:int"/>

         <element name="quantity" type="xsd:decimal"/>

         <element name="price" type="xsd:decimal"/>



Chapter 2

[ 51 ]

        </sequence>

       </complexType>

     </schema >

    </types>

    <message name="getPlaceOrderInput">
        <part name="body" element="xsd1:purchaseOrder"/>

    </message>
    <message name="getPlaceOrderOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poServicePortType">
        <operation name="placeOrder">
           <input message="tns:getPlaceOrderInput"/>
           <output message="tns:getPlaceOrderOutput"/>
        </operation>
    </portType>
    <binding name="poServiceBinding" type="tns:poServicePortType">
        <soap:binding style="document" 
            transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="placeOrder">
           <soap:operation 
           soapAction="http://localhost/WebServices/ch2/placeOrder"/>
           <input>
               <soap:body use="literal" />
           </input>
           <output>
               <soap:body use="literal" />
           </output>
        </operation>
    </binding>
    <service name="poService">
        <port name="poServicePort" binding="tns:poServiceBinding">
           <soap:address 
   location="http://localhost/WebServices/ch2/SOAPServer_typed.php"/>
        </port>
    </service>
</definitions>

As you can see, the getPlaceOrderInput message described in this document 
includes a body part representing an element of a complex XSD type, namely xsd1:
purchaseOrder. This type is described in the XML schema defined within the types 
construct of the WSDL document. What this means is that a PO XML document 
passed to the placeOrder method as the input argument must now conform to the the input argument must now conform to the must now conform to the 
xsd1:purchaseOrder type definition.



SOAP Servers and Clients with PHP SOAP Extension

[ 52 ]

Importing XML Schemas into WSDL 
Documents
In the preceding section you saw how an XML schema containing data type 
definitions used for typing messages' contents can be added to a WSDL document. 
However, to achieve better reusability you might save that XML schema in a single 
file and then import it into the WSDL document. In this case, you won't have to 
modify your WSDL document when you modify a type definition in the imported 
XML schema. Instead, you will modify the document containing the schema, while 
leaving the WSDL document representing the contract between the service provider 
and its consumers untouched.

Returning to the WSDL document discussed in the preceding section, you first need 
to separate the XML schema enclosed within the types element. It is assumed that 
you save the following schema document as po.xsd in the WebServices/schema 
directory within the document directory of your Web server.within the document directory of your Web server.

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/po/">

  <element name="purchaseOrder">
   <complexType>
     <sequence>
       <element name="pono" type="string" /> 
       <element name="shipTo" type="types1:AddressType" /> 
       <element name="billTo" type="types1:AddressType"/>
       <element name="items" type="types1:LineItemsType"/>
     </sequence> 
   </complexType>
  </element> 
  <complexType name="AddressType">
   <sequence>
    <element name="name" type="string"/>
    <element name="street" type="string"/>
    <element name="city" type="string"/>
    <element name="state" type="string"/>
    <element name="zip" type="int"/>
    <element name="country" type="NMTOKEN" />
   </sequence>
  </complexType>
  <complexType name="LineItemsType">
   <sequence>
    <element minOccurs="0" maxOccurs="unbounded" name="item" 



Chapter 2

[ 53 ]

                               type="types1:LineItemType" />
   </sequence>
  </complexType>
  <complexType name="LineItemType">
    <sequence>
      <element name="partId" type="int"/>
      <element name="quantity" type="decimal"/>
      <element name="price" type="decimal"/>
    </sequence>
  </complexType>
</schema >

Now you can import the entire XML schema shown above into the WSDL document 
describing the PO Web service, rather than enclosing that schema in the types 
element in the WSDL document. To achieve this, you use the import WSDL element, 
modifying the po_types.wsdl document discussed in the previous section as 
shown below. It is assumed that you save this document as po_imp.wsdl in the 
WebServices/wsdl directory.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
             targetNamespace="http://localhost/WebServices/wsdl/po/"
             xmlns:tns="http://localhost/WebServices/wsdl/po/"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns:xsd1="http://localhost/WebServices/schema/po/"

             xmlns="http://schemas.xmlsoap.org/wsdl/">

    <import namespace="http://localhost/WebServices/schema/po/"

              location="http://localhost/WebServices/schema/po.xsd" />

...

</definitions>

In this example, you associate the xsd1 namespace defined in the WSDL document 
with the PO XML schema stored in a separate file, using the namespace and 
location attributes of the import statement.

Looking through the XML schema and WSDL documents discussed here, 
you may notice that each of these documents uses a different prefix for 
the namespace whose URI is http://localhost/WebServices/
schema/po/. In fact, you might use the same prefix here. However, it 
doesn't matter as long as the URI is the same.



SOAP Servers and Clients with PHP SOAP Extension

[ 54 ]

Getting Data Types Defined in the XML 
Schema
With a great number of XSD data types defined in the XML schema document or 
documents used by the WSDL definition, there is often a need to be able to look into 
those types from within the client code at run time.

In the design stage, the above is not a problem. Regardless of whether the 
WSDL document describing the service incorporates the XML schema 
in the way you saw in the Including XML Schema Data Type Definitions in 
WSDL section or imports one or more XML schemas as discussed in the 
Importing XML Schemas into WSDL Documents section, you can examine 
the XSD types used by looking either through the types section of 
the WSDL document or the imported XML schema documents. This is 
possible because service providers share their WSDL definitions with 
their consumers.

To meet this challenge, the PHP SOAP extension introduces the __getTypes method 
of the SoapClient class. To simply output the information about actual XSD data 
types, you might use __getTypes as follows:

<?php
 ...
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $client = new SoapClient($wsdl);
 print_r($client->__getTypes());

 ...
?>

The highlighted line in the above code will output the following array of structures 
that are representations of the XSD types defined in the po.xsd XML schema 
document imported into the po_imp.wsdl WSDL definition document:

Array
(
    [0] => struct purchaseOrder {
 string pono;
 AddressType shipTo;
 AddressType billTo;
 LineItemsType items;
}
    [1] => struct AddressType {
 string name;
 string street;
 string city;



Chapter 2

[ 55 ]

 string state;
 int zip;
 NMTOKEN country;
}
    [2] => struct LineItemsType {
 LineItemType item;
}
    [3] => struct LineItemType {
 int partId;
 decimal quantity;
 decimal price;
}
)

While the above example simply outputs the array of structures returned by the 
__getTypes method, in a real-world application you might make practical use of 
this information. For example, you might dynamically build an input form based on 
these structures, so that a user could manually input data to be sent to the service. 
While constructing such a form, you might use information about the types of the 
fields of the returned structures when defining validation rules.

To quickly build such a form, you might take advantage of the PEAR::
HTML_QuickForm package. The discussion of this package, though, is 
outside the scope of this book. To find out more about PEAR::HTML_
QuickForm, you can visit http://pear.php.net/HTML_QuickForm.

Transmitting Complex Type Data 
In the preceding example, you simply send a string representing a PO XML 
document as the input argument of the placeOrder method exposed by the PO Web 
service. Now that you have modified the WSDL document describing the PO Web 
service so that the PO Web service receives a PO XML document conforming to a 
specific structure, you cannot send that document as a simple string any more.

The following sections explain in detail how the complex type data structures are 
transmitted between SOAP nodes built with the PHP SOAP extension.



SOAP Servers and Clients with PHP SOAP Extension

[ 56 ]

Exchanging Complex Data Structures with 
PHP SOAP Extension
Like any other SOAP-based interfaces, service providers and service consumers 
built with the PHP SOAP extension use XML format when it comes to exchanging 
structured and typed data. However, in the case of the PHP SOAP extension you 
are not supposed to provide an XML document ready for transmitting. Instead, you 
provide an array having an appropriate structure and containing all the data to be 
sent. The SOAP software transforms this array to an XML document conforming to 
the specified type definition defined in the XML schema employed, and then sends 
that XML document wrapped in a SOAP envelope to the receiver. The receiver 
extracts the document from the SOAP envelope assuming that the receiver uses the 
PHP SOAP extension and converts it to an instance of the stdClass built-in  
PHP class.

In practice, a service requestor built with the PHP SOAP extension 
may send requests to a service provider built with other software, and 
also a PHP SOAP extension-based service provider may be consumed 
by a requestor built with a non-PHP tool. In either case, the requestor 
and provider will exchange the data organized as specified in the 
corresponding WSDL and XML schema documents. The details of 
manipulating the data structures being exchanged, though, will vary 
depending on the SOAP software specifics. In Chapter 5, for example, 
you will learn how a WS-BPEL process service handles complex type data 
arriving with request messages sent by consumers of that service. You 
also will learn how a WS-BPEL process handles complex data being sent 
to its partners.

Diagrammatically, the process of transmitting a complex data structure between  
two SOAP nodes built with the PHP SOAP extension might look like the  
following figure:

Custom PHP
script PHP array PHP stdObject

PHP handler
class

SOAP
client
logic

SOAP
server
logic

SOAP message
carries data in
XML format

Service requestor Service provider

<?php

?>

<?php

class...{

...

}

?>

<?xml ?>

<Envelope...>

<purchaseOrder>

...

...

</purchaseOrder>

</Envelope>

array(6){

[”pono”]=>

string(9)”108128476”

[”billTo”]=>

array(6){

[”name”]=>

string(12)”Tony...

...

}

}

stdClass(6){

[”pono”]=>

string(9)”108128476”

[”billTo”]=>

stdClass(6){

[”name”]=>

string(12)”Tony...

...

}

}



Chapter 2

[ 57 ]

Generally, when you call a function exposed by the service, in the way you did in the 
SoapClient.php script discussed in the Building the Service Requestor section earlier, 
the instance of the SoapClient class assumes that you pass arrays as the arguments 
of that function.

However, in the case of the SoapClient.php mentioned here you don't 
have to worry about this, since you send a simple string as the parameter 
of the exposed function. 

For example, the following PHP array might be used as the argument of the 
placeOrder function exposed by the PO Web server described by the po_imp.wsdl 
document shown in the Importing XML Schemas into WSDL Documents section earlier:

array(4) {
  ["pono"]=>      string(9) "108128476"
  ["billTo"]=>    array(6) {
    ["name"]=>      string(12) "Tony Jamison"
    ["street"]=>    string(15) "24 Johnson Road"
    ["city"]=>      string(10) "Big Valley"
    ["state"]=>     string(2) "VA"
    ["zip"]=>       string(5) "23032"
    ["country"]=>   string(2) "US"
  }
  ["shipTo"]=>    array(6) {
    ["name"]=>      string(13) "Janet Thomson"
    ["street"]=>    string(15) "11 Maple Street"
    ["city"]=>      string(12) "Small Valley"
    ["state"]=>     string(2) "VA"
    ["zip"]=>       string(5) "23037"
    ["country"]=>   string(2) "US"
  }
  ["items"]=>     array(1) {
    ["item"]=>      array(2) {
      [0]=>           array(3) {
        ["partId"]=>    string(3) "743"
        ["quantity"]=>  string(1) "4"
        ["price"]=>     string(7) "10.5"
      }
      [1]=>      array(3) {
        ["partId"]=>    string(3) "235"
        ["quantity"]=>  string(1) "7"
        ["price"]=>     string(2) "15.75"
      }
    }
  }
}



SOAP Servers and Clients with PHP SOAP Extension

[ 58 ]

We could pass the variable containing this array to the placeOrder function as the 
parameter like the following:

<?php
 ...
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $client = new SoapClient($wsdl);
 ...
 $result=$client->placeOrder($poarray);
 ...
?>

The SOAP software operating on the client side will transform this array into an 
XML document conforming to the purchaseOrder data type definition described in 
the po.xsd XML schema document shown in the Importing XML Schemas into WSDL 
Documents section, thus generating a PO XML document like that you saw in the 
Building the Service Requestor section earlier. This XML document is then wrapped in 
an SOAP envelope and sent to the server.

On the server side, the posted document is extracted from the SOAP envelope and 
by default is transformed to an instance of the stdClass built-in PHP class. You may 
look into that instance with the help of the var_dump standard PHP function and 
output the instance structure and data to a file as shown:

<?php

 class purchaseOrder {
   function placeOrder($po) {
    ...
    ob_start();
    var_dump($po);
    $buffer = ob_get_flush();
    file_put_contents('buffer.txt', $buffer);
    ob_end_clean();
    ...
   }
 }
?>

On inspecting the buffer.txt file you see that the instance of stdClass containing 
the data received by the server is similar in structure to the array processed and 
posted by the client, and contains the same actual data as that array. In this particular 
example, the instance of stdClass would look as follows:

object(stdClass)#2 (4) {
  ["pono"]=>     string(9) "108128476"
  ["shipTo"]=>   object(stdClass)#3 (6) {
    ["name"]=>     string(13) "Janet Thomson"



Chapter 2

[ 59 ]

    ["street"]=>   string(15) "11 Maple Street"
    ["city"]=>     string(12) "Small Valley"
    ["state"]=>    string(2) "VA"
    ["zip"]=>      int(23037)
    ["country"]=>  string(2) "US"
  }
  ["billTo"]=>   object(stdClass)#4 (6) {
    ["name"]=>     string(12) "Tony Jamison"
    ["street"]=>   string(15) "24 Johnson Road"
    ["city"]=>     string(10) "Big Valley"
    ["state"]=>    string(2) "VA"
    ["zip"]=>      int(23032)
    ["country"]=>  string(2) "US"
  }
  ["items"]=>    object(stdClass)#5 (1) {
    ["item"]=>     array(2) {
      [0]=>          object(stdClass)#6 (3) {
        ["partId"]=>   int(743)
        ["quantity"]=> string(1) "4"
        ["price"]=>    string(7) "10.5"
      }
      [1]=>          object(stdClass)#7 (3) {
        ["partId"]=>   int(235)
        ["quantity"]=> string(1) "7"
        ["price"]=>    string(2) "15.75"
      }
    }
  }
}

Examining the difference between the array and stdClass object discussed here, 
you may notice that the latter contains fields in an order that is different from that 
used in the former. Specifically, the first upper element called pono is followed by the 
shipTo element in the stdClass object but by the billTo element in the array. To 
understand why the order of the elements has changed, you need to come back to the 
po.xsd XML schema discussed in the Importing XML Schemas into WSDL Documents 
section. Looking through the schema, you may notice that the purchaseOrder XSD 
type assumes that the order of the upper-level elements in its type representations 
must be as follows:

1. pono

2. shipTo

3. billTo

4. items



SOAP Servers and Clients with PHP SOAP Extension

[ 60 ]

As you no doubt have guessed, the SOAP client, while processing the input array 
containing the data being sent, applied the required changes to the input structure, 
changing the order of the elements so that the XML document being transmitted 
conforms to the purchaseOrder XSD type definition described in the po.xsd XML 
schema document.

It's interesting to note that if the input array discussed here contained 
some extra fields that did not have corresponding elements defined 
within the purchaseOrder XSD type, the stdClass object on the server 
side actually would not change. The fact is that the SOAP client not only 
makes sure that the elements in the XML document being sent are in the 
correct order, but also prevent unnecessary elements presented in the 
input array from being included in that document.

Structuring Complex Data for Sending
Now that you know the basics of how the service requestors and services providers 
based on the PHP SOAP extension handle the data being exchanged, it's a good time 
to see how all this works in practice.

In this section, you will see an example of how you can prepare a complex type data 
structure being sent as the argument of the function exposed by a Web service. In 
the following section, you will see how to handle the received data on the service 
provider side.

Suppose you are building a service requestor that will take the information to be sent 
from a file holding the data in XML format. In this case, you need to create the code 
that will first read an XML document from the file, and then convert the uploaded 
XML document to a PHP array being specified as the argument of the function 
exposed by the service provider. To read a well-formed XML document from a file 
into a PHP structure that might be easily converted to an array, you might take 
advantage of the simplexml_load_file PHP function that reads the XML document 
from the file specified as the argument to an object of the SimpleXMLElement class. 
Once you have the XML document as an instance of SimpleXMLElement, you can 
convert it to an array with the help of the function as follows:

<?php
 //File: obj2Arr.php
 function obj2Arr($obj)
 {
  $result = NULL;
  if(!is_array($obj))
  {
   if($var = get_object_vars($obj))



Chapter 2

[ 61 ]

   {
    foreach($var as $key => $value)
     $result[$key] = obj2Arr($value);
   }
   else
   return $obj;
  }
  else
  {
   foreach($obj as $key => $value)
    $result[$key] = obj2Arr($value);
  }
  return $result;
 }
?>

As you can see, the obj2Arr custom function takes the object to be converted as the 
argument, and may perform a number of recursive calls (calling itself), depending on 
the complexity of the structure being converted.

Please note that the obj2Arr function shown above assumes that the 
SimpleXMLElement object passed in as the argument represents an 
XML document containing no attributes. Processing XML documents 
containing attributes will be discussed in the Dealing with Attributes 
section later.

With the simplexml_load_file and obj2Arr functions, the client script calling the 
placeOrder function might now look as follows. It is assumed that you save this 
script as SoapClient_typed.php in the WebServices/ch2 directory.

<?php 
 //File: SoapClient_typed.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');

 $xmlarr = obj2Arr($xmldoc);

 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($xmlarr);

 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>



SOAP Servers and Clients with PHP SOAP Extension

[ 62 ]

However, before you can test this client code you need to create the SOAP server and 
the PHP handler class to handle requests coming from the client. Both are discussed 
in the next section.

Converting SOAP Messages' Payloads to XML
As discussed previously, on the server side, assuming that the server is built with the 
PHP SOAP extension, the exposed methods of the PHP handler class receive their 
arguments carrying complex type data as instances of the stdClass class. So, in this 
particular example, the placeOrder method of the purchaseOrder PHP handler 
class will receive its argument as a stdClass object.

Suppose you want to convert the stdClass object received by the placeOrder 
method back to XML. To handle this task, you might want to create a custom class. 
Here is the code for the obj2Dom class that takes care of converting a stdClass  
to XML:

<?php
class obj2Dom {
 private $dom;
 private $rootNode;
 private $arrayName;

 public function __construct($rootElmName='root')
 {
  $this->dom = new DomDocument('1.0');
  $root = $this->dom->createElement($rootElmName);
  $this->rootNode = $this->dom->appendChild($root);
 }

 private function buildDom($result, $node) {
  $attrFlag=0;
  foreach($result as $key => $value) {
   if (!is_int($key)){
      $nodeName=$key;
   }
   else {
     $nodeName=$this->arrayName;
   }
   if (!is_object($value)){
      if (is_array($value)) {
          $this->arrayName=$key;
          $this->buildDom($value,$node);
      }



Chapter 2

[ 63 ]

      else {
          $elm = $this->dom->createElement($nodeName);
          $elm = $node->appendChild($elm);
          $txt = $this->dom->createTextNode($value);
          $txt = $elm->appendChild($txt);
      }
   }
   else {
         $elm = $this->dom->createElement($nodeName);
         $elm = $node->appendChild($elm);
         $this->buildDom($value,$elm);
        }
   }
 }
 public function trans2Dom($result)
 {
  $this->buildDom($result, $this->rootNode);
 }
 public function printDomTree()
 {
  return $this->dom->saveXML();
 }
}
?>

Like the obj2Arr function discussed in the preceding section, the 
obj2Dom class shown here assumes that the stdClass objects being 
converted represent XML documents that do not contain attributes. In the 
Dealing with Attributes section, though, you will see a modified version of 
obj2Dom that can handle XML documents containing attributes.

Once you have created the obj2Dom class, you can include the file containing it in the 
PHP handler script, and then use this class as follows. It is assumed that you save the 
following PHP handler class in the puchaseOrder_typed.php file.

<?php
 //File purchaseOrder_typed.php
 require_once 'obj2Dom.php';

 class purchaseOrder {
   function placeOrder($po) {
    $obj = new obj2Dom('purchaseOrder');

    $obj->trans2Dom($po);

    $po=$obj->printDomTree();

    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
       throw new SoapFault("Server","Failed to connect to database"); 



SOAP Servers and Clients with PHP SOAP Extension

[ 64 ]

    };
    $sql = "INSERT INTO purchaseOrders VALUES(:po)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

In the placeOrder method shown above, you first create an instance of the obj2Dom 
custom class, passing 'purhaseOrder' as the argument in order to explicitly set 
up the name of the root element in the XML document being built. Then, you 
call the trans2Dom method of the newly created instance, passing in the value 
of the argument received by the placeOrder method. As discussed previously, 
placeOrder is supposed to receive the stdClass object representing the PO 
document posted by a service consumer. The trans2Dom method will translate 
the stdClass object received as the argument into an instance of the DomDocument 
class. By calling the printDomTree method of the obj2Dom class in the next step, 
you obtain the generated XML document as a string, which then is inserted into 
purchaseOrders table in the database.

Now that you have created the PHP handler class that will translate an incoming 
structure representing a PO XML document back into XML format, you have to 
build a SOAP server that will receive and process requests coming from the client. 
It is assumed that you save the following server as SoapServer_typed.php in the 
WebServices/ch2 directory.

<?php
 //File: SoapServer_typed.php
 require_once "purchaseOrder_typed.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

Now you can test the client shown in the preceding section. To do this, you need to 
point your browser at http://localhost/WebServices/ch2/SoapClient_typed.
php. If everything goes as planned, you will see a PO inserted! message in your 
browser. Otherwise, a SOAP fault message appears.



Chapter 2

[ 65 ]

Using PHP SOAP Extension Tracing 
Capabilities
In the development and testing stage, there's often a need to look at the  
incoming and outgoing SOAP messages. To look through the headers of the last 
SOAP request and response, you can use the __getLastRequestHeaders and  
__getLastResponseHeaders methods of a SoapClient instance respectively. To 
look through the entire messages representing the last SOAP request and response, 
you can use the __getLastRequest and __getLastResponse methods respectively, 
as shown in the following example:

<?php 
 //File: SoapClient_trace.php
 require_once 'obj2Arr.php';
 $wsdl = "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $xml = simplexml_load_file('purchaseOrder.xml');
 $arr = obj2Arr($xml);
 $client = new SoapClient($wsdl, array('trace' => 1));

 try {
  print "RESULT:\n".$result=$client->placeOrder($arr)."\n";
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
 print "REQUEST:\n".htmlspecialchars

                       ($client->__getLastRequest())."\n"; 

 print "RESPONSE:\n" .htmlspecialchars

                       ($client->__getLastResponse())."\n";

?>

To test the above script, you don't have to write another SOAP server or PHP 
handler class—those discussed in the preceding sections will do. So, you specify the 
same WSDL document as you did in the SoapClient_typed.php script discussed in 
the Structuring Complex Data for Sending section earlier.

If you recall, the physical part of the WSDL document describes thehe physical part of the WSDL document describes the 
concrete characteristics of the Web service, including information about 
the concrete network address of the service provider.

If you execute the SoapClient_trace.php script as shown previously, it should 
return the following output (the output has been formatted for clarity and the POthe output has been formatted for clarity and the PO 
XML document in the request has been cut down to save space):



SOAP Servers and Clients with PHP SOAP Extension

[ 66 ]

RESULT: 

PO inserted! 

REQUEST: 

<?xml version="1.0" encoding="UTF-8"?> 
 <SOAP-ENV:Envelope xmlns:
   SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
                   xmlns:ns1= 
                            "http://localhost/WebServices/schema/po/">
 <SOAP-ENV:Body>
   <ns1:purchaseOrder>
    <pono>108128476</pono>

    ...

   </ns1:purchaseOrder>
  </SOAP-ENV:Body>
 </SOAP-ENV:Envelope> 

RESPONSE: 

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:
     SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
  <SOAP-ENV:Body>
   <body><rsltMsg>PO inserted!</rsltMsg></body>
  </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Dealing with Attributes
In the preceding sections, you learned how an XML document can be transmitted via 
SOAP as a complex data structure, and then converted back to an XML format  
on the receiver side. It was assumed, though, that the document being transmitted 
contains no attributes. This section discusses how to deal with documents  
containing attributes.

On the client side, perhaps the safest way to go when it comes to dealing with an 
XML document containing attributes is to first convert the attributes to elements and 
then transform the document into an array, as discussed in the Structuring Complex 
Data for Sending section earlier. The SOAP software converting this array to XML to 
be transmitted as the payload of a SOAP message will generate an XML document 
conforming to a certain XSD type, as defined in the WSDL definition for this 
particular part of the message. 



Chapter 2

[ 67 ]

Turning back to the po.xsd XML schema document discussed in the Importing XML 
Schemas into WSDL Documents section, you might now use it as the basis for another 
XML schema document, changing it a bit by adding the id attribute to the item 
element. The highlighted line in the po_attr.xsd XML schema document shown 
below is the only difference between this document and the po.xsd document 
discussed previously (the po_attr.xsd document shown here has been cut down to 
save space):

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/po/">
  <element name="purchaseOrder">

  ...

  <complexType name="LineItemType">
    <sequence>
      <element name="partId" type="int"/>
      <element name="quantity" type="decimal"/>
      <element name="price" type="decimal"/>
    </sequence>
    <attribute name="id" type="int"/>

  </complexType>
</schema >

The full versions of the PHP scripts, WSDL definitions, XML schemas, 
and other documents discussed here can be found in the downloadable 
archive on the book's Web page.

Now you can call the placeOrder SOAP function, passing as the argument the 
following array, which is the same as the one shown in the Exchanging Complex Data 
Structures with PHP SOAP Extension section, except for the id fields added:

array(4) {
  ["pono"]=>      string(9) "108128476"

  ...

  ["items"]=>     array(1) {
    ["item"]=>      array(2) {
      [0]=>           array(3) {
        ["id"]=>        string(2) "24"

        ["partId"]=>    string(3) "743"



SOAP Servers and Clients with PHP SOAP Extension

[ 68 ]

        ["quantity"]=>  string(1) "4"
        ["price"]=>     string(7) "10.5"
      }
      [1]=>      array(3) {
        ["id"]=>        string(2) "25"

        ["partId"]=>    string(3) "235"
        ["quantity"]=>  string(1) "7"
        ["price"]=>     string(2) "15.75"
      }
    }
  }
}

The following section explains how to convert attributes to elements 
in the XML documents to be transmitted, so that you can generate an 
array, like the one shown above, with the help of the obj2Arr function 
discussed in the Structuring Complex Data for sending section previously.

When generating the payload of the message to be sent, the SOAP software will 
automatically recognize the attributes in the input array and produce the appropriate 
XML document. In this particular example, you will have the following document as 
the payload (it has been cut down to save space):

   <ns1:purchaseOrder>

  ...

    <items>
     <item id="24">

      <partId>743</partId>
      <quantity>4</quantity>
      <price>15.5</price>
     </item>
     <item id="25">

      <partId>235</partId>
      <quantity>7</quantity>
      <price>15.75</price>
     </item>
    </items>
   </ns1:purchaseOrder>

As you can see, the SOAP software correctly generated item elements, according to 
the LineItemType complex type definition described in the XML schema document.



Chapter 2

[ 69 ]

However, the most interesting thing about documents containing attributes is how 
these documents are handled on the receiver side, assuming the receiver of the 
message is built with the PHP SOAP extension.

When the message carrying this payload reaches the receiver (in this example, it's 
the PO Web service provider), the SOAP software operating on the receiver side 
will convert the payload to the following stdClass object before sending it to the 
placeOrder method of the purchaseOrder PHP handler class (the object has been 
cut down to save space):

object(stdClass)#2 (4) {
  ["pono"]=>   string(9) "108128476"

  ...

  ["items"]=>
  object(stdClass)#5 (1) {
    ["item"]=>
    array(2) {
      [0]=>
      object(stdClass)#6 (4) {
        ["partId"]=>      int(743)
        ["quantity"]=>    string(1) "4"
        ["price"]=>       string(7) "15.5"
        ["id"]=>          int(24)

      }
      [1]=>
      object(stdClass)#7 (4) {
        ["partId"]=>      int(235)
        ["quantity"]=>    string(1) "7"
        ["price"]=>       string(2) "15.75"
        ["id"]=>          int(25)

      }
    }
  }
}

As you can see, the SOAP software operating on the SOAP server side treats 
attributes like elements when processing a payload representing an XML document. 
Obviously, if you now try to transform the above stdClass object back to XML, 
using methods of the obj2Dom class as discussed in the Converting SOAP Messages' 
Payloads to XML section earlier, you will have an XML document in which all 
attributes have been converted to elements.



SOAP Servers and Clients with PHP SOAP Extension

[ 70 ]

In the following section, you will learn how to handle this problem by 
applying XSLT transformations to the XML documents derived from 
stdClass objects.

It's important to note that the above example shows only the case when the element 
containing the attributes also contains nested elements. But, what if the element 
containing the attributes represents a text node? For example, you might use the 
currency name as the attribute of the price element in the purchaseOrder document 
discussed here, as shown below:

   <purchaseOrder>

  ...

    <items>
     <item id="24">
      <partId>743</partId>
      <quantity>4</quantity>
      <price currency = "USD">15.5</price>

     </item>
     <item id="25">
      <partId>235</partId>
      <quantity>7</quantity>
      <price currency = "USD">15.75</price>

     </item>
    </items>
   </purchaseOrder>

The price element in the above snippet might be described by the highlighted type 
definition in the po_attr_price.xsd XML schema document shown below. It is 
assumed that you save this document in the WebServices/schema directory.

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/po/">
  <element name="purchaseOrder">
  <element name="purchaseOrder">
   <complexType>
     <sequence>
       <element name="pono" type="string" /> 
       <element name="shipTo" type="types1:AddressType" /> 
       <element name="billTo" type="types1:AddressType"/>
       <element name="items" type="types1:LineItemsType"/>



Chapter 2

[ 71 ]

     </sequence> 
   </complexType>
  </element> 
  <complexType name="AddressType">
   <sequence>
    <element name="name" type="string"/>
    <element name="street" type="string"/>
    <element name="city" type="string"/>
    <element name="state" type="string"/>
    <element name="zip" type="int"/>
    <element name="country" type="NMTOKEN" />
   </sequence>
  </complexType>
  <complexType name="LineItemsType">
   <sequence>
    <element minOccurs="0" maxOccurs="unbounded" name="item" 
      type="types1:LineItemType" />
   </sequence>
  </complexType>
  <complexType name="LineItemType">
    <sequence>
      <element name="partId" type="int"/>
      <element name="quantity" type="decimal"/>
      <element name="price">

        <complexType>

           <simpleContent>

             <extension base="decimal">

               <attribute name="currency" type="string"/>

             </extension>

           </simpleContent>

         </complexType>

       </element>

    </sequence>
    <attribute name="id" type="int"/>
  </complexType>
</schema >

As you can see, the above document is the same as the po_attr.xsd discussed 
previously, except for the highlighted definition describing the price element.

Now, if you call the placeOrder function to transmit the purchaseOrder document 
shown prior to the above XML schema document, you should pass the following 
array as the argument (it has been cut down to save space):



SOAP Servers and Clients with PHP SOAP Extension

[ 72 ]

object(stdClass)#2 (4) {
  ["pono"]=>   string(9) "108128476"

  ...

  ["items"]=>
  array(1) {
    ["item"]=>
    array(2) {
      [0]=>
      array(4) {
        ["id"]=>          string(2) "24"
        ["partId"]=>      string(3) "743"
        ["quantity"]=>    string(1) "4"
        ["price"]=>

        array(2) {

          ["_"]=>            string(4) "15.5"

          ["currency"]=>     string(3) "USD"

        }

      }
      [1]=>
      array(4) {
        ["id"]=>           string(2) "25"
        ["partId"]=>       string(3) "235"
        ["quantity"]=>     string(1) "7"
        ["price"]=>

        array(2) {

          ["_"]=>            string(5) "15.75"

          ["currency"]=>     string(3) "USD"

        }

      }
    }
  }
}

Note that each price element is represented as a two-field array in which the 
value of the price element is mapped to an _ (underscore) field, and the currency 
attribute is mapped to the currency field.

In this example, the stdClass object generated by the SOAP server and then sent to 
the placeOrder method of the purchaseOrder PHP handler class as the argument 
is as follows (again, fields of the object that are unimportant to this discussion have 
been omitted to save space):



Chapter 2

[ 73 ]

object(stdClass)#2 (4) {
  ["pono"]=>   string(9) "108128476"

  ...

  ["items"]=>
  object(stdClass)#5 (1) {
    ["item"]=>
    array(2) {
      [0]=>
      object(stdClass)#6 (4) {
        ["partId"]=>        int(743)
        ["quantity"]=>      string(1) "4"
        ["price"]=>
        object(stdClass)#7 (2) {

          ["_"]=>             string(4) "15.5"

          ["currency"]=>      string(3) "USD"

        }

        ["id"]=>            int(24)
      }
      [1]=>
      object(stdClass)#8 (4) {
        ["partId"]=>        int(235)
        ["quantity"]=>      string(1) "7"
        ["price"]=>
        object(stdClass)#9 (2) {

          ["_"]=>             string(5) "15.75"

          ["currency"]=>      string(3) "USD"

        }

        ["id"]=>            int(25)
      }
    }
  }
}

You might want to convert the above stdClass object back to XML. To do this, you 
might make use of the obj2Dom class discussed in the Converting SOAP Messages' 
Payloads to XML section. However, before you can do that you should modify the 
buildDom method of obj2Dom by adding some lines of code as shown below (the 
added code is highlighted):

private function buildDom($result, $node) {
  $attrFlag=0;

  foreach($result as $key => $value) {



SOAP Servers and Clients with PHP SOAP Extension

[ 74 ]

   if (!is_int($key)){
      $nodeName=$key;
   }
   else {
     $nodeName=$this->arrayName;
   }
   if ($attrFlag==1) {

     $node->setAttribute($nodeName,$value);

     continue;

   }

   if ($nodeName=='_') {

     $txt = $this->dom->createTextNode($value);

     $txt = $node->appendChild($txt);

     $attrFlag = 1;

     continue;

   }

   if (!is_object($value)){
        if (is_array($value)) {
          $this->arrayName=$key;
          $this->buildDom($value,$node);
         }
         else {
          $elm = $this->dom->createElement($nodeName);
          $elm = $node->appendChild($elm);
          $txt = $this->dom->createTextNode($value);
          $txt = $elm->appendChild($txt);
         }
        }
    else {
       $elm = $this->dom->createElement($nodeName);
       $elm = $node->appendChild($elm);
       $this->buildDom($value,$elm);
      }
    }
 }

Now, when invoked, the buildDom method shown above will correctly handle  
the _ fields in the input stdClass object, creating attributes in the appropriate  
text-node elements of the resultant DOM document.

However, note that the updated obj2Dom class still doesn't provide you a mechanism 
to create attributes in the resultant document when it comes to dealing with 
attributes of elements containing nested elements. To handle this problem, you 
might add the following method to the obj2Dom class:



Chapter 2

[ 75 ]

public function elmToAttr($nodeName)
{
   $items = $this->dom->getElementsByTagName($nodeName);
   $count= $items->length;
   for ($i = 0; $i < $count; $i++) {
      $node = $items->item(0);
      $parent = $node->parentNode;
      $parent->setAttribute($node->nodeName, $node->nodeValue);
      $parent->removeChild( 
                   $parent->getElementsByTagName($nodeName)->item(0));
  }
}

The above method takes the name of the element to be processed as the parameter. If 
the DOM tree contains more than one element with the name specified, this method 
will process each of these elements, converting such an element to an attribute of its 
parent element. You will see this method in action in the following section, when 
converting id elements in the item constructs to id attributes.

Transforming XML Documents with XSLT
As you learned in the preceding section, if you need to send an XML document 
containing attributes from a SOAP node built with the PHP SOAP extension, then 
you first have to convert that document into an array in which both the attributes 
and elements of the document are represented as fields. To build such an array on 
an attribute-containing XML document, you might find it useful first to transform 
that document into the one containing no attributes but only elements. This is where 
XSLT (eXtensible Stylesheet Language Transformations) may come in very handy. 

To learn more about XSLT, you can visit the following resource:  
http://www.w3.org/TR/xslt.

Suppose you need to transform the following PO XML document, say, saved as 
po.xml, so that the result document can be easily translated into an array to be 
passed as the argument to the placeOrder function exposed by the PO Web service.

<?xml version="1.0" ?> 
<purchaseOrder>
  <pono>108128476</pono> 

 ...

  <items>
   <item id="24">



SOAP Servers and Clients with PHP SOAP Extension

[ 76 ]

    <partId>743</partId> 
    <quantity>4</quantity> 
    <price currency="USD">15.5</price> 

   </item>
   <item id="25">

    <partId>235</partId> 
    <quantity>7</quantity> 
    <price currency="USD">15.75</price> 

   </item>
   </items>
  </purchaseOrder>

Now, to transform this document into another one that in turn can be easily 
converted into an array to be passed to the placeOrder function as the argument, 
you can create an XSL stylesheet that might look as follows. It is assumed that you 
save this XSL stylesheet as AttrsToElms.xsl in the WebServices/ch2 directory.

<?xml version='1.0' encoding='utf-8' ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
version="1.0">
  <xsl:output method="xml"/>
   <xsl:template match="purchaseOrder">
    <purchaseOrder>
      <xsl:apply-templates/>
    </purchaseOrder>
   </xsl:template>
   <xsl:template match="@*|*|text()">
    <xsl:copy>
     <xsl:apply-templates select="@*|*|text()"/>
    </xsl:copy>
   </xsl:template>
   <xsl:template match="items">
    <items>
     <xsl:for-each select="item">
      <xsl:element name="{name()}">
        <xsl:for-each select="@*">

          <xsl:element name="{name()}">

            <xsl:value-of select="."/>

          </xsl:element>

         </xsl:for-each>

         <xsl:for-each select="*">
          <xsl:choose>

           <xsl:when test="name()='price'">

            <price>



Chapter 2

[ 77 ]

             <_>
              <xsl:value-of select="."/>
             </_>
             <xsl:for-each select="@*">
              <xsl:element name="{name()}">
               <xsl:value-of select="."/>
              </xsl:element>
             </xsl:for-each>
            </price>
           </xsl:when>
           <xsl:otherwise>
            <xsl:element name="{name()}">
             <xsl:value-of select="."/>
            </xsl:element>
           </xsl:otherwise>
          </xsl:choose>
         </xsl:for-each>
        </xsl:element>
     </xsl:for-each>
    </items>
   </xsl:template>
</xsl:stylesheet>

In the first highlighted block you transform all the attributes of the item element 
being processed into nested elements of this item element.

In the second highlighted block you process the elements nested in the item 
elements, performing conditional processing with the xsl:choose construct. 
Specifically, when the nested element being processed is price, all its attributes  
are transformed into elements nested in price, and its value is wrapped in  
the _ element. Otherwise, the item's nested element being processed remains the 
same as before.

To test the XSL stylesheet, create the following script: 

<?php
 //File: XSLTest.php
 $xml = new DOMDocument();
 $xml->load('po.xml');
 $xsl = new DOMDocument();
 $xsl->load('AttrsToElms.xsl');
 $proc = new XSLTProcessor;
 $proc->importStyleSheet($xsl);
 print $proc->transformToXML($xml);
?>



SOAP Servers and Clients with PHP SOAP Extension

[ 78 ]

If you execute this script, it should produce the following document:

<?xml version="1.0" ?> 
<purchaseOrder>
  <pono>108128476</pono> 

 ...

  <items>
   <item>
    <id>24</id> 

    <partId>743</partId> 
    <quantity>4</quantity> 
    <price>

       <_>15.5</_>

       <currency>USD</currency>

    </price> 

   </item>
   <item>
    <id>25</id> 

    <partId>235</partId> 
    <quantity>7</quantity> 
    <price>

       <_>15.75</_>

       <currency>USD</currency>

    </price> 

   </item>
   </items>
  </purchaseOrder>

If you see the above document in your browser, it means the XSL transformation 
performed within the XSLtest.php script has been successfully applied, and 
everything works as expected. If so, you can move on and use this mechanism in a 
SOAP client script to transform the po.xml document shown at the beginning of this 
section to the above XML document, the one that is then translated into the array to 
be passed to the placeOrder function as the argument.

For example, you might create the following script and save it as  
SoapClient_attr_price.php in the WebServices/ch2 directory.

<?php 
 //File: SoapClient_attr_price.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost/WebServices/wsdl/po_attr_price.wsdl";



Chapter 2

[ 79 ]

 $xml = new DOMDocument();

 $xml->load('po.xml');

 $xsl = new DOMDocument();

 $xsl->load('AttrsToElms.xsl');

 $proc = new XSLTProcessor;

 $proc->importStyleSheet($xsl);

 $poxml = $proc->transformToXML($xml);

 $xmldoc = simplexml_load_string($poxml);

 $xmlarr = obj2Arr($xmldoc);
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($xmlarr);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

As you can see, the above script starts by performing the XSL transformation, 
the same as the one you saw in the XSLTest.php script earlier. Next, it loads the 
resultant document into a SimpleXML object, which is then transformed into an 
array being passed to the placeOrder function as the argument.

However, before you can execute the above SOAP client script you need to create a 
SOAP server and PHP handle class to handler responses from the client.

When creating the SoapServer_attr_price.php SOAP server script, you can use the 
SoapServer.php script discussed in the Building the SOAP Server section as the basis, 
changing the included PHP handler class to purchaseOrder_attr_price.php and 
the WSDL document location to http://localhost/WebServices/wsdl/po_attr_
price.wsdl.

If you don't have the po_attr_price.wsdl created, you should build 
it now. As the base, you can use the po_imp.wsdl document discussed 
in the Importing XML Schemas into WSDL Documents section, importing 
the po_attr_price.xsd XML schema discussed in the Dealing with 
Attributes section and pointing the soap:address location attribute 
to http://localhost/WebServices/ch2/SOAPServer_attr_
price.php.



SOAP Servers and Clients with PHP SOAP Extension

[ 80 ]

The purchaseOrder_attr_price.php script containing the handler class should 
look as follows:

<?php
 //File purchaseOrder_attr_price.php
 require_once 'obj2Dom.php';
 class purchaseOrder {
   function placeOrder($po) {
    $obj = new obj2Dom('purchaseOrder');

    $obj->trans2Dom($po);

    $obj->elmToAttr('id');

    $po=$obj->printDomTree();

    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
       throw new SoapFault("Server","Failed to connect to database"); 
    };
    $sql = "INSERT INTO purchaseOrders VALUES(:po)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

As you can see, the placeOrder function is similar to the one in the  
purchaseOrder_typed.php script discussed in the Converting SOAP Messages' 
Payloads to XML section earlier. The only difference is that you utilize the elmToAttr 
method of the obj2Dom instance here, passing 'id' as the argument.

As an alternative to the elmToAttr method here, you might apply an 
XSL transformation to the resultant XML document returned by the 
printDomTree method, converting id elements into attributes, as they 
were in the original document.

Now, if you execute the SoapClient_attr_price.php script, the placeOrder 
function should insert into the purchaseOrders table the po.xml document shown 
at the beginning of this section.



Chapter 2

[ 81 ]

Extending PHP SOAP Extension 
Predefined Classes 
You can extend predefined classes of the PHP SOAP extension as needed. Here is anhe PHP SOAP extension as needed. Here is an 
example of how you might extend the SoapServer class. It is assumed that you save 
this script as SoapServer_ext.php in the in the WebServices\ch2:

<?php
 //File: SoapServer_ext.php
 require_once "purchaseOrder.php"; 
 class MySoapServer extends SoapServer {
  var $client;
  function __construct($wsdl1, $wsdl2) {
   parent::__construct($wsdl1);
   $this->client = new SoapClient($wsdl2);
  }
  function handle() {
   ob_start();
   parent::handle();
   $buf=ob_get_contents();
   ob_get_flush();
   $buf=html_entity_decode($buf);
   $env = simplexml_load_string($buf);     
   $rslt= $env->xpath('//rsltMsg');
   if ($rslt==null) {
    $rslt= $env->xpath('//faultstring');
   }
   $this->client->regOrder(htmlentities((string) $rslt[0]));
  }
 }
 $wsdl1= "http://localhost/WebServices/wsdl/po_ext.wsdl";
 $wsdl2= "http://localhost/WebServices/wsdl/reg.wsdl";
 $srv= new MySoapServer($wsdl1, $wsdl2);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

The MySoapServer class extending the SoapServer predefined class overrides the 
constructor and the handle method of the parent class. The overridden constructor 
takes links to the two WSDL documents as the parameters, and creates a SoapClient 
instance that is then used in the overridden handle method to invoke the regOrder 
SOAP function.



SOAP Servers and Clients with PHP SOAP Extension

[ 82 ]

Before you put this SOAP server script into action, you have to create a few other 
scripts and documents. First of all, make sure to create the po_ext.wsdl and reg.
wsdl documents used here.

To create the po_ext.wsdl document, you can use the po.wsdl file discussed in the 
Designing the WSDL Document section as the base. The only thing you have to change 
is the value of the location attribute in the soap:address element within the 
service definition of the document. In particular, you should specify the following 
URL: http://localhost/WebServices/ch2/SOAPServer_ext.php. In the case of 
reg.wsdl, you should specify the following value for the soap:address location 
attribute: http://localhost/WebServices/ch2/SOAPServer_reg.php.

The next step is to create the SOAPServer_reg.php SOAP server script that will be 
automatically invoked each time the overridden handle method of MySoapServer is 
called. The SOAPServer_reg.php should look like the following:

<?php
 //File: SoapServer_reg.php
 $wsdl= "http://localhost/WebServices/wsdl/reg.wsdl";
 require_once "reg.php"; 
 $srv = new SoapServer($wsdl);
 $srv->setClass("reg");
 $srv->handle();
?>

As you can see, the above SOAP server exposes methods of the reg custom class. So, 
make sure to create the reg class. It might look like the following:

<?php
 //File reg.php
 class reg {
   function regOrder($reginfo) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to 
                                                       database"); 
    };
    $sql="INSERT INTO regDocs VALUES(SYSDATE, :reginfo)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':reginfo', $reginfo);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to execute query"); 
    };
    $msg='Ok!';
    return $msg;
   }
 }
?>



Chapter 2

[ 83 ]

Looking through this code, you may notice that the regOrder method takes one 
parameter and inserts it into the regDocs database table. So you need to create the 
regDocs table before you can use regOrder. This can be done from SQL*Plus by 
issuing the following statements:

CONN xmlusr/xmlusr;

CREATE TABLE regDocs(
    dateTime DATE,
    msg VARCHAR2(100)
);

Finally, you have to create the SoapClient_ext.php script that will call the 
placeOrder method of the purchaseOrder class exposed by the SoapServer_ext.
php SOAP server script. The SoapClient_ext.php is almost the same as the 
SoapClient.php script discussed in the Building the Service Requestor section, except 
for the WSDL document specified. In the case of SoapClient_ext.php, you should 
specify http://localhost/WebServices/wsdl/reg.wsdl as the WSDL document.

Now, if you execute the SoapClient_ext.php script, you should see a PO inserted! 
message. Then, you can check out the regDocs table by issuing the following 
statements from SQL*Plus:

CONN xmlusr/xmlusr;

SELECT * FROM regDocs;

The above should return output that might look as follows:

DATETIME    MSG
---------------------------
02-APR-07   PO inserted!

Defining Parameter‑Driven Operations
As mentioned in Chapter 1, using parameter-driven service operations allows you tosing parameter-driven service operations allows you to 
invoke the required piece of underlying logic depending on the arguments passed in. 
So, you can expose a single operation—passing parameters identifying what actually 
has to be done. This section shows a simple example of using this technique. You'll 
build a Web service that exposes a single function, namely getOrder. This function 
takes two parameters: the ID of a purchaseOrder and the parameter identifying 
what you want to receive: the document itself or its status.



SOAP Servers and Clients with PHP SOAP Extension

[ 84 ]

To start with, you need to create a database table to store the orders' status 
information. Here are the statements you should issue from SQL*Plus:

CONN xmlusr/xmlusr;

CREATE TABLE poStatusInfo(
    pono VARCHAR2(9),
    status VARCHAR2(15)
);

INSERT INTO poStatusInfo VALUES(

    '108128476',

    'shipped'

);

COMMIT;

The next step is to create the underlying service logic. To achieve this, create the 
following class and save it in the orderInfo.php file:

<?php
 //File orderInfo.php
 class orderInfo {
   function getOrder($pono, $par) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to 
                                                 database"); 
    };
    switch ($par) {

     case 'doc':

      $sql="SELECT doc FROM purchaseOrders WHERE 

         extractValue(XMLType(doc), '/purchaseOrder/pono')=:pono 

         AND rownum=1";

      break;

     case 'status':

      $sql="SELECT status FROM poStatusInfo WHERE pono=:pono";

      break;

    }

    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':pono', $pono);



Chapter 2

[ 85 ]

    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to execute query"); 
    };
    oci_fetch($query);
    $rslt = oci_result($query, strtoupper($par));
    return $rslt;
   }
 }
?>

As you can see, orderInfo uses a different SQL statement querying the database, 
depending on the value passed in with the second parameter.

Next, you need to create the WSDL document describing the Web service discussed 
here. Here is the WSDL document being used in this example. It is assumed that you 
save it as po_params.wsdl in the WebServices/wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poInfoService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace= 
                           "http://localhost/WebServices/wsdl/poInfo">
    <message name="getOrderInfoInput">
        <part name="pono" element="xsd:string"/>

        <part name="par" element="xsd:string"/>

    </message>
    <message name="getOrderInfoOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poInfoServicePortType">
        <operation name="getOrder">
           <input message="tns:getOrderInfoInput"/>
           <output message="tns:getOrderInfoOutput"/>
        </operation>
    </portType>
    <binding name="poInfoServiceBinding" 
             type="tns:poInfoServicePortType">
        <soap:binding style="rpc" 
             transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="getOrder">
           <soap:operation 
             soapAction="http://localhost/WebServices/ch2/getOrder"/>



SOAP Servers and Clients with PHP SOAP Extension

[ 86 ]

           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poInfoService">
        <port name="poInfoServicePort" 
             binding="tns:poInfoServiceBinding">
           <soap:address 
  location="http://localhost/WebServices/ch2/SOAPServer_params.php"/>
        </port>
    </service>
</definitions>

Note that the getOrderInfoInput message in the above document consists of  
two parts that represent parameters of the getOrder operation described in  
the document.

To expose the getOrder method of the orderInfo class, you use the following SOAP 
server script, saved as SOAPServer_params.php:

<?php
//File: SoapServer_params.php
require_once "orderInfo.php"; 
$wsdl= "http://localhost/WebServices/wsdl/po_params.wsdl";
$srv= new SoapServer($wsdl);
$srv->setClass("orderInfo");
$srv->handle();
?>

Once you've done all that, you can test the Web service. To do this, you might build 
and then execute the following SOAP client.

<?php 
 //File: SoapClient_params.php
 $wsdl = "http://localhost/WebServices/wsdl/po_params.wsdl";
 $client = new SoapClient($wsdl);
 $pono='108128476';
 $par='doc';
 try {
  print $result=$client->getOrder($pono, $par);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>



Chapter 2

[ 87 ]

When executed, this script should output the entire PO XML document whose pono 
is 108128476. However, if you specify $par='status' in the above code, you will 
get only the message saying shipped.

Summary
As you have learned in this chapter, creating service providers and service 
requestors with the PHP SOAP extension is quite easy in most cases—you simply 
manipulate predefined SOAP classes. Things become a bit more complicated when 
it comes to transmitting complex type data—especially if you are dealing with 
XML documents whose elements contain attributes. This is where intermediate 
transformations are required. We looked at how to employ a custom PHP class to 
perform such transformations and how to use standard XSLT mechanism.

In this chapter, you also learned how to extend predefined classes of the PHP SOAP 
extension and how standard methods of these classes can be overridden to suit the 
needs of your application. The chapter wrapped up by explaining how to build Web 
services supporting parameter-driven operations.





Designing Data-Centric  
Web Services

The PO Web service discussed in the preceding chapter used a database to store 
the incoming PO XML documents. Another common usage of a database by a 
Web service is to retrieve from the database data required to satisfy the request 
of a consumer. It is worth noting that a service consumer may also interact with a 
database to store or retrieve data being received from or sent to the service provider. 
However, in a real-world situation, a service or service consumer may use a database 
not only to store or retrieve data, but also to perform some processing on that data, 
thus putting some data processing logic inside the database.

This chapter contains several examples on using the two most popular databases 
today—MySQL and Oracle—when building data-centric Web services. The examples 
provided here will help you understand the differences between these two databases 
and help you choose the most appropriate one when planning your solution. In this 
chapter, you will learn the following:

Factors to consider when choosing a database for your data-centric service
Building services interacting with MySQL
Using relational tables to store XML data processed by a service
Creating services interacting with Oracle
Effectively distributing data processing between the Web/PHP server and 
database server
Utilizing Oracle's XML features when building the underlying logic of  
a service
Moving the conditional logic of a parameter-driven operation into  
the database

•

•

•

•

•

•

•



Designing Data-Centric Web Services

[ 90 ]

Which Database to Choose
It's important to realize, when designing a data-centric service, the database is 
just a part of the solution—some underlying logic is still implemented outside 
the database. Which part of the underlying logic may be implemented inside the 
database depends on the database used. You should keep in mind that databases are 
different—many of them allow you not only to store data, but also to process it, thus 
moving data processing into the database. So, knowing your database, its capabilities 
and features, is the only way you'll be able to come up with effective data-centric 
Web services. This section focuses on the two most popular databases today:  
MySQL and Oracle.

Before moving on to the discussion of issues related to a specific database, though, 
let's look at the general structure of a data-centric service. The following figure gives 
a conceptual depiction of a data-centric service.

Data

Service
interface

Service
underlying

logic

As you can see in the figure, a data-centric Web service, like any other Web service, 
uses its service interface to communicate with the outside world by means of  
SOAP messages. The service underlying logic is responsible for interacting with  
the database.

What the above figure doesn't tell you is that how underlying logic of a data-centric 
service is distributed between the Web/PHP server and database server. Actually, 
there may be several different variations. As stated earlier, the most important factor 
that influences the underlying logic implementation is the database you use. For 
example, if you are using Oracle, in most cases you can implement the underlying 
logic of a service entirely within the database. In contrast, when using MySQL, you 
probably will have to implement most of this logic in PHP.



Chapter 3

[ 91 ]

Going back to the examples you saw in the preceding chapter, you will remember 
that a SOAP message payload is usually an XML document of a certain XSD type. 
When the message arrives, though, the payload is by default transformed into an 
stdClass object.

However, sometimes you may need to pass over this transformation and 
utilize the XML document in the form in which it arrives.

On the other hand, databases usually deal with relational data. So, when developing 
data-centric services using PHP SOAP extension, you often need to implement 
some transformation logic responsible for transforming PHP structures or XML into 
relational data and vice versa. The following figure shows an example in which all 
the data processing is implemented in PHP, using the database only as a repository 
for storing data. This particular example assumes that the data arriving with 
incoming messages is not translated into PHP structures such as stdClass objects, 
and is processed as XML.

Relational
data

Manipulating data
encapsulated in
SOAP messages

Sending/receiving
SOAP message

Web/PHP server

Database server

Transforming
relational data into
XML and vice versa



Designing Data-Centric Web Services

[ 92 ]

You may use the approach depicted in the figure when your database doesn't 
provide the native XML support. This approach can also be employed when using 
PHP in conjunction with Oracle; however, in the case of Oracle you have several 
options when it comes to dealing with XML content based on relational data. For 
example, you might move transformation logic into the database, or even implement 
logic for manipulating data encapsulated in SOAP messages inside the database. 
These two options are depicted in the following figure:

Relational
data

Relational
data

Manipulating data
encapsulated in
SOAP messages

Manipulating data
encapsulated in
SOAP messages

Sending/receiving
SOAP message

Sending/receiving
SOAP message

Web/PHP server Web/PHP server

Database server Database server

Transforming
relational data into
XML and vice versa

Transforming
relational data into
XML and vice versa

As you can see in the figure, Oracle allows you to perform data processing inside 
the database, rather than operating on the Web/PHP server side. By moving the 
key business logic of your service into the database, you will have more reusable 
solutions, since the implementation details of the service's underlying logic are 
removed from the PHP handler class, thus making it easier to reuse either the PHP 
class or the underlying logic implemented inside the database in another project. 
Moreover, this approach of moving underlying logic of a service inside the database 
makes it possible to take advantage of the Oracle XML features, including  
XML-specific memory optimizations, thus increasing performance of the service.increasing performance of the service.

In the Moving Conditional Logic into the Database section later in this 
chapter, you will see an example of moving underlying logic of a service 
inside an Oracle database.



Chapter 3

[ 93 ]

While the previous figure illustrates how the processing logic of a data-centric 
service operating on relational data might be moved into the database, Oracle, 
however, provides a better option. With Oracle, you can store and retrieve the 
data you are working with in an XML format, thus avoiding the need to transform 
your data from XML to a relational set and vice versa. The following figure gives a 
graphical depiction of this design.

XML data

Manipulating data
encapsulated in
SOAP messages

Sending/receiving
SOAP message

Web/PHP server

Database server

To handle XML data in the database natively, Oracle introduced the XMLType 
datatype. With the help of XMLType, you can handle XML documents via SQL and 
PL/SQL interfaces much as you do when it comes to working with relational data.

In fact, Oracle provides a set of XML features to assist native handling of 
XML data. Use of Oracle's XML features is discussed in greater detail in 
the Using Oracle Database XE section later in this chapter. For more details, 
you can refer to Oracle Documentation: Oracle XML DB Developer's Guide.

Using MySQL
MySQL remains the most popular open-source database today. Although MySQL 
lacks native XML support, it can still be efficiently used as the database back end in 
data-centric Web services.



Designing Data-Centric Web Services

[ 94 ]

As of PHP 5, MySQL support is not enabled by default. On Linux 
systems, you have to compile your PHP installation using the --with-
mysql configure option to enable the MySQL extension. If you are a 
Windows user, you need to uncomment the extension=php_mysql.
dll line in the php.ini configuration file and restart the Web server.

In the following sections, you will see some examples showing how you might 
organize your data-centric services to interact with MySQL.

Building a Service Interacting with MySQL
Coming back to the example discussed in the Building Service Providers and Service 
Requestors section in Chapter 2, you might want to rebuild it to interact with MySQL 
instead of Oracle.

To start with, you need to create a new database and then define a user to connect to 
the newly created database, granting the required privileges to that user. Next, you 
need to shift to this database and create the purchaseOrder table to be used to store 
PO XML documents. To handle this task, you can issue the following SQL statements 
from the MySQL Command Line Client:

CREATE DATABASE my_db;

GRANT CREATE, DROP, SELECT, INSERT, UPDATE, DELETE
ON my_db.*
TO 'usr'@'localhost'
IDENTIFIED BY 'pswd';

USE my_db

CREATE TABLE purchaseOrders(
 id INTEGER AUTO_INCREMENT PRIMARY KEY,
 doc VARCHAR(2000)
);

Once you're done, you have the database with the purchaseOrders table required 
to store the incoming purchase orders. Now you can move on to the next subject: the 
PHP handler class.

In the case of MySQL, the purchaseOrder class discussed in the Developing the PHP 
Handler Class section in Chapter 2 might look like the following:

<?php
 //File purchaseOrder.php
 class purchaseOrder {
   function placeOrder($po) {
    if(!$conn = mysql_connect('localhost', 'usr', 'pswd')){



Chapter 3

[ 95 ]

        throw new SoapFault("Server","Failed to connect to 
                                               database"); 
    };
    if(!mysql_select_db('my_db')){
        throw new SoapFault("Server","Failed to select database"); 
    };
    $sql = "INSERT INTO purchaseOrders SET doc='".$po."'";
    if (!$result = mysql_query($sql)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    mysql_close($conn);
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

The above example uses the PHP MySQL extension functions to interact with the 
database. If you're using MySQL 4.1.3 or newer, you can take advantage of the 
MySQL Improved extension. In that case, the purchaseOrder class shown above 
might be rewritten as follows:

<?php
 //File purchaseOrder_mysqli.php
 class purchaseOrder {
   function placeOrder($po) {
    if(!$conn = new mysqli('localhost', 'usr', 'pswd', 'my_db')){
        throw new SoapFault("Server","Failed to connect to 
                                                     database"); 
    };
    $sql = "INSERT INTO purchaseOrders(doc) VALUES (?)";
    $stmt = $conn->prepare($sql);
    $stmt->bind_param('s', $po);
    if (!$result = $stmt->execute()) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $stmt->close();
    $conn->close();
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>



Designing Data-Centric Web Services

[ 96 ]

While this script looks a bit better than the previous one, from the user's standpoint, 
though, they both come to the same result.

The PHP MySQL Improved extension is a new feature bundled with 
PHP 5. To enable it on a Linux system, you need to have your PHP 
installation compiled using the --with-mysqli=mysql_config_
path/mysql_config configure option, specifying the actual path 
to the mysql_config program shipped with MySQL, in place of 
mysql_config_path. If you are a Windows user, you need to have 
the extension=php_mysqli.dll line uncommented in the php.ini 
configuration file.

It is important to note that moving towards MySQL in the purchaseOrder.php PHP 
handler class as shown in the above examples doesn't require any changes in the 
SoapClient.php and SoapServer.php scripts discussed in Chapter 2 in the Building 
the Service Requestor and Building the SOAP Server sections respectively.

To be able to test the example discussed here, you will need to copy the SoapClient.
php and SoapServer.php scripts, as well as the purchaseOrder.xml document, from 
the /WebServices/ch2 directory to /WebServices/ch3 and then modify these scripts 
so that they employ the po_mysql.wsdl WSDL document rather than the po.wsdl 
document used in those scripts in Chapter 2. So, the updated SoapClient.php should 
look as follows: 

<?php 
 //File: SoapClient.php
 $wsdl = "http://localhost/WebServices/wsdl/po_mysql.wsdl";
 $handle = fopen("purchaseOrder.xml", "r");
 $po= fread($handle, filesize("purchaseOrder.xml"));
 fclose($handle);
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($po);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }

?>

This means you will also need to create po_mysql.wsdl in the /WebServices/wsdl 
directory. The only difference between the po.wsdl WSDL document discussed 
in Chapter 2 and po_mysql.wsdl used here is that the latter, using the location 
attribute of the soap:address element, references the SOAPServer.php script stored 
in the /WebServices/ch3 directory, while the former references /WebServices/ch2/
SOAPServer.php script.



Chapter 3

[ 97 ]

Once you've done all that, you can execute the /WebServices/ch3/SoapClient.php 
script. As a result, you should see a PO inserted! message in your browser.

To make sure a PO document has been inserted, you can execute the following 
simple script that selects the data stored in the doc column of the purchaseOrders 
MySQL table and outputs it to the browser:

<?php
    //getOrders.php
    $conn = mysql_connect('localhost', 'usr', 'pswd')
        or die("Failed to connect to database: ".mysql_error()); 
    mysql_select_db('my_db')
        or die("Failed to select database"); 
    $sql = "SELECT doc FROM purchaseOrders"; 
    $result = mysql_query($sql)
        or die("Failed to select data: ".mysql_error()); 
    while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
    foreach ($line as $col_value) {
       echo $col_value;
     }
    }
    mysql_free_result($result);
    mysql_close($conn);
?>

As a result, you should see the same PO XML document as the one passed to the 
placeOrder method as the parameter in the SoapClient.php script discussed earlier 
in this section.

Storing XML Data in Relational Tables
As you saw in the preceding section, storing an XML document as a string in MySQL 
is as easy as in Oracle. But what if you want to shred an incoming XML document 
into relational data and then store it in a set of related tables?

To handle this task, you first need to examine the structure of the XML documents 
being stored. Schematically, the PO XML document discussed here looks as follows:

<purchaseOrder>
 <pono>...</pono>
 <shipTo>
  ...
 </shipTo>
 <billTo>
  ...



Designing Data-Centric Web Services

[ 98 ]

 </billTo>
 <items>
   <item>
    ...
   </item>
   ...
 </items>
</purchaseOrder>

Looking through the above structure, you might divide it into the following four 
logical blocks:

Upper-level elements containing no nested elements. In this particular 
example, there is only one such element, namely pono. A real-world PO 
would contain more such elements; for example, shipDate and customerId.
Elements within the shipTo construct.
 Elements within the billTo construct.
 item elements within the items construct.

What this means in practice is that you need to create four tables to store the 
shredded PO XML documents. For the purpose of this example, you might create the 
tables as shown below, using the MySQL Command Line Tool—a simple SQL shell 
that comes with MySQL.

CREATE TABLE orders (
    pono VARCHAR(9) PRIMARY KEY

) ENGINE= InnoDB;

CREATE TABLE shipTo (
    pono VARCHAR(9) PRIMARY KEY,

    name VARCHAR(30),
    street VARCHAR(50),
    city VARCHAR(50),
    state VARCHAR(2),
    zip INTEGER,
    country VARCHAR(3),
    FOREIGN KEY (pono) REFERENCES orders (pono)

) ENGINE= InnoDB;

CREATE TABLE billTo (
    pono VARCHAR(9) PRIMARY KEY,

    name VARCHAR(30),
    street VARCHAR(50),
    city VARCHAR(50),
    state VARCHAR(2),

•

•

•

•



Chapter 3

[ 99 ]

    zip INTEGER,
    country VARCHAR(3),
    FOREIGN KEY (pono) REFERENCES orders (pono)

) ENGINE= InnoDB;

CREATE TABLE items (
   id INTEGER AUTO_INCREMENT PRIMARY KEY,
   pono VARCHAR(9),

   partId INTEGER,
   quantity DECIMAL(20,4),
   price DECIMAL(12,2),
   FOREIGN KEY (pono) REFERENCES orders (pono)

) ENGINE= InnoDB;

As you can see, in this particular example the orders table contains a single field, 
namely pono. You declare this field as the primary key because you don't want the 
orders table to contain two or more rows representing the same PO document.

Each of the other tables created here also contains a pono field, which is used in 
these case as a foreign key to the orders table. The foreign key constraints used here 
guarantee that the billTo, shipTo, and items tables will contain only those rows 
that have a matching row in the orders table. The difference between these tables is 
that the billTo and shipTo tables use the pono field as a foreign key and primary 
key simultaneously, while the items table uses that field only as a foreign key. 
There is a simple explanation: this is because a PO XML document may contain only 
one shipping address and one billing address, while still containing more than one 
purchased item.

To learn more about using foreign key constraints in MySQL,  
you can refer to MySQL documentation at  
www.mysql.com/doc/en/index.html.

Now that you have created the database tables to store incoming PO XML 
documents, you can move on and create the PHP handler class that will shred 
those documents into appropriate pieces and then store them into the database. 
The purchaseOrder_relational.php script containing the purchaseOrder PHP 
handler class is as follows:

<?php
 //File purchaseOrder_relational.php
 class purchaseOrder {
   function placeOrder($po) {
    if(!$conn = new mysqli('localhost', 'usr', 'pswd', 'my_db')){
        throw new SoapFault("Server","Failed to connect to 
                                                     database"); 



Designing Data-Centric Web Services

[ 100 ]

    };
    $conn->autocommit(FALSE);
    //Into orders table you insert only upper-level PO XML 
    //doc elements containing no nested elements
    $sql="INSERT INTO orders SET ";

    foreach($po as $key => $value){

     if(!is_object($value))

     {

      $sql=$sql.$key."='".$value."',";

     }

    };

    $sql = substr($sql, 0, strlen($sql)-1);

    $stmt = $conn->prepare($sql);

    if (!$stmt->execute()) {

        throw new SoapFault("Server","Failed to insert PO"); 

    };

    //Then, you insert billTo and shipTo elements into 
    //appropriate tables
    foreach($po as $key => $value){

     if(is_object($value) AND $key!='items')

     {

       $sql="INSERT INTO ".$key." SET pono ='".$po->pono."',";

       foreach($value as $elmname => $elmvalue){

          $sql=$sql.$elmname."='".$elmvalue."',";

       } 

       $sql = substr($sql, 0, strlen($sql)-1);

       $stmt = $conn->prepare($sql);

       if (!$stmt->execute()) {

         throw new SoapFault("Server","Failed to insert PO"); 

       }

      }

    };

    //Finally, you fill up the items table
    foreach($po->items->item as $key => $value){

       $sql="INSERT INTO items SET pono ='".$po->pono."',";

       foreach($value as $elmname => $elmvalue){

          $sql=$sql.$elmname."='".$elmvalue."',";

       } 

       print $sql = substr($sql, 0, strlen($sql)-1);

       $stmt = $conn->prepare($sql);

       if (!$stmt->execute()) {



Chapter 3

[ 101 ]

         throw new SoapFault("Server","Failed to insert PO"); 

       }

    }

    $conn->commit();
    $stmt->close();
    $conn->close();
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

Despite the fact that an incoming PO XML document is supposed to be shredded 
into four parts and saved in four different database tables, the above implementation 
of the purchaseOrder class contains three separate processing blocks implementing 
this shredding logic. Each of these blocks is highlighted in bold in the above listing.

The foreach construct in the first highlighted block iterates over each upper-level 
element in the stdClass structure representing the incoming PO document, but 
only those iterated elements that contain no nested elements are selected here to 
be inserted into the orders table as a single row. In this particular example, the 
document contains the only such element, namely pono.

The foreach construct in the second highlighted block iterates the same stdClass 
structure as in the preceding block. However, this time only the complex upper-level 
elements are processed, excluding the items element. In this particular example, this 
block will process the billTo and shipTo elements of the document.

In the third highlighted block, the outer foreach construct iterates over each item 
in the items construct of the document, inserting each iterated item into the items 
table as a single row.

In the Using XML Schemas with Oracle XML DB section later in this 
chapter, you will see how the example discussed here might be 
implemented when using Oracle as the back-end database for the service. 
In particular, you will learn how to use the XML schema Oracle XML 
DB feature to make the database implicitly perform the shredding logic 
implemented here in PHP.

Another important thing to note about the above code is that it is transactional. You 
turn off the auto-commit mode with the following line:

    $conn->autocommit(FALSE);



Designing Data-Centric Web Services

[ 102 ]

By doing so, you explicitly control transactional behavior of the placeOrder method, 
ensuring that an unfinished transaction will not be committed to the database. In this 
particular example, if at least one INSERT operation performed within this method 
fails, the entire transaction will be automatically rolled back. Only if each INSERT 
operation has been completed successfully, will the transaction be committed to 
the database, making the changes made permanent. However, this is not going to 
happen by default; you explicitly commit the transaction after performing all the 
INSERT operations, using the commit method of the mysqli object as follows:

    $conn->commit();

To put the purchaseOrder class shown above into action, you need to create the 
SoapServer_relational.php and SoapClient_relational.php scripts in the 
WebServices/ch3 directory. Here is the SoapClient_relational.php script:

<?php 
 //File: SoapClient_relational.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost/WebServices/wsdl/po_relational.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $xmlarr = obj2Arr($xmldoc);
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($xmlarr);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

Note that the above script assumes the obj2Arr.php script discussed in Chapter 
2 is in the WebServices/ch3 directory. So, make sure to copy it there from the 
WebServices/ch2 directory..

The code for the SoapServer_relational.php script is as follows:

<?php
//File: SoapServer_relational.php
require_once "purchaseOrder_relational.php"; 
$wsdl= "http://localhost/WebServices/wsdl/po_relational.wsdl";
$srv= new SoapServer($wsdl);
$srv->setClass("purchaseOrder");
$srv->handle();
?>



Chapter 3

[ 103 ]

As you can see, both the client and server use the po_relational.wsdl  
WSDL definition document. When creatingcreating po_relational.wsdl, you can use  
po_imp.wsdl discussed in Chapter 2 as the base, changing only the value of  
the location attribute in the soap:address element to the location of the 
SoapServer_relational.php script.

Once you've done all that, you can execute the SoapClient_relational.php script. 
If everything goes as planned, you will see a PO inserted! message. To make sure it 
has been done, you might issue a query against any or each of the tables created as 
discussed at the beginning of this section. If, for example, you issue queries against 
the orders and items tables from the MySQL Command Line Tool, you should see 
the following output:

As you can see in the previous figure, the items table contains two rows, each of 
which represents a purchased item of the order whose pono is 108128476.

Using Oracle Database XE
As the title implies, this section discusses how to build data-centric services on top of 
Oracle Database XE—a free edition of Oracle Database.



Designing Data-Centric Web Services

[ 104 ]

Like any other edition of Oracle Database, Oracle XE fully supports 
Oracle XML DB, a set of Oracle XML features enabling you to transform, 
construct, and natively store XML data, thus opening a whole spectrum 
of opportunities to process SOAP messages inside the database. However, 
note that to follow the examples discussed in this section, as well as all 
Oracle-related examples throughout this book, you are not in fact limited 
to using Oracle XE—any edition of Oracle Database will do.

If there's one thing to say why Oracle is a better choice than MySQL when it comes 
to data-centric services, it's that Oracle provides native XML support, while MySQL 
lacks it. With Oracle, you can handle the lion's share of data processing performed 
by your data-centric service inside the database while still meeting the principles of 
service-orientation.

Using XML Schemas with Oracle XML DB
While the most common usage of an XML schema is to validate that a certain XML 
document conforms to the definitions defined by that XML schema, Oracle also 
allows you to use XML schemas to automatically generate the storage for a certain 
set of XML documents.

As stated earlier, when using an Oracle database, you can store the data processed by 
the service in XML format, taking advantage of the native XML support. To achieve 
this, you first need to create an XMLType storage structure within the database. 
The simplest way to create an XMLType storage structure in Oracle XML DB is 
by registering an appropriate XML schema against the database. As a part of the 
registration process, Oracle automatically creates storage for a particular set of XML 
documents, based on the information provided by the schema.

So, you might want to create and register an XML schema against the database  
in order to:

Build the storage for XML documents conforming the schema
Set up business rules on XML content of conforming documents
Validate XML documents conforming the schema

Turning back to the example discussed in the Storing XML Data in Relational Tables 
section, you can re-design it to use Oracle instead of MySQL, creating the storage for 
incoming PO XML documents by registering an XML schema. However, before you 
can do that, you need to grant the ALTER SESSION privilege to the database user with 
which you are going to connect to your Oracle database. Assuming that you have 
xmlusr/xmlusr user created as discussed in Chapter 2 in the Setting Up the Database 
section, you can issue the following GRANT statement from SQL*Plus:

•

•

•



Chapter 3

[ 105 ]

CONN /as sysdba

GRANT ALTER SESSION TO xmlusr;

Once you're done, you can connect as xmlusr/xmlusr user to the database and then 
issue the PL/SQL block shown below.

However, note that if you are using the command-line version of 
SQL*Plus and not the Windows GUI one, you won't be able to just 
copy and paste this block of code. So, you may find it a bit laborious to 
manually enter it. One way around this problem is to take advantage of 
SQL*Plus's ability to execute scripts created by an external editor. For 
example, you might issue the following command: EDIT po_schema 
from SQL*Plus to invoke your system's default text editor with the  
po_schema.sql script automatically created. Then, you paste the  
PL/SQL block shown below in the script and close it, saving the changes 
made. The next step is to run the newly created po_schema.sql script 
by issuing the following SQL*Plus command: START po_schema.

BEGIN 
 DBMS_XMLSCHEMA.registerschema(
  'po.xsd',       
  '<?xml version="1.0"?>
  <schema targetNamespace="http://localhost/WebServices/schema/po/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/po/"
        xmlns:xdb="http://xmlns.oracle.com/xdb">

   <element name="purchaseOrder" type ="types1:purchaseOrder_typ"
           xdb:defaultTable="ORDERS"        

           xdb:columnProps=

               "CONSTRAINT po_pkey PRIMARY KEY (XMLDATA.PONO)"/>

   <complexType name="purchaseOrder_typ" 
                                xdb:SQLType="PURCHASEORDER_TYP">
    <sequence>
      <element name="pono" type="string" xdb:SQLName="PONO" 

                                xdb:SQLType="VARCHAR2"/> 

      <element name="shipTo" type="types1:AddressType" /> 
      <element name="billTo" type="types1:AddressType"/>
      <element name="items" type="types1:LineItemsType"/>
    </sequence> 
   </complexType>
   <complexType name="AddressType">
    <sequence>
     <element name="name" type="string"/>
     <element name="street" type="string"/>



Designing Data-Centric Web Services

[ 106 ]

     <element name="city" type="string"/>
     <element name="state" type="string"/>
     <element name="zip" type="int"/>
     <element name="country" type="NMTOKEN" />
    </sequence>
   </complexType>
   <complexType name="LineItemsType">
    <sequence>
    <element minOccurs="0" maxOccurs="unbounded" name="item" 
                            type="types1:LineItemType" />
    </sequence>
   </complexType>
   <complexType name="LineItemType">
    <sequence>
      <element name="partId" type="int"/>
      <element name="quantity" type="decimal"/>
      <element name="price" type="decimal"/>
    </sequence>
   </complexType>
  </schema >',
  TRUE,        
  TRUE,       
  FALSE,      
  TRUE      
 );
END;
/

As you can see in the above PL/SQL block, the registerSchema procedure from the 
DBMS_XMLSCHEMA PL/SQL package takes two arguments. The first one represents 
the name under which you want to register the schema against the database and the 
second one represents the XML schema itself.

Looking through the po.xsd XML schema discussed here, you may notice that it is 
very similar to the po.xsd XML schema discussed in Chapter 2 in the Importing XML 
Schemas into WSDL Documents section. You simply added the xmlns:xdb="http://
xmlns.oracle.com/xdb" namespace as an attribute to the schema element, which 
allowed you to use Oracle XML schema annotations within the schema.

Oracle XML schema annotations are used to influence the underlying objects 
automatically generated by Oracle during the schema registration process. For 
example, the xdb:defaultTable annotation is used to explicitly define the name of 
the XMLType table generated to store XML documents conforming to the schema.



Chapter 3

[ 107 ]

Another interesting annotation used here is xdb:columnProps. In this example, 
you use this annotation to define a primary key on the PONO element mapped to the 
orders table generated here.

Also note the use of the xdb:SQLName annotation. You use it to explicitly specify the 
name of the generated SQL object type. Otherwise, Oracle will use system-generated 
names. In this particular example, you use the xdb:SQLName annotation when 
defining the PONO element. This makes it possible for you to use a certain name when 
defining the primary key on the orders table, as discussed above.

Now, you might want to look into the underlying objects implicitly created by Oracle 
during the registration process. To start with, you might examine the orders table. 
To do this, you might issue the following query:

DESC orders

This should produce the following output:

Name                                      Null?    Type
 ----------------------------------------- -------- ------------------
TABLE of 
    SYS.XMLTYPE(
      XMLSchema "po.xsd" 
      Element "purchaseOrder") 
    STORAGE Object-relational TYPE "PURCHASEORDER_TYP"

The above shows that the orders table is of XMLType, which, in this case, is 
persisted as the purchaseorder_typ custom object type. Now, you might want to 
check out the purchaseorder_typ type. This can be done as follows:type. This can be done as follows:

DESC purchaseorder_typ

This should produce the following output:

 purchaseorder_typ is NOT FINAL
 Name                                  Null?    Type
 ----------------------------------------- -------- -----------------
--
 SYS_XDBPD$                                     XDB.XDB$RAW_LIST_T
 PONO                                           VARCHAR2(4000 CHAR)
 shipTo                                         AddressType268_T
 billTo                                         AddressType268_T
 items                                          LineItemsType266_T

As you can see, the purchaseorder_typ type includes several attributes. Thetype includes several attributes. The PONO 
has been explicitly defined in the schema, while the names of other attributes are 
system-generated.



Designing Data-Centric Web Services

[ 108 ]

To learn more about using the XML schema feature with Oracle, you can 
refer to Oracle Documentation: Oracle XML DB Developer's Guide,  
chapters XML Schema Storage and Query: Basic and XML Schema Storage 
and Query: Advanced.

It is interesting to note that you can always delete the po.xsd XML registered against 
the database using the DBMS_XMLSCHEMA.deleteSchema procedure as shown below:

BEGIN
  DBMS_XMLSCHEMA.deleteSchema(
  SCHEMAURL => 'po.xsd',
  DELETE_OPTION => dbms_xmlschema.DELETE_CASCADE_FORCE);
END;
/

In that case, all the underlying objects created during the schema registration process 
will be automatically deleted.

Turning back to the orders XMLType table automatically generated during the 
po.xsd XML schema registration, you may be wondering how to insert rows in that 
table. Since the po.xsd schema declares a target namespace, a PO XML document 
being inserted must use the schemaLocation attribute in the root element to identify 
the XML schema. So, the correct definition of the purchaseOrder root element 
should be as follows:

<po:purchaseOrder 

     xmlns:po="http://localhost/WebServices/schema/po/"

     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

     xsi:schemaLocation="http://localhost/WebServices/schema/po/ 
po.xsd">

   <pono>108128476</pono>

   ...

</po:purchaseOrder>

Now that you have created the database objects for natively storing PO XML 
documents and have an idea of how to store these documents into the database, it's 
time to move on and create the PHP handler class that will send incoming POs to 
the database. Here is the purchaseOrder_schema.php script containing the PHP 
handler class for this example:

<?php
 //File purchaseOrder_schema.php
 require_once 'obj2Dom.php';
 class purchaseOrder {



Chapter 3

[ 109 ]

   function placeOrder($po) {
    $args['xmlns:po']='http://localhost/WebServices/schema/po/';

    $args['xmlns:xsi']='http://www.w3.org/2001/XMLSchema-instance';

    $args['xsi:schemaLocation']=

                  'http://localhost/WebServices/schema/po/ po.xsd';

    $obj = new obj2Dom('po:purchaseOrder', $args);

    $obj->trans2Dom($po);
    $po=$obj->printDomTree();
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
       throw new SoapFault("Server","Failed to connect to database"); 
    };
    $sql = "INSERT INTO orders 
               VALUES(XMLType(:po).createSchemaBasedXML('po.xsd'))";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        $err=oci_error($query);
        throw new SoapFault("Server","Failed to insert PO 
                                       ".$err['message']); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

As you can see in the above listing, the placeOrder method uses an instance of the 
obj2Dom class stored in the obj2Dom.php file. If you recall from Chapter 2, this class 
is used to convert an stdClass instance to XML and is discussed in the Converting 
SOAP Messages' Payloads to XML section. To use the obj2Dom class in this example, 
you should copy the obj2Dom.php script from the /WebServices/ch2 directory to 
/WebServices/ch3 and then modify the class constructor as follows:

<?php
//File: /WebServices/ch3/obj2Dom.php
class obj2Dom {

...

 public function __construct($rootElmName='root', $args)

 {
  $this->dom = new DomDocument('1.0');
  $root = $this->dom->createElement($rootElmName);
  $this->rootNode = $this->dom->appendChild($root);
  if ($args) {

   foreach($args as $key => $value){



Designing Data-Centric Web Services

[ 110 ]

    $this->rootNode->setAttribute($key, $value);

   }

  }

 }

...

}

In this code, you modify the obj2Dom class constructor so that it takes one more 
parameter, through which you will pass in the array containing the attributes to be 
set to the root element of the DOM document being constructed. You iterate over this 
associative array using the foreach construct, transforming the array's key/value 
pairs to the attributes of the root element.

The next step is to create the SOAP client and SOAP server. For this example, you 
can create the SoapClient_schema.php and SoapServer_schema.php scripts, using 
the SoapClient_relational.php and SoapServer_relational.php discussed in 
the Storing XML Data in Relational Tables section as the base. Besides the names, the 
SOAP client and server scripts created here should differ from the preceding ones 
only in that the new SOAP client and server scripts should use the new  
po_schema.wsdl document, rather than po_relational.wsdl used by the 
preceding pair. The po_schema.wsdl WSDL document in turn should be different 
from po_relational.wsdl only in that the location attribute of the soap:address 
element in po_schema.wsdl references the SoapServer_schema.php SOAP  
server script.

Once you set up all the above scripts and WSDL document, you can test the service 
by executing the SoapClient_schema.php script. This should output a PO inserted! 
message in your browser.

To make sure the row has been inserted into the orders table, you might issue the 
following query from SQL*Plus:

SET LONG 10000

SELECT * FROM orders;



Chapter 3

[ 111 ]

As a result, you should see a screen similar to that shown in the following figure:

Now, if you try to execute the SoapClient_schema.php script again, you will get the 
following error message:

Failed to insert PO ORA-00001: unique constraint (XMLUSR.PO_PKEY) 
violated

If you recall from the SoapClient_schema.php code, this script, when executed, 
uses the same PO XML document derived from the purchaseOrder.xml file. The 
fact is that an attempt to insert the same document into the orders table violates the 
primary key constraint defined on the PONO attribute.

In a real-world scenario, though, the above normally doesn't happen, 
since the SOAP client script is supposed to send another document each 
time it is executed.

XML Schema Validation Considerations
With a large number of consumers using your service, you might need to check 
to see if an XML document, which a consumer sends to the service, contains 
appropriate data. One way to handle this task is to use constraining facets in the 
schema. For example, you might rewrite the po.xsd XML schema discussed in the 
preceding schema, applying constraining facets to some complex types used there.



Designing Data-Centric Web Services

[ 112 ]

However, before you can do this you first have to delete the XML schema as  
shown below:

BEGIN
  DBMS_XMLSCHEMA.deleteSchema(
  SCHEMAURL => 'po.xsd',
  DELETE_OPTION => dbms_xmlschema.DELETE_CASCADE_FORCE);
END;
/

Now, you can register the updated version of the po.xsd XML schema by issuing the 
following statement. Again, you can simplify entering the statement with the help 
of the EDIT and START SQL*Plus commands, as discussed at the beginning of the 
preceding section.

BEGIN 
 DBMS_XMLSCHEMA.registerschema(
  'po.xsd',       
  '<?xml version="1.0"?>
  <schema targetNamespace="http://localhost/WebServices/schema/po/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/po/"
        xmlns:xdb="http://xmlns.oracle.com/xdb">
   <element name="purchaseOrder" type ="types1:purchaseOrder_typ"
           xdb:defaultTable="ORDERS"        
           xdb:columnProps=
               "CONSTRAINT po_pkey PRIMARY KEY (XMLDATA.PONO)"/>
   <complexType name="purchaseOrder_typ" 
                       xdb:SQLType="PURCHASEORDER_TYP">
    <sequence>
      <element name="pono" type="string" xdb:SQLName="PONO" 
                       xdb:SQLType="VARCHAR2"/> 
      <element name="shipTo" type="types1:AddressType" /> 
      <element name="billTo" type="types1:AddressType"/>
      <element name="items" type="types1:LineItemsType"/>
    </sequence> 
   </complexType>
   <complexType name="AddressType">
    <sequence>
     <element name="name" type="string"/>
     <element name="street" type="string"/>
     <element name="city" type="string"/>
     <element name="state" >

       <simpleType>

        <restriction base="string">



Chapter 3

[ 113 ]

         <pattern value="[A-Z]{2}"/>
        </restriction>
       </simpleType>
     </element>
     <element name="zip" type="int"/>
     <element name="country" type = "NMTOKEN"/>
    </sequence>
   </complexType>
   <complexType name="LineItemsType">
    <sequence>
    <element minOccurs="0" maxOccurs="unbounded" name="item" 
                      type="types1:LineItemType" />
    </sequence>
   </complexType>
   <complexType name="LineItemType">
    <sequence>
      <element name="partId" type="int"/>
      <element name="quantity">
       <simpleType>
        <restriction base="decimal">
         <fractionDigits value="3"/>
         <totalDigits value="8"/>
        </restriction>
       </simpleType>
      </element>
      <element name="price">
       <simpleType>
        <restriction base="decimal">
         <fractionDigits value="2"/>
         <totalDigits value="12"/>
        </restriction>
       </simpleType>
      </element>
    </sequence>
   </complexType>
  </schema >',
  TRUE,        
  TRUE,       
  FALSE,      
  TRUE      
 );
END;
/

As you can see, the above po.xsd XML schema contains restriction blocks for some 
elements, which are highlighted.



Designing Data-Centric Web Services

[ 114 ]

After the po.xsd XML schema is registered, you can insert PO XML documents into 
the orders table. The simplest way to do this is to execute the SoapClient_schema.
php script used in the preceding example. You should have no problem with this.

Now, suppose you want to insert a PO document whose price element contains 
an inappropriate value. For that purpose, you might modify a PO XML document 
stored in the purchaseOrder.xml as follows:

<purchaseOrder >
    <pono>108128477</pono>

   ...

   <items>
      <item>
       <partId>743</partId>
       <quantity>4</quantity>
       <price>15.58787897897</price>

      </item>

   ...

   </items>
</purchaseOrder>

It is interesting to note that Oracle will insert the above document, but the value of 
the price element will be automatically rounded to two decimal places, as specified 
in the XML schema for this element. As a result, the price element in the document 
stored in the orders table will contain the rounded value as shown below:

   ...

   <items>
      <item>
       <partId>743</partId>
       <quantity>4</quantity>
       <price>15.59</price>

      </item>

   ...

In fact, when a PO XML document is inserted into the orders table, Oracle actually 
performs a partial validation of that document against the po.xsd XML schema 
registered as discussed previously. What this means in practice is that Oracle will 
not trigger an error if, for example, the value of an element in the document being 
validated violates the pattern associated with that element in the schema. Suppose 
you are inserting the following document:

<purchaseOrder >
    <pono>108128478</pono>



Chapter 3

[ 115 ]

   ...

    <shipTo>
     <name>Janet Thomson</name>
     <street>11 Maple Street</street>
     <city>Small Valley</city>
     <state>VA6</state>

     <zip>23037</zip>
     <country>US</country>
   </shipTo>

   ...

</purchaseOrder>

Although the value of the state element in the above document doesn't conform to 
the string pattern defined in the po.xsd XML schema for this element, the document 
will be inserted.

To handle this problem, you can force Oracle to perform a full XML schema 
validation upon inserting a new row into the orders table. To achieve this goal, 
you can define a BEFORE INSERT trigger on the orders table, explicitly calling the 
schemaValidate method of XMLType from within the trigger. This can be done by 
issuing the following statement from SQL*Plus:

CREATE OR REPLACE TRIGGER po_valid
BEFORE INSERT ON orders
FOR EACH ROW
DECLARE
  xmldoc XMLType;
BEGIN
  xmldoc := :new.OBJECT_VALUE;
  XMLType.schemaValidate(xmldoc);
END;
/

Now, if you execute the SoapClient_schema.php script again, you should see the 
following error message:

Failed to insert PO ORA-31154: invalid XML document ORA-19202: Error 
occurred in XML processing LSX-00333: literal "VA6" is not valid with 
respect to the pattern ORA-06512: at "SYS.XMLTYPE", line 345 ORA-
06512: at "XMLUSR.PO_VALID", line 5 ORA-04088: error during execution 
of trigger 'XMLUSR.PO_VALID'



Designing Data-Centric Web Services

[ 116 ]

If you don't want to provide the user with such detailed information about the 
problem that occurred, you might set the Exception clause in the trigger as follows:

DROP TRIGGER po_valid;

CREATE OR REPLACE TRIGGER po_valid
BEFORE INSERT ON orders
FOR EACH ROW
DECLARE
  xmldoc XMLType;
BEGIN
  xmldoc := :new.OBJECT_VALUE;
  XMLType.schemaValidate(xmldoc);
  EXCEPTION
   WHEN OTHERS THEN
       RAISE_APPLICATION_ERROR(-20001, 'Failed to insert a row 
                                        into the orders table');
END;
/

In this case, the SoapClient_schema.php script, when executed, should produce the 
following error message:

Failed to insert PO ORA-20001: Failed to insert a row into the orders 
table ORA-06512: at "XMLUSR.PO_VALID", line 8 ORA-04088: error during 
execution of trigger 'XMLUSR.PO_VALID'

Remember that performing full validation slows things down, affecting 
the performance of INSERT operations. It is recommended that you use 
full validation only if absolutely necessary.

It is interesting to note that you can always drop the po_valid trigger created as 
shown above, without affecting the data stored in the orders table. To do this, you 
can issue the following statement:

DROP TRIGGER po_valid;

Once the trigger has been dropped, you turn back to the situation in which Oracle 
performs only a partial validation upon inserting a new row into the orders table.



Chapter 3

[ 117 ]

Defining Parameter‑Driven Operations on 
Data‑Centric Services
In the Defining Parameter-Driven Operations section in Chapter 2, you saw an example 
of encapsulating the underlying logic of a parameter-driven service operation in 
a PHP handler class. If you recall from that example, the getOrder method of the 
orderInfo PHP handler class took two arguments. Depending on the value of the 
second parameter, getOrder returned either an entire PO XML document or the 
status information on the document.

In a real-world scenario you may need to pass more than one parameter to the generic 
method representing a parameter-driven operation. The example discussed in the 
following two sections shows how you can encapsulate several parameters in XML, 
and then pass that XML structure as a parameter of a parameter-driven operation.

Defining XSD Types for Parameters
To start, you need to define an XML schema describing the XML structure that will 
be used to encapsulate parameters passed to the getOrder method of the orderInfo 
PHP handler class.

Here is the po_xmlparams.xsd XML schema document defining the params  
complex type element. It is assumed that you save this document in the 
WebServices/schema directory:

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/
poxmlparams/"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:types1="http://localhost/WebServices/schema/
poxmlparams/">
  <element name="params">
   <complexType>
     <sequence>
       <element minOccurs="0" maxOccurs="unbounded" name="param" 
type="types1:paramType" /> 

     </sequence> 
   </complexType>
  </element> 
  <complexType name="paramType">
    <sequence>
      <element name="key" type="string"/>

      <element name="value" type="string"/>

    </sequence>



Designing Data-Centric Web Services

[ 118 ]

  </complexType>
</schema >

An XML document conforming to this schema might look like the following:

<params>
 <param>
  <key>po</key>
  <value>status</value>
 </param>
 ...
</params>

Note that the number of param elements in this construction is unbounded, so you 
can use as many of these elements as needed.

The next step is to define the WSDL document describing the service. To be able to 
define a message part of the params type in a WSDL document, you need to import 
the po_xmlparams.xsd XML schema shown previously. So, the po_xmlparams.wsdl 
document stored in the WebServices/wsdl directory might look as follows:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poInfoService"
            xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
            xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
            xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
            xmlns:prm= 
                    "http://localhost/WebServices/schema/poxmlparams/"

            xmlns="http://schemas.xmlsoap.org/wsdl/" 
            targetNamespace= 
                           "http://localhost/WebServices/wsdl/poInfo">
    <import 

      namespace="http://localhost/WebServices/schema/poxmlparams/"

                location= 
              "http://localhost/WebServices/schema/po_xmlparams.xsd" />

    <message name="getOrderInfoInput">
        <part name="pono" element="xsd:string"/>
        <part name="par" element="prm:params"/>

    </message>
    <message name="getOrderInfoOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poInfoServicePortType">
        <operation name="getOrder">
           <input message="tns:getOrderInfoInput"/>
           <output message="tns:getOrderInfoOutput"/>



Chapter 3

[ 119 ]

        </operation>
    </portType>
    <binding name="poInfoServiceBinding" 
                         type="tns:poInfoServicePortType">
        <soap:binding style="rpc" 
                transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="getOrder">
           <soap:operation 
             soapAction="http://localhost/WebServices/ch3/getOrder"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poInfoService">
        <port name="poInfoServicePort" 
                         binding="tns:poInfoServiceBinding">
           <soap:address location=
        "http://localhost/WebServices/ch3/SoapServer_xmlparams.php"/>
        </port>
    </service>
</definitions>

As you can see, the input message defined in the above document consists of two 
parts. The first part, named pono, describes the first argument of the getOrder 
method exposed by the service. The second one, named params, represents the XML 
structure defined in the po_xmlparams.xsd document, which will be used as the 
second parameter of the getOrder method.

Moving Conditional Logic into the Database
Turning back to the orderInfo class discussed in the Defining Parameter-Driven 
Operations section in Chapter 2, you may recall that the getOrder method of that 
class contains the conditional switch block responsible for using an appropriate 
SELECT statement, depending on the parameter passed to getOrder. Now you 
can rewrite the getOrder method, moving the conditional logic to the database. 
However, before you can do this, you have to create a stored function in the 
database, which will be invoked from within getOrder.



Designing Data-Centric Web Services

[ 120 ]

Here is how you can create such a PL/SQL stored function from SQL*Plus. Once 
again, you can simplify entering the following statement by using the EDIT and 
START SQL*Plus commands, as discussed at the beginning of the Using XML Schemas 
with Oracle XML DB section earlier.

CREATE OR REPLACE FUNCTION getPOInfo (pono IN VARCHAR2, par IN 
VARCHAR2)       
RETURN VARCHAR2 
IS
  stat  VARCHAR2(15);
  doc VARCHAR2(2000);
BEGIN
  CASE par
    WHEN 'status' THEN 
     BEGIN
       SELECT status INTO stat FROM poStatusInfo WHERE pono=pono;
       RETURN stat;
     END;
    WHEN 'doc' THEN 
     BEGIN
       SELECT doc INTO doc FROM purchaseOrders WHERE 
                extractValue(XMLType(doc), 
                '/purchaseOrder/pono')=pono AND rownum=1;
       RETURN doc;
     END;
    ELSE 
       RETURN 'undefined';
  END CASE;
END;
/

In the above code, the CASE PL/SQL statement is used to take a different action for 
each alternative. You used the switch PHP construct in the getOrder method to 
achieve the same goal.

Note that you are explicitly limiting the SELECT statement in the WHEN 'doc' clause 
to one row being returned. In this particular example, though, it's redundant as long 
as, if you recall from the Using XML Schemas with Oracle XML DB section, a unique 
constraint is set on pono.

Now that you have the getPOInfo PL/SQL stored function created, you  
can copy the orderInfo.php script from the WebServices/ch2 directory to 
WebServices/ch3, and then modify it as follows:



Chapter 3

[ 121 ]

<?php
 //File orderInfo.php
 class orderInfo {
   function getOrder($pono, $par) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to database"); 
    };
    foreach ($par->param as $value)

    {

      $arr[$value->key]=$value->value;

    }

    $sql="BEGIN :rslt:=".$arr['proc']."(:pono, :arg); END;";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':pono', $pono);
    oci_bind_by_name($query, ':arg', $arr['arg']);
    oci_bind_by_name($query, ':rslt', $rslt, 2000);

    if (!oci_execute($query)) {
        $err=oci_error($query);
        throw new SoapFault("Server","Failed to execute query 
                                            ".$err['message']); 
    }; 
    return $rslt;
   }
 }
?>

If you recall, an argument of a complex XSD type passed to an exposed functionan argument of a complex XSD type passed to an exposed functiona complex XSD type passed to an exposed function 
is extracted from the SOAP envelope on the sever side and then transformed to an 
instance of the stdClass built-in PHP class. In this example, you use the foreach 
construct to iterate over the stdClass structure representing parameters passed  
in with the second argument of getOrder, transforming that structure to an  
easy-to-use array.

Also it's worth noting the use of the fourth optional parameter in the oci_bind_
by_name function binding the $rslt output variable to a placeholder in the query. 
By specifying 2000, you set the maximum length for the result value returned by 
the getPOInfo PL/SQL stored function invoked within the query. Otherwise, you 
would get the following error message:

Failed to execute query ORA-06502: PL/SQL: numeric or value error: 
character string buffer too small ORA-06512: at line 1



Designing Data-Centric Web Services

[ 122 ]

If you want the getPOInfo PL/SQL function to return a result value 
that exceeds 4000 characters, consider using the CLOB Oracle data type 
instead of VARCHAR2, which is limited to 4000.

The next step is to create the SOAP server that will expose the getOrder  
method of the orderInfo class. For this purpose, you need to create the 
SoapServer_xmlparams.php script in the WebServices/ch3 directory as follows:

<?php
 //File: SoapServer_xmlparams.php
 require_once "orderInfo.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_xmlparams.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("orderInfo");
 $srv->handle();
?>

Before you can test the poInfoService service discussed here, you need to create a 
client script. Here is the SoapClient_xmlparams.php script that you should create in 
the WebServices/ch3 directory::

<?php 
 //File: SoapClient_xmlparams.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost/WebServices/wsdl/po_xmlparams.wsdl";
 $client = new SoapClient($wsdl);
 $pono='108128476';
 $xmlpar = simplexml_load_file('params.xml');
 $xmlarr = obj2Arr($xmlpar);
 try {
  print $result=$client->getOrder($pono, $xmlarr);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

As you can see, the above client script takes the second parameter for the getOrder 
method from the params.xml file, which is supposed to be in the WebServices/ch3 
directory and, in this particular case, might look like this:in this particular case, might look like this:

<params>
 <param>
  <key>proc</key>



Chapter 3

[ 123 ]

  <value>getPOInfo</value>
 </param>
 <param>
  <key>arg</key>
  <value>doc</value>
 </param>
</params>

The above document will be passed to the getOrder method as the second 
parameter. The document contains two param elements representing parameters that 
will be utilized within getOrder.

Now you are ready to test the poInfoService service. To do this, you should 
execute SoapClient_xmlparams.php. Since the value of the arg parameter in the 
params.xml file is doc, your browser should display the PO XML document stored 
in the purchaseOrders table, whose pono is 108128476.

Alternatively, if the value of the arg parameter in the params.xml document were 
status, your browser would simply display: shipped, which represents the status of 
the PO document, as specified in the poStatusInfo table.

This example assumes that you have created the poStatusInfo table as 
shown in the Defining Parameter-Driven Operations section in Chapter 2.

Finally, if the value of the arg parameter is neither doc nor status, your browser 
will simply display: undefined.

Summary
The purpose of this chapter was to show you how to design data-centric services 
with PHP and either of the two most popular databases today: MySQL and Oracle. 
The chapter began with a concise discussion of how to choose an appropriate 
database to be used in your data-centric service, touching upon options provided 
by MySQL and Oracle database servers. Then it quickly moved to the practical 
themes of using MySQL and Oracle as back-end databases in data-centric services. 
The chapter not only discussed how to map relational databases to services, but also 
using native XML databases in the database-backed services, providing concise and 
up-to-date coverage of the Oracle XML features.

In this chapter, you also learned that a database can not only be used as a repository 
to store payload content, but also as an efficient means for performing data 
processing, thus allowing you to move some underlying logic from the PHP handler 
class into the database.





Building Web Service 
Applications

With a service-oriented approach you can expose the logic of your application as a 
collection of loosely coupled services. To achieve this, you might not even need to 
restructure the existing code to extend your application through a service-oriented 
architecture. Often, all you need to do is to build a set of agile services upon the 
existing application structures such as classes utilized within the application. Once 
you have a collection of services, the next step is to combine them into a composite 
solution, preserving the key principles of service-orientation.

In this chapter, you will learn how to:

Combine a set of services into a composition without defining an 
orchestration process
Define a controller service providing parameter-driven operations upon 
more granular services
Expose methods of an existing class as Web service operations
Use the same PHP class as the handler class of several services
Secure services built with PHP SOAP extension

Defining Parameter‑Driven Operations on 
Fine‑Grained Services
The ability of loosely coupled services to be reused and combined into composite 
solutions is one of the most important things in the service-oriented paradigm. While 
the WS-BPEL orchestration language provides a standard mechanism for services' 
interactions, there is often a need to combine some services into a composite solution 
that doesn't rely upon an orchestration engine.

•

•

•

•

•



Building Web Service Applications

[ 126 ]

For example, you might want to design a controller service providing a generic 
interface and relying upon several granular services responsible for performing the 
real work. The granular services might be invoked directly from within the PHP 
handler class of the coarse service. The information about the granular services might 
be stored in a separate XML document loaded dynamically during run time.

The following sections explain in detail how you might build a service providing 
generic and parameter-driven operations upon several fine-grained services, rather 
than directly upon classes or individual functions encapsulating entity-specific logic 
as discussed in the preceding chapters. In the example discussed here, the service 
providing a parameter-driven operation delegates the work to some other granular 
services that perform the real work.

The following figure depicts an example of a service composition using a 
parameter-driven controller service.

poInfoService

poOrderDoc
Service

poOrderStatus
Service

services.xml
getOrder

getOrderDoc getOrderStatus

<services>
...
...

</services>

As you can see in the figure, the poInfoService coarse-grained service providing 
generic operation, namely getOrder, employs the two granular services: 
poOrderDocService and poOrderStatusService specified in the  
services.xml document.



Chapter 4

[ 127 ]

One word of warning though. While such a granular design  
makes life easier for the service consumers and conforms to the  
service-oriented principles, this approach assumes the additional 
overhead of transferring and handling SOAP messages involved between 
the coarse service (poInfoService in this example) and more granular 
services (poOrderDocService and poOrderStatusService) 
performing the real work. You should take this kind of issue into account 
when choosing a level of granularity to be used in your solution. If 
an operation, which you consider to expose as a granular service, has 
no reuse potential, it would be a good idea not to implement it as an 
individual service.

Putting Info on Fine‑Grained Services in a 
Separate XML File
As mentioned earlier, for better reusability, information about fine-grained servicesinformation about fine-grained services 
to be utilized from within a more coarse-grained service may be stored in a separate 
file, thus allowing for dynamic binding between the services involved.

For example, you might create the following XML document, which contains 
information about the poOrderDocService and poOrderStatusService services 
mentioned above. It is assumed that you save this document as services.xml in the 
WebServices\ch4 directory:

<services>
 <service>
  <name>poOrderDocService</name>
  <wsdl>http://localhost/WebServices/wsdl/po_orderdoc.wsdl</wsdl>
  <function>getOrderDoc</function>
  <param>doc</param>
 </service>
 <service>
  <name>poOrderStatusService</name>
  <wsdl>http://localhost/WebServices/wsdl/po_orderstatus.wsdl</wsdl>
  <function>getOrderStatus</function>
  <param>status</param>
 </service>
</services>

The information about the fine-grained services encapsulated in the above XML 
document can be then used in the logic of a parameter-driven operation belonging to 
a more coarse-grained service. 



Building Web Service Applications

[ 128 ]

You might load this information from within PHP as follows:

    $srv = simplexml_load_file('services.xml');
    $srv=obj2Arr($srv);
    foreach ($srv['service'] as $value)
    {
      $srvarr[$value['param']]=array("wsdl" => $value['wsdl'], 
                                "func" => $value['function']);
    }

As a result, you will have the following two-dimensional array:

array(2) {
  ["doc"]=>
  array(2) {
    ["wsdl"]=>
    string(50) "http://localhost/WebServices/wsdl/po_orderdoc.wsdl"
    ["func"]=>
    string(11) "getOrderDoc"
  }
  ["status"]=>
  array(2) {
    ["wsdl"]=>
    string(53) 
         "http://localhost/WebServices/wsdl/po_orderstatus.wsdl"
    ["func"]=>
    string(14) "getOrderStatus"
  }
}

As mentioned, when represented in an array like this, the information about 
granular services can be easily used at run time within the code encapsulating the 
underlying logic of the coarse service utilizing these granular services. In the  
Creating the Coarse-Grained Service section later, you will see how all this really  
works in practice.

Building Fine‑Grained Services
Turning back to the service combination depicted in the previous figure, let's start by 
defining the WSDL describing thethe poOrderDocService granular service providing 
the operation getOrderDoc. Consider the following WSDL document, which youhe following WSDL document, which youWSDL document, which you 
should save as po_orderdoc.wsdl in the WebServices\wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poOrderDocService"



Chapter 4

[ 129 ]

             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace= 
                      "http://localhost/WebServices/wsdl/poOrderDoc">
    <message name="getOrderDocInput">
        <part name="pono" element="xsd:string"/>
    </message>
    <message name="getOrderDocOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poOrderDocServicePortType">
        <operation name="getOrderDoc">
           <input message="tns:getOrderDocInput"/>
           <output message="tns:getOrderDocOutput"/>
        </operation>
    </portType>
    <binding name="poOrderDocServiceBinding" 
               type="tns:poOrderDocServicePortType">
        <soap:binding style="rpc" 
               transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="getOrderDoc">
           <soap:operation 
          soapAction="http://localhost/WebServices/ch4/getOrderDoc"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poOrderDocService">
        <port name="poOrderDocServicePort" 
               binding="tns:poOrderDocServiceBinding">
           <soap:address 
location="http://localhost/WebServices/ch4/SOAPServer_orderdoc.php"/>
        </port>
    </service>
</definitions>



Building Web Service Applications

[ 130 ]

As you can see, this WSDL document describes the poOrderDocService service that 
supports the getOrderDoc operation assuming one input and one output parameter, 
both of which are of simple XSD type string.

The next step is to implement the PHP handler class to be used with the 
poOrderDocService service described by this WSDL document. The code for this 
class is as follows, which you need to save in the orderDoc.php script file in the 
WebServices\ch4 directory:

<?php
 //File orderDoc.php
 class orderDoc {
   function getOrderDoc($pono) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to 
         database"); 
    };
    $sql="SELECT doc FROM purchaseOrders WHERE 
       extractValue(XMLType(doc), '/purchaseOrder/pono')=:pono 
        AND rownum=1";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':pono', $pono);
    if (!oci_execute($query)) {
        $err=oci_error($query);
        throw new SoapFault("Server","Failed to execute query 
          ".$err['message']); 
    }; 
    oci_fetch($query);
    $rslt = oci_result($query, 'DOC');
    return $rslt;
   }
 }
?>

This example assumes that you have the purchaseOrders table created 
as discussed in Chapter 2 in the Setting Up the Database section.

Finally, you need to create the SOAP server script for the poOrderDocService 
service. Here is the SoapServer_orderdoc.php script that you also should save in 
the WebServices\ch4 directory:

<?php
 //File: SoapServer_orderdoc.php



Chapter 4

[ 131 ]

 require_once "orderDoc.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_orderdoc.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("orderDoc");
 $srv->handle();
?>

Now that you have finished building the poOrderDocService service, you can move 
on to the other fine-grained service: poOrderStatusService.

First, you might want to create the WSDL document describing the 
poOrderStatusService service. Looking at po_orderdoc.wsdl shown at the 
beginning of this section, you might now create the po_orderstatus.wsdl WSDL 
document on your own, specifying getOrderStatus as the operation name and 
SoapServer_orderstatus.php as the SOAP server to be used.

Then, you create the SoapServer_orderstatus.php SOAP server script, specifying 
the newly created po_orderstatus.wsdl as the WSDL and setting the orderStatus 
class stored in the orderStatus.php script as the PHP handler class for the service. 
So, make sure to create the orderStatus.php script, as follows:

<?php
 //File orderStatus.php
 class orderStatus {
   function getOrderStatus($pono) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to 
                             database"); 
    };
    $sql="SELECT status FROM poStatusInfo WHERE pono=:pono";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':pono', $pono);
    if (!oci_execute($query)) {
        $err=oci_error($query);
        throw new SoapFault("Server","Failed to execute query 
                            ".$err['message']); 
    }; 
    oci_fetch($query);
    $rslt = oci_result($query, 'STATUS');
    return $rslt;
   }
 }
?>



Building Web Service Applications

[ 132 ]

As you can see, the query used in this script is issued against the poStatusInfo 
database table created and filled with data as discussed in the Defining 
Parameter-Driven Operations section in Chapter 2.

Creating the Coarse‑Grained Service
Now that you have the poOrderDocService and poOrderStatusService granular 
services created, the next step in building a composite solution as depicted in thehe next step in building a composite solution as depicted in the 
previous figure is to design the poInfoService coarse controller service.

You might want to start by creating the WSDL definition document describing the 
poInfoService service that provides the generic and parameter-driven operationprovides the generic and parameter-driven operation 
getOrder. For this purpose, you might create theFor this purpose, you might create the po_orderinfo.wsdl WSDL 
document as follows:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poInfoService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace= 
                          "http://localhost/WebServices/wsdl/poInfo">
    <message name="getOrderInfoInput">
        <part name="pono" element="xsd:string"/>

        <part name="par" element="xsd:string"/>

    </message>
    <message name="getOrderInfoOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poInfoServicePortType">
        <operation name="getOrder">
           <input message="tns:getOrderInfoInput"/>
           <output message="tns:getOrderInfoOutput"/>
        </operation>
    </portType>
    <binding name="poInfoServiceBinding" 
             type="tns:poInfoServicePortType">
        <soap:binding style="rpc" 
             transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="getOrder">
           <soap:operation 
             soapAction="http://localhost/WebServices/ch4/getOrder"/>
           <input>



Chapter 4

[ 133 ]

               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poInfoService">
        <port name="poInfoServicePort" 
                binding="tns:poInfoServiceBinding">
           <soap:address location=
        "http://localhost/WebServices/ch4/SOAPServer_orderinfo.php"/>
        </port>
    </service>
</definitions>

The next step is to create the PHP handler class for the poInfoService Web service 
described by the above WSDL document. Consider the orderInfo.php script shown 
as follows:

<?php
 //File orderInfo.php
 require_once "obj2Arr.php"; 
 class orderInfo {
   function getOrder($pono, $par) {
    $srv = simplexml_load_file('services.xml');
    $srv=obj2Arr($srv);
    foreach ($srv['service'] as $value)
    {
      $srvarr[$value['param']]=array("wsdl" => $value['wsdl'], 
                           "func" => $value['function']);
    }
    $client = new SoapClient($srvarr[$par]['wsdl']);

    try {
     $rslt=$client->$srvarr[$par]['func']($pono);

    }
    catch (SoapFault $exp) {
     throw new SoapFault("Server", $exp->getMessage());
    }
    return $rslt;
   }
 }
?>



Building Web Service Applications

[ 134 ]

The orderInfo.php script shown uses the obj2Arr function 
originally introduced in Chapter 2 in the Structuring Complex Data for 
Sending section. So, you need to copy the obj2Arr.php script from the 
WebServices/ch2 to WebServices/ch4 directory.

As you can see, the getOrder method invokes an appropriate service specified in 
the services.xml document, depending on the parameter passed in as the second 
argument. To achieve this, it first loads the information from services.xml and then 
converts it to an easy-to-use associative array, as discussed in the Putting Info on  
Fine-Grained Services in a Separate XML File  section earlier in this chapter.

If the getOrder method receives doc as the second argument, then it invokes the 
poOrderDocService service. If receives status as the second argument, then it 
invokes the poOrderStatusService service. If the value of the second argument is 
neither doc nor status, a SOAP fault is thrown.

This example shows you how to combine a set of services into acombine a set of services into a 
composition by means of logic encapsulated within the PHP  
handler class of the controller service, without actually orchestrating.actually orchestrating.orchestrating. 
When proceeding with this example in the next chapter, you will  
learn how to achieve the same general result using WS-BPEL, an 
orchestration language.

Now that you have created the PHP handler class for the poInfoService  
Web service, the next step is to create a SOAP server that will expose the methods  
of the handler class to consumers. For this purpose, you might create the 
SoapServer_orderinfo.php script as follows:

<?php
 //File: SoapServer_orderinfo.php
 require_once "orderInfo.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_orderinfo.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("orderInfo");
 $srv->handle();
?>

Testing the Application
Finally, you need to write a client to test the poInfoService service exposing 
the getOrder parameter-driven operation. For this purpose, you might build the 
SoapClient_orderinfo.php SOAP client script in the WebServices\ch4 directory. 



Chapter 4

[ 135 ]

The SoapClient_orderinfo.php script might look as follows:

<?php 
 //File: SoapClient_orderinfo.php
 $wsdl = "http://localhost/WebServices/wsdl/po_orderinfo.wsdl";
 $client = new SoapClient($wsdl);
 $pono='108128476';
 $par = 'doc'; //can be either 'doc' or 'status'
 try {
  print $result=$client->getOrder($pono, $par);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

When executed, the SoapClient_orderinfo.php SOAP client script shown above 
should output the entire PO XML document whoseoutput the entire PO XML document whose pono is 108128476. Now if you 
change the value of the $par variable in the above code to status, the script will 
return the message saying shipped.

This example assumes that the purchaseOrders table created as 
discussed in Chapter 2 in the Setting Up the Database section contains a 
row representing a PO XML document whose pono is 108128476. Such 
a row will appear in the table when you have tested the PO Web servicePO Web service 
as discussed in the Testing the Service section in Chapter 2. It also assumes 
that the poStatusInfo table has a row containing the status information 
about the above PO XML document. This row should  
have been inserted in poStatusInfo as shown in the Defining  
Parameter-Driven Operations section in Chapter 2.

Exposing Application Logic as a Web 
Service
To make existing application logic available via a Web service—while achieving 
loose coupling, one of the most important principles of service-orientation—you 
first will need to decompose the business logic of your application into a series of 
lightweight and independent services to be then utilized within a composite service-
oriented solution. It is interesting to note that an SOA solution may be built upon the 
existing application structures, often without the need to change those structures.

In the following section, you will see an example of how to define a set of services 
upon a single PHP class, associating each service operation with a certain method of 
the class.



Building Web Service Applications

[ 136 ]

Sharing the Same PHP Handler Class 
Between Services
The preceding example used two different PHP handler classes for the two  
fine-grained services discussed there. In practice, though, there is often a need to 
expose methods belonging to the same PHP class using different services, thus 
sharing the same handler class between these services. This sort of situation often 
arises when you need to build a collection of light services upon an existing  
PHP class.

Continuing with the preceding example, you might put the getOrderStatus 
and getOrderDoc methods belonging to the orderDoc and orderStatus 
classes respectively within the same PHP class, say orderClass. At the same 
time, these two methods will still be exposed by the poOrderDocService and 
poOrderStatusService services respectively. Diagrammatically, this might look 
like the following figure:

poOrderDoc
Service

poOrderStatus
Service

orderClass PHP
handler class

getOrderDoc getOrderStatus

<?php
class...{

?>

Data

To achieve the above functionality, you don't need to modify the orderInfo 
PHP handler class of the poInfoService coarse-grained service employing the 
poOrderDocService and poOrderStatusService services, nor its SOAP server 
script. The only thing you need to change is the services.xml configuration file 
providing information about the above fine-grained services, assuming you're  
using the variations of these services that have been slightly updated to work  
with this example.



Chapter 4

[ 137 ]

When modifying the poOrderDocService and poOrderStatusService services to 
be used in this example, you probably will not want to change the names of services 
and functions to be exposed. If so, in services.xml you will have to change only 
the names of the WSDL documents to the ones describing the updated fine-grained 
services. As a result, the updated services.xml document might look as follows:

<services>
 <service>
  <name>poOrderDocService</name>
  <wsdl>http://localhost/WebServices/wsdl/ 
                                         po_orderdoc_share.wsdl</wsdl>

  <function>getOrderDoc</function>
  <param>doc</param>
 </service>
<service>
  <name>poOrderStatusService</name>
  <wsdl>http:

      //localhost/WebServices/wsdl/po_orderstatus_share.wsdl</wsdl>

  <function>getOrderStatus</function>
  <param>status</param>
 </service>
</services>

In the downloadable ZIP archive, this file is stored as __services.xml 
in the WebServices\ch4 directory. When moving on to this example, 
though, make sure to rename this document to services.xml.

As you can see, the above assumes that you create the po_orderstatus_share.wsdl 
and po_orderdoc_share.wsdl WSDL definition documents based on the  
po_orderstatus.wsdl and po_orderdoc.wsdl documents, specifying  
SoapServer_orderdoc_share.php and SoapServer_orderstatus_share.php  
as the SOAP servers respectively.

Then, you create the SoapServer_orderdoc_share.php and SoapServer_
orderstatus_share.php SOAP server scripts, setting the orderClass class stored 
in the orderClass.php script as the PHP handler class for both the services.

It is interesting to note that although both poOrderDocService and 
poOrderStatusService services are set upon the same PHP handler class, each 
service operation is associated with a specific class method.



Building Web Service Applications

[ 138 ]

The following figure gives a graphical depiction of this design:

<?php
class orderClass{
public function getOrderDoc {

}
public function getOrderStatus {

}
private function runQuery {

}
}

?>

Data

getOrderDoc getOrderStatus

As you can see in the figure, the orderClass class, besides thethe getOrderStatus and 
getOrderDoc public methods, includes theincludes the runQuery private method to which you 
moved all the code performing database-related tasks. The orderClass.php script 
containing the orderClass class might look as follows:

<?php
 //File orderClass.php
 class orderClass {
   private function runQuery($sql, $pono, $par)
   {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
        throw new SoapFault("Server","Failed to connect to 
                             database"); 
    };
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':pono', $pono);
    if (!oci_execute($query)) {
        $err=oci_error($query);
        throw new SoapFault("Server","Failed to execute query 
                            ".$err['message']); 
    }; 
    oci_fetch($query);
    $rslt = oci_result($query, $par);
    return $rslt;



Chapter 4

[ 139 ]

   }
   public function getOrderDoc($pono) {
    $sql="SELECT doc FROM purchaseOrders WHERE 
            extractValue(XMLType(doc), '/purchaseOrder/pono')=:pono 
            AND rownum=1";
    return $this->runQuery($sql, $pono, 'DOC');
   }
   public function getOrderStatus($pono) {
    $sql="SELECT status FROM poStatusInfo WHERE pono=:pono";
    return $this->runQuery($sql, $pono, 'STATUS');
   }
 }
?>

To put the above class into action, you should execute the SoapClient_orderinfo.
php SOAP client script discussed in the Testing the Application section earlier. As a 
result, your browser should output the entire PO XML document whoseoutput the entire PO XML document whose pono is 
108128476.

It is important to realize that although both poOrderDocService and 
poOrderStatusService services are set upon the same PHP handler class, you 
cannot use, say, a poOrderDocService instance to call the getOrderStatus method 
of the handler class. If you try to do this from within, say, the getOrder method of 
the orderInfo class discussed in the Creating the Coarse-Grained Service section, you 
will receive the following error message:

Function ("getOrderStatus") is not a valid method for this service

To understand why it works this way, you should look into the po_orderdoc.wsdl 
WSDL document describing the poOrderDocService service. This WSDL document 
was shown at the beginning of the Building Fine-Grained Services section earlier. 
Looking through this document, you may notice that it defines only one operation, 
namely getOrderDoc. What this means in practice is that any attempt to call another 
operation via the poOrderDocService service will result in an error like the one 
shown above.

Choosing the Appropriate Level of Service 
Granularity
When designing services to be utilized within an SOA solution, it's always a good 
idea to look at the situation with a big-picture view of your future projects. It is 
important to figure out if there's long-term potential with exposing a certain piece of 
business logic as an individual service. If you determine that there is little benefit in 
building a service upon a certain piece of existing logic, it will be wise to pass on 



Building Web Service Applications

[ 140 ]

this. For example, if you have two classes built one upon another, in most cases, you 
don't need to define a service or services on each of these classes. Instead, it would be a 
good idea to use the top class as the PHP handler class for the service or services being 
built. The following example illustrates how you might define two services upon the 
same class, which in turn uses another class containing database-specific code.

Examining the orderClass class discussed in the preceding section, you may 
notice that the code responsible for interacting with the database is encapsulated 
in a separate private method. Despite this fact, the orderClass still depends on a 
certain database, namely Oracle. To eliminate dependency on a certain database, you 
might rewrite the orderClass so that it provides a generic interface, delegating the 
real work to methods belonging to another class. Graphically it might look like the 
following figure:

poOrderDoc
Service

poOrderStatus
Service

getOrderDoc getOrderStatus

<?php
class orderClass{

?>

<?php
class dbClass{

?>

Data

In real object-oriented solutions, it is particularly common for one class 
use another one, which is responsible for performing a specific task or 
tasks. Actually, a class may be built upon a hierarchy of classes. In this 
particular example, the dbClass underlying class performs the  
database-specific work, while the orderClass upfront class is used as 
the PHP handler class for two services, namely poOrderDocService 
and poOrderDocService.

Now that you have an idea of how the orderClass/dbClass combination works, 
let's look at the code. The code for the orderClass class is as follows:



Chapter 4

[ 141 ]

<?php
 //File __orderClass.php
 require_once "dbClass.php"; 
 class orderClass {
   public function getOrderDoc($pono) {
    $dbObj = new dbClass();
    return $dbObj->getOrderDoc($pono);
   }
   public function getOrderStatus($pono) {
    $dbObj = new dbClass();
    return $dbObj->getOrderStatus($pono);
   }
 }
?>

In the downloadable ZIP archive, this file is stored as __orderClass.
php in the WebServices\ch4 directory. When moving on to this 
example, though, make sure to rename this document to  
orderClass.php.

As you can see, the above variation of the orderClass simply provides a generic 
interface, containing no database-specific code. So, the dbClass class performing the 
real database work can be implemented to communicate with the database you need, 
not necessarily Oracle. For example, you might have the following dbClass class to 
interact with MySQL:

<?php
//File dbClass.php
 class dbClass {
   public function getOrderDoc($pono) {
    $sql="SELECT doc FROM purchaseOrders WHERE 
          extractValue(doc, '/purchaseOrder/pono')=? LIMIT 1";
    return $this->runQuery($sql, $pono);
   }
   public function getOrderStatus($pono) {
    $sql="SELECT status FROM poStatusInfo WHERE pono=?";
    return $this->runQuery($sql, $pono);
   }
   private function runQuery($sql, $pono)
   {
    if(!$conn = new mysqli('localhost', 'usr', 'pswd', 'my_db')){
        throw new SoapFault("Server","Failed to connect to 
          database"); 



Building Web Service Applications

[ 142 ]

    };
    $stmt = $conn->prepare($sql);
    $stmt->bind_param('s', $pono);
    if (!$result = $stmt->execute()) {
        throw new SoapFault("Server","Failed to execute query"); 
    };
    $stmt->bind_result($rslt);
    $stmt->fetch();
    return $rslt;
   }
}

This example assumes that you have created the purchaseOrders table in the my_db 
MySQL database and then populated that table with the data as discussed in the 
Building a Service Interacting with MySQL section in Chapter 3. Also you may notice 
that the getOrderStatus method used here assumes that you have a poStatusInfo 
table in the my_db MySQL database, and this table is supposed to contain a row 
whose pono attribute is 108128476. Since the poStatusInfo table has not been 
created before, you should create it and populate with the data now. To do this, you 
can issue the following SQL statements from MySQL Command Line Client:

use my_db;

CREATE TABLE poStatusInfo(
    pono VARCHAR(9),
    status VARCHAR(15)
);

INSERT INTO poStatusInfo VALUES(
    '108128476',
    'shipped'
);

To test the updated application, you can execute the SoapClient_orderinfo.php 
SOAP client script discussed in the Testing the Application section. Assuming that the 
$par variable in the script is still set to doc, you should see in your browser the POthe PO 
XML document whose pono is 108128476.

To summarize this example: Theoretically, you might, of course, expose the  
database-specific code encapsulated in the dbClass class as a distinct service, thus 
adding another level of service granularity. However, it would not be efficient in this 
situation, since such a service, if created, would never be used independently of the 
poOrderDocService and poOrderStatusService services based on the orderClass 
generic class, thus having no reuse potential as a distinct service.



Chapter 4

[ 143 ]

Securing Services
One problem with the services discussed so far is that they are not secure. For 
example, no authentication is required when consuming the PO Web service 
discussed in the Building Service Providers and Service Requestors section in Chapter 
2. What this means is that anyone may consume the service and submit a PO 
document, without having to provide any credentials. In a real-world situation,  
you probably might want only legitimate users to have the ability to consume  
the service.

As you may recall from the Building Service Providers and Service Requestors section in 
Chapter 2, the PO Web service, when invoked, is supposed to perform the following 
four steps:

1. Receive a PO document in XML format
2. Validate the PO against the appropriate XML schema
3. Store the PO in the database
4. Send a response message to the requestor

Going one step further, you might add a security check to the above scenario. 
That would be the second step, performed just after receiving the SOAP package 
containing a PO document and before validating the received document. So, the 
above scenario will now look as follows:

1. Receive a PO document in XML format
2. Perform a security check
3. Validate the PO against the appropriate XML schema
4. Store the PO in the database
5. Send a response message to the requestor

The following sections discuss how you might implement the second step in the 
above scenario.

Implementing Message‑Level Security
One simple way to secure the PO Web service would be to provide legitimate users 
with a token. This approach assumes that each SOAP message containing a PO 
document sent by a consumer will contain a username/password pair, which is 
checked against the database when it arrives at the service provider.



Building Web Service Applications

[ 144 ]

While this approach allows the service provider to obtain the information about 
the consumer to make an authorization decision, a significant disadvantage is that 
the credentials passed within the message are actually independent of the message 
payload, and thus, once obtained by a malicious user, may be used to consume 
the service on behalf of a legitimate user. Of course, you can still use SSL to ensure 
transport-level security. Often, though, a SOAP message sent from a service consumer 
to a service provider is processed by an intermediate service or services, running the 
risk of a malicious user stealing the password travelling with the message.

This section discusses how you might work around the above issue by using a hash 
generated from the value of a particular element or elements of the PO document 
being transmitted with the message, rather than sending a fixed token. On the client, 
you might include that hash as part of the SOAP message payload also containing 
the PO document as the other part. The server in turn is responsible for retrieving the 
hashed token from the message and checking whether this hash corresponds to the 
PO that arrived in the same message. Depending on the algorithm used to generate 
a hash, each new PO document may come with a potentially different hashed token, 
which makes it harder for a malicious user to illegally access the service.

It is important to realize that the above security mechanism does not 
ensure a private way to transfer the data, since the payload of a SOAP 
message being transmitted is not encrypted. As for data integrity, 
you may be fully confident that the message has not been modified in 
transit only if the hash transmitted within the message was generated 
upon the entire payload rather than some parts of it. What does this 
security mechanism do then? Well, it prevents unauthorized users from 
consuming the service. That is it.

Diagrammatically, the security mechanism discussed here might look like thediscussed here might look like themight look like the 
following figure:

<?php
...
$has=sha1($pono);
...
?>

<?php
...
$pswd=sha1($pono);
if ($pswd==$hash)
...
?>

<?xml ?>
<Envelope...>
<hash>a3f05...</hash>
<purchaseOrder>
<pono>108...</pono>
...
...
</purchaseOrder>

</Envelope>

<?xml ?>
<Envelope...>
<hash>a3f05...</hash>
<purchaseOrder>
<pono>108...</pono>
...
...
</purchaseOrder>

</Envelope>

SOAP
envelope

SOAP
envelope

PHP SOAP
client script

Service consumer Service provider

PHP SOAP
client script



Chapter 4

[ 145 ]

Here is the PHP code you might use to generate the sha1 hash upon the value of the 
pono element of a PO XML document:

 $xmlpo = simplexml_load_string($po); 
 $pono = $xmlpo->purchaseOrder->pono; 
 $hash=sha1($pono); 

While the previous figure illustrates an example assuming that the hash is generated 
upon the value of the pono element only, in reality, however, the hash might be 
built upon any other PO document's element or, even better, upon a combination of 
elements. The more elements are involved and the more complicated the hashing 
algorithm is, the harder it will be for a malicious user to guess that algorithm. When 
choosing elements for hashing, it is always a good idea to consider the element 
whose value uniquely identifies the document, since it will be most likely used as the 
primary key when storing the document in the database. So utilizing the pono in this 
particular example is essential, since an attempt to submit a new PO document with 
the same pono will fail due to the primary key constraints placed upon the database 
table holding incoming PO documents.

However, for simplicity the purchaseOrder table being used in this example and 
created as discussed in Chapter 2 in the Setting Up the Database section doesn't have 
a primary key constraint. In practice, though, you would definitely use a more 
complicated database table for storing PO XML documents, like the orders table 
created during the process of the po.xsd XML schema registration as discussed in 
Chapter 3, in the Using XML Schemas with Oracle XML DB section. If you recall, the 
orders table has the primary key defined on the pono attribute.

As you can see, with the above approach, you don't even need to create and hold the 
security accounts in the database, since the security measures are incorporated in a 
SOAP message itself, thus enabling message-level security.

As an alternative to including credentials in the SOAP message body, you 
might include them in the SOAP message headers. To achieve this with 
the PHP SOAP extension, you might use the following predefined classes: 
SoapHeader and SoapVar. Using SOAP message headers to send 
secure messages, as well as implementing WS-Security authentication, 
is discussed in detail later, in the Using SOAP Message Headers and Using 
WS-Security for Message-Level Security sections.

In the remainder of this section, you will learn how to implement a secure version of 
the PO Web service, based on the approach outlined above.



Building Web Service Applications

[ 146 ]

The first step is to create the WSDL document for the updated PO Web service. For 
that, you might create the following document and save it as po_secure.wsdl in the 
WebServices\wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poServiceSecure"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace="http://localhost/WebServices/wsdl/po_
secure.wsdl">
    <message name="getPlaceOrderInput">
        <part name="hash" element="xsd:string"/>

        <part name="po" element="xsd:string"/>

    </message>
    <message name="getPlaceOrderOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poServiceSecurePortType">
        <operation name="placeOrder">
           <input message="tns:getPlaceOrderInput"/>
           <output message="tns:getPlaceOrderOutput"/>
        </operation>
    </portType>
    <binding name="poServiceSecureBinding" 
                   type="tns:poServiceSecurePortType">
        <soap:binding style="rpc" 
                   transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="placeOrder">
           <soap:operation 
           soapAction="http://localhost/WebServices/ch4/placeOrder"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poServiceSecure">
        <port name="poServiceSecurePort" 
                   binding="tns:poServiceSecureBinding">
           <soap:address 



Chapter 4

[ 147 ]

  location="http://localhost/WebServices/ch4/SoapServer_secure.php"/>
        </port>
    </service>
</definitions>

As you can see, this WSDL assumes two message parts in the input message of the 
placeOrder operation defined here. So, make sure that the binding style defined in 
the document is rpc.

Next, you might want to create the PHP handler class representing the underlying 
logic of the service discussed here. For that, you might create the following 
purchaseOrder.php script in the WebServices\ch4 directory:

<?php
 //File purchaseOrder_secure.php
 class purchaseOrder {
   public function placeOrder($hash, $po) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
       throw new SoapFault("Server","Failed to connect to database"); 
    };
    $xmlpo = simplexml_load_string($po);       

    $pono = $xmlpo->pono;         

    $pswd=sha1($pono);   

    $this->checkOrder($hash, $pswd);

    $sql = "INSERT INTO purchaseOrders VALUES(:po)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
   private function checkOrder($hash, $pswd) {
    if ($pswd!=$hash) {

        throw new SoapFault("Server","You're not authorized to 

                             consume this service"); 

    }
   }
 }
?>



Building Web Service Applications

[ 148 ]

In this purchaseOrder class, in the first highlighted code block you load the PO 
XML document as a SimpleXMLElement object and then extract the value of the 
pono element. Next, you generate the sha1 hash upon the extracted pono and call 
the checkOrder private method of purchaseOrder. The code for this method is also 
highlighted in the listing and is used to check to see whether the hash generated 
here is equal to the hash that arrived with the message. If there is a mismatch, a 
SoapFault exception is thrown.

The implementation of the SOAP server script to be used in this example is 
straightforward. It is assumed that you save the following SOAP server script as 
SoapServer_secure.php in the WebServices/ch4 directory:

<?php
 //File: SoapServer_secure.php
 require_once "purchaseOrder_secure.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_secure.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

Now that you have the service created, all that's left is to build a client script to test 
the newly created service. For that, you might create the SoapClient_secure.php 
client script shown below:

<?php 
 //File: SoapClient_secure.php
 $wsdl = "http://localhost/WebServices/wsdl/po_secure.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $pono = $xmldoc->pono;

 $hash=sha1($pono);

 $podoc=$xmldoc->asXML();

 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($hash, $podoc);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>



Chapter 4

[ 149 ]

Before you can execute this SOAP client script, you need to have a 
purchaseOrder.xml document containing a PO XML document. For 
that, you might use the one shown in Chapter 2, in the Building the Service 
Requestor section. So, make sure to copy the purchaseOrder.xml 
document from the WebServices\ch2 to WebServices\ch4 directory.

In this client script, you extract the value of the pono element from the PO loaded 
as a SimpleXMLObject from purchaseOrder.xml, and then generate an sha1 hash 
upon the extracted value. The generated hash and the PO document converted into a 
string are then passed to the placeOrder SOAP function as arguments.

Unlike the above client, the following one uses a more complicated algorithm for 
generating the hash. In particular, it generates an sha1 hash upon the pono and 
shipName concatenated together.

<?php 
 //File: __SoapClient_secure.php
 $wsdl = "http://localhost/WebServices/wsdl/po_secure.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $pono = $xmldoc->pono;

 $shipName = $xmldoc->shipTo->name;    

 $mix=$pono.$shipName;     

 $hash=sha1($mix);

 $podoc=$xmldoc->asXML();
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->placeOrder($hash, $podoc);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

Now if you try to run the ����SoapClient_secure.php script shown above, you 
should get the following error message:

You're not authorized to consume this service

This is because you haven't changed the authentication algorithm on the server side 
yet. To handle this task, you might modify the purchaseOrder_secure.php script as 
shown overleaf (the script has been cut down to save space):has been cut down to save space)::



Building Web Service Applications

[ 150 ]

For the full version, see the __purchaseOrder_secure.php script 
in the WebServices\ch4 directory of the downloadable ZIP archive 
accompanying this book. However, before you put the script into action, 
make sure to rename it to purchaseOrder_secure.php.

<?php
 //File __purchaseOrder_secure.php
 class purchaseOrder {
   public function placeOrder($hash, $po) {
    ...
    $xmlpo = simplexml_load_string($po);       
    $pono = $xmlpo->pono; 
    $shipName = $xmlpo->shipTo->name;    
    $mix=$pono.$shipName;     
    $pswd=sha1($mix);
    $this->checkOrder($hash, $pswd);
    ...
   }
 ...
 }
?>

Now the mechanism of generating the hash on the client agrees with the one used on 
the server. So, if you now run the __SoapClient_secure.php script, you should not 
have a problem.

Using SOAP Message Headers
In the preceding section you saw an example of how you might implement  
message-level security by including a hash generated upon the data from the 
document being transmitted into the message. The mechanism discussed there 
assumed that you pass the hash generated as part of the message payload, which 
means you had to define another part of the input message in the WSDL document 
in order to carry the hash. However, sending the hash as part of the payload is 
probably not a good idea, because the hash, acting as a security measure in this  
case, can be considered metadata rather than user data transmitted within the SOAP 
message payload.

If you recall from the Communicating via SOAP section in Chapter 1, SOAP assumes 
that you will use the header element of a message to carry metadata associated with 
that message. So, turning back to the example discussed here, it would be wise to put 
the hash in the header of the message. 



Chapter 4

[ 151 ]

The following figure gives a graphical depiction of the process that takes place on the 
server side when a secure message arrives.

<?xml ?>
<Envelope...>
<hash>a3f05...</hash>
</Header>
<body>
<pono>108...</pono>
...
...
</purchaseOrder>
</body>
</Envelope>

<?php
...
$pswd=sha1($pono);
if ($pswd!=$hash){
throw new SoapFault...
...
?>

<?php
classpurchaseOrder{
...

?>

SOAP
envelope

Extended SOAP
server class

PHP handler
class

1 2

4

3

Service provider

Here is the explanation of the steps in the figure:

Step 1: The service provider receives the message containing a PO document 
as the payload and the hash as a header.
Step 2: The overridden handle method of an extended SOAP server class 
checks whether the hash that arrived with the message as a header is equal 
to the hash generated upon the pono element of the PO document composing 
the message payload.
Step 3: If the check performed in Step 2 returns true, the SOAP server  
passes the PO document to an instance of the PHP handler class for  
further processing.
Step 4: Otherwise, the server stops processing the message, throwing a  
SOAP exception.

An important point about the security mechanism discussed here is that the SOAP 
server processes the hash passed in as a header of the message before the message 
payload is sent to the handler class for processing. So, if the hash passed in is not 
equal to the hash generated upon the value of the pono element of the PO document 
that arrived as the payload, then the server generates a SOAP fault exception and 
stops processing the message.

The rest of this section discusses how to implement a service acting as outlined in the 
above scenario.

•

•

•

•



Building Web Service Applications

[ 152 ]

As usual, let's start with creating the WSDL document for the updated 
poServiceSecure. For that, create the po_headers.wsdl document in the 
WebServices\ch4 directory, which might look as follows::

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poServiceSecure"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace= 
                  "http://localhost/WebServices/wsdl/po_headers.wsdl">
    <message name="getPlaceOrderInput">
        <part name="po" element="xsd:string"/>

    </message>
    <message name="getPlaceOrderOutput">
        <part name="body" element="xsd:string"/>
    </message>
    <portType name="poServiceSecurePortType">
        <operation name="placeOrder">
           <input message="tns:getPlaceOrderInput"/>
           <output message="tns:getPlaceOrderOutput"/>
        </operation>
    </portType>
    <binding name="poServiceSecureBinding" 
                   type="tns:poServiceSecurePortType">
        <soap:binding style="document" 
                   transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="placeOrder">
           <soap:operation 
           soapAction="http://localhost/WebServices/ch4/placeOrder"/>
           <input>
               <soap:body use="literal"/>
           </input>
           <output>
               <soap:body use="literal"/>
           </output>
        </operation>
    </binding>
    <service name="poServiceSecure">
        <port name="poServiceSecurePort" 
                    binding="tns:poServiceSecureBinding">
           <soap:address 

 location="http://localhost/WebServices/ch4/SoapServer_headers.php"/>



Chapter 4

[ 153 ]

        </port>
    </service>
</definitions>

There are a couple of points worth noting about the WSDL document shown 
opposite. First, the input message of the placeOrder operation defined here consists 
of one part only—you don't need to define the hash part any more, since you're not  
going to transmit a hash as part of the message payload. Second, you may use the 
binding style document, since the input message payload is going to contain only a 
PO document.

<?php
 //File purchaseOrder_headers.php
 class purchaseOrder {
   public function placeOrder($po) {
    if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
       throw new SoapFault("Server","Failed to connect to database"); 
    };
    $sql = "INSERT INTO purchaseOrders VALUES(:po)";
    $query = oci_parse($conn, $sql);
    oci_bind_by_name($query, ':po', $po);
    if (!oci_execute($query)) {
        throw new SoapFault("Server","Failed to insert PO"); 
    };
    $msg='<rsltMsg>PO inserted!</rsltMsg>';
    return $msg;
   }
 }
?>

The secSoapServer class is shown in the following snippet that extends the 
SoapServer predefined SOAP extension class, overriding the parent's handle 
method. It is assumed that you save this class as secSoapServer.php in the 
WebServices\ch4 directory.

<?php
 //File: secSoapServer.php
 class secSoapServer extends SoapServer {
  function handle($req) {
   $env = simplexml_load_string($req);      
   $hash= $env->xpath('//ns1:hash');
   $hash = (string) $hash[0];
   $po= $env->xpath('//po');
   $po = simplexml_load_string((string)$po[0]); 
   $pono = $po->xpath('//pono');



Building Web Service Applications

[ 154 ]

   $pono = (string)$pono[0];
   $pswd=sha1($pono);   
   if ($pswd!=$hash) {
        throw new SoapFault("Server","You're not authorized to 
                             consume this service"); 
   };
   parent::handle();
  }
 }
?>

In the overridden handle method, you first convert the value of the argument 
passed in to the method and representing the request message received by the 
server into a SimpleXMLElement object, which makes it possible for you to access 
the request message as XML. In particular, you use the xpath SimpleXMLElement 
method to access the hash encapsulated within the message header block. Using 
the same method, you obtain the message payload, specifying //po as the path 
argument for the xpath method. If you recall from the po_headers.wsdl document 
discussed earlier in this section, po is the name of the input message part that 
represents the message payload. Next, you load the obtained payload as another 
SimpleXMLElement object that you then use to access the pono element in the PO 
document representing the payload. It's explained later in this section why you 
have to create another SimpleXMLElement object to access the payload, rather than 
accessing it via the SimpleXMLElement object created earlier and representing the 
entire message. Finally, to make use of the parent handle method functionality, you 
explicitly call this method.

Now that you have the secSoapServer class created, you can put it into action with 
the following SOAP server script, which you should save as SoapServer_headers.
php in the WebServices/ch4 directory::

<?php
//File: SoapServer_headers.php
 require_once "purchaseOrder_headers.php"; 
 require_once "secSoapServer.php"; 
 $wsdl= "http://localhost/WebServices/wsdl/po_headers.wsdl";
 $srv= new secSoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle($HTTP_RAW_POST_DATA);
?>



Chapter 4

[ 155 ]

To test the newly created service, you might create and then execute the following 
client script:

<?php 
 //File: SoapClient_headers.php
 $wsdl = "http://localhost/WebServices/wsdl/po_headers.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $pono = $xmldoc->pono;
 $hash=sha1($pono);
 $header = new SOAPHeader('http://localhost/WebServices/ch4/headers', 

                          'hash', $hash);

 $client = new SoapClient($wsdl);

 $client->__setSOAPHeaders($header);

 $podoc=$xmldoc->asXML();
 try {
  print $result=$client->placeOrder($podoc);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

As you no doubt have guessed, the highlighted code in the above script is used to setno doubt have guessed, the highlighted code in the above script is used to sethe highlighted code in the above script is used to set 
up the header block in the request message being sent to the server. In this particular 
example, the header block transports the hash used as a security measure.

Now let's turn back to the secSoapServer class, discussed a bit earlier in this section. 
Examining the handle method overridden in this class, you may wonder why you 
would want to use another SimpleXMLElement object to access the payload, despite 
the fact that you already have a SimpleXMLElement object representing the entire 
message. To understand why you have to do it this way, it would be a good idea to 
look at the request message passed to the handle method for processing.

There are several ways in which you can do this. For example, you might make use 
of the __getLastRequest method of a SoapClient on the client side as discussed in 
Chapter 2, in the Using PHP SOAP Extension Tracing Capabilities section. As a result, 
you should get the following message:

<SOAP-ENV:Envelope ...>
  <SOAP-ENV:Header>
   <ns1:hash>da30b3a3056d477be870db86a140a4a36cf7b243</ns1:hash>

  </SOAP-ENV:Header>
  <SOAP-ENV:Body>
   <po>
    &lt;?xml version="1.0"?&gt;



Building Web Service Applications

[ 156 ]

    &lt;purchaseOrder&gt;
     &lt;pono&gt;108128476&lt;/pono&gt;
     &lt;billTo&gt;
   

      ...
   

    &lt;/purchaseOrder&gt;
   </po>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

So, to extract the hash from the above message you use the following code in the 
handle method:

  $env = simplexml_load_string($pack);      
  $hash= $env->xpath('//ns1:hash');
  $hash = (string) $hash[0];

However, since the PO document composing the message payload contains HTML 
entities, obtaining the value of the pono element of the PO is a bit tricky. First, you 
obtain the string representing the PO and containing HTML entities. Next, you load 
this string as a SimpleXMLElement object and then get the pono element with the 
xpath method as follows:

  $po= $env->xpath('//po');
  $po = simplexml_load_string((string)$po[0]); 
  $pono = $po->xpath('//pono');
  $pono = (string)$pono[0];

This is not the case, though, if the message payload is defined as XML rather than a 
string. For example, you might use the following WSDL document to describe the 
poServiceSecure service discussed here:

<definitions name ="poServiceSecure"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             targetNamespace= 
                   "http://localhost/WebServices/wsdl/po_headers.wsdl"
             xmlns:xsd1="http://localhost/WebServices/schema/po/"
             xmlns="http://schemas.xmlsoap.org/wsdl/">
    <import namespace="http://localhost/WebServices/schema/po/"
                location="http://localhost/WebServices/schema/po.xsd" 
  />
    <message name="getPlaceOrderInput">
        <part name="po" element="xsd1:purchaseOrder"/>
    </message>

...

</definitions>



Chapter 4

[ 157 ]

In this case, the request message issued by a consumer of poServiceSecure would 
look as follows:

<SOAP-ENV:Envelope ...>
  <SOAP-ENV:Header>
   <ns1:hash>da30b3a3056d477be870db86a140a4a36cf7b243</ns1:hash>

  </SOAP-ENV:Header>
  <SOAP-ENV:Body>
   <SOAP-ENV:placeOrder>
    <po>
     <pono>108128476</pono>

     <shipTo>
   

      ...
   

    </po>
   </SOAP-ENV:placeOrder>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This simplifies things at the server end. Now, the code extracting the hash and the 
value of the pono element in the overridden handle method of secSoapServer 
might look as follows:

  $env = simplexml_load_string($pack);      
  $hash= $env->xpath('//ns1:hash');
  $hash = (string) $hash[0];
  $pono= $env->xpath('//pono');
  $pono = (string)$pono[0];

In the above example, you use only one SimpleXMLElement object, loading the entire 
request message into it and then extracting first the hash and then the value of the 
pono element of the PO document composing the message payload.composing the message payload..

Using WS‑Security for Message‑Level 
Security
While the security approach discussed in the preceding section may be efficient 
in many PHP SOAP extension-based solutions and is easy to maintain, it does not 
represent a standard security mechanism.

If you want to employ a standard SOAP security mechanism, consider WS-Security, 
a core security specification describing a mechanism for implementing message-level 
security, providing the means of encapsulating security measures in SOAP messages.



Building Web Service Applications

[ 158 ]

For more information on WS-Security, you can visit the OASIS Web 
Services Security (WS-Security) page containing links to specification 
documents. This page can be found at: http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wss.

Actually, the PHP SOAP extension provides no support for WS-Security. To take 
advantage of the technology, you have to explicitly create the required WS-Security 
headers and put them into the SOAP message. The header of the message in this case 
should look as follows:

<SOAP-ENV:Header>
 <ns1:Security 
       xmlns:ns1="http://schemas.xmlsoap.org/ws/2003/06/secext">
  <ns1:UsernameToken>
   <ns1:Username>yourusername</ns1:Username>
   <ns1:Password>yourpassword</ns1:Password>
  </ns1:UsernameToken>
 </ns1:Security>
</SOAP-ENV:Header>

It is interesting to note that WS-Security is not the only WS-* specification 
that utilizes message headers—virtually all WS-* specifications do that. 
For example, WS-Addressing transports message exchange information 
with SOAP headers.

Now that you know what a WS-Security header looks like, let's create a client script 
that would be able to post messages containing such a header.

To start with, you need to create two classes that will be used in the process of 
creating a WS-Security header. The first class should look as follows:

<?php 
 //File: UsernameToken.php
 class UsernameToken {
  private $Username;
  private $Password;
   public function __construct($Username, $Password) {
    $this->Username = $Username;
    $this->Password = $Password;
  }
 }
?>



Chapter 4

[ 159 ]

When creating an instance of this class you will have to specify the username and 
password to be encapsulated in the WS-Security header being created.

The second class should look as follows:

<?php 
 //File: varUsernameToken.php
 class varUsernameToken {
  private $UsernameToken;
  public function __construct($UsernameToken) {
    $this->UsernameToken = $UsernameToken;
  }
 }
?>

This class will be used to create a SoapVar variable from an instance of the 
UsernameToken class discussed previously.

Assuming that you have saved the above classes in the UsernameToken.php and 
varUsernameToken.php scripts respectively, you can now create the following  
client script:

<?php 
 //File: SoapClient_wssecurity.php
 require_once 'UsernameToken.php';
 require_once 'varUsernameToken.php';
 //setting up the variables
 $ns1 = 'http://schemas.xmlsoap.org/ws/2003/06/secext';
 $wsdl = "http://localhost/WebServices/wsdl/po_headers.wsdl";
 //generating the hash
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $pono = $xmldoc->pono;
 $hash=sha1($pono);
 //building WS-Security tags
 $usr = new SoapVar('usr', XSD_STRING,null,null,null,$ns1);

 $pswd = new SoapVar('pswd', XSD_STRING,null,null,null,$ns1);

 $tok = new UsernameToken($usr, $pswd);

 $token = new SoapVar($tok, SOAP_ENC_OBJECT,null,null,'UsernameToken'
,$ns1);

 $varToken = new varUsernameToken($token);

 $token = new SoapVar($varToken, SOAP_ENC_OBJECT,null,null,'UsernameT
oken',$ns1);

 $header = new SOAPHeader($ns1, 'Security', $token);

 //creating the client
 $client = new SoapClient($wsdl, array('trace' => 1));



Building Web Service Applications

[ 160 ]

 $client->__setSOAPHeaders($header);
 $podoc=$xmldoc->asXML();
 try {
  print $result=$client->placeOrder($podoc);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
 print "REQUEST:\n".$client->__getLastRequest()."\n"; 
?>

As you might guess, the highlighted block of code is responsible for setting up a 
WS-Security header to be sent with the request message. You define a SoapVar 
object upon an instance of the UsernameToken class defined earlier, and then use this 
SoapVar object when defining an instance of the varUsernameToken class. The latter 
in turn is used when defining another SoapVar object, which is then passed to the 
SoapHeader constructor.

For simplicity, this client script uses the same WSDL document as in the  
preceding example. This means that when you execute the above client, the 
SoapServer_headers.php server script discussed in the preceding section will be 
invoked. So, the authentication will fail, because the secSoapServer class utilized 
within SoapServer_headers.php is not supposed to work with a WS-Security 
header. In a real-world scenario, though, it is assumed that the receiver understands 
WS-Security.

However, the purpose of the client script discussed here is to show how you can set 
up a WS-Security header rather than how you can handle it on the server side. To 
achieve this goal, you create a SoapClient in debugging mode, and then use the 
__getLastRequest method to print out the request message. In this case, the  
request message will be printed regardless of whether the server fails to process the 
message or not.

To complete this example, though, you might create the SOAP server thatcreate the SOAP server that 
will understand WS-Security headers. For that, you might want to createcreate 
a class that extends the SoapServer class, similar to secSoapServer 
used in the preceding example, in order to handle WS-Security headers 
on the server side.

All that's left is to run the script to check to see what the request message being 
generated looks like. When examining the request message, you should notice that it 
contains the header block shown at the beginning of this section.



Chapter 4

[ 161 ]

Summary 
In this chapter, you looked at how to build a composite solution based on Web 
services, without using an orchestration engine. You saw an example of how 
information about the fine-grained services to be utilized from within a more 
coarse-grained service may be stored in a separate file, thus allowing for dynamic 
binding between the services involved. You also learned how SOAP headers can 
be used to transport metadata. In particular, you looked at different approaches to 
implementing message-level security, including the one based on WS-Security.

In the next chapter, you will start getting your hands dirty with WS-BPEL, looking at 
how to utilize single services built with the PHP SOAP extension within a WS-BPEL 
process service.





Composing SOA Solutions 
with WS-BPEL

When building a WS-BPEL process, you in fact define the way in which different 
services forming a composition interact with one another. With WS-BPEL you 
actually create new services from the existing ones, since a WS-BPEL process can 
be considered a service itself. If the business requirements change, you can easily 
modify your WS-BPEL service by changing its process definition document.

In this chapter, you will look at how to build, deploy, and test the WS-BPEL process 
services. In particular, you'll see the following:

The general structure of a WS-BPEL process definition
Utilizing the basic constructs of WS-BPEL language when designing  
process definitions
Using ActiveBPEL open-source engine as a means of executing WS-BPEL 
process definitions
Building and deploying a simple WS-BPEL process service that returns a 
hello message to the consumer
Combining a set of fine-grained services into a coarse-grained one with 
WS-BPEL

Getting Started with WS‑BPEL
As mentioned in the WS-BPEL section in Chapter 1, WS-BPEL orchestration language 
enables you to define business processes based on Web services, describing the 
message exchange behavior between the parties involved.

•

•

•

•

•



Composing SOA Solutions with WS-BPEL

[ 164 ]

It is recommended that you read the WS-BPEL section in Chapter 1 beforesection in Chapter 1 before 
proceeding to this chapter.

The following three sections provide a brief look at WS-BPEL again, concentrating on 
how it works and the general structure of a WS-BPEL definition.

How it Works
In Chapter 1, you also learned that WS-BPEL utilizes several XML specifications, 
where WSDL is the most significant one. Practically speaking, being a service itself, a 
WS-BPEL process should have a corresponding WSDL document describing it to its 
consumers. Thus, both a WS-BPEL process service and the partner services utilized 
within that process are exposed via WSDL.

The following figure illustrates the above interaction model diagrammatically:

Client
service

Partner
service

Partner
service

WS-BPEL
service

WSDL

WSDL

WSDL

<?xml>
<definitions...

</definitions>

<?xml>
<definitions...

</definitions>

<?xml>
<definitions...

</definitions>

Although the diagram in this figure doesn't tell you about the mechanisms behind 
WS-BPEL, it can be used as an aid to understand how a WS-BPEL process service fits 
into the big picture of a composite solution based on using WS-BPEL orchestration. 
In particular, it shows you that a WS-BPEL process service, like any other service, 
exposes its functionality through a WSDL interface and thus can be invoked by a 
client created in WSDL mode.



Chapter 5

[ 165 ]

Actually, there are several ways in which a WS-BPEL process service 
can be invoked. For example, a WS-BPEL process may be invoked 
from within another WS-BPEL process, thus being a part of another 
orchestration. For simplicity, the examples in this chapter show how  
to invoke a WS-BPEL process by a client script built with the PHP  
SOAP extension.

When creating a WS-BPEL service you create a WS-BPEL definition that will then 
be executed against a WS-BPEL engine, while a partner service built with the PHP 
SOAP extension will be executed against a PHP engine. The following figure gives a 
graphical depiction of this situation:

partner
service

WS-BPEL
service

engineengine

PHPWS-BPEL

A WS-BPEL engine reads an executable WS-BPEL process definition, as well as other 
documents such as WSDL and XSD and waits for an incoming request message from 
a consumer of the WS-BPEL process. When such a message arrives, it creates an 
instance of the process, executing, and interacting with partner services as described 
in the process definition.

The Structure of a WS‑BPEL Definition
If you recall from the WS-BPEL Processes section in Chapter 1, a WS-BPEL businessa WS-BPEL business 
process definition specifies how to co-ordinate the interactions between an instance 
of that process and its partner services. This section discusses the structure of a  
WS-BPEL definition document, providing a brief description of the most important 
WS-BPEL language constructs.



Composing SOA Solutions with WS-BPEL

[ 166 ]

Graphically, the general structure of a WS-BPEL process definition might look like 
the following figure:

<process...>
<partnerLinks>

...
</partnerLinks>
<variables>

...
</variables>
<faultHandlers>

...
</faultHanders>
<sequence>

<receive.../>
<invoke.../>
<reply...>

...
</sequence>

</process>

As you can see in the figure, a WS-BPEL definition represents an XML document 
containing WS-BPEL language constructs performing the process logic. A WS-BPEL 
definition, as well as some other documents related to the process definition are  
then deployed to a WS-BPEL engine against which that process definition will  
be executed.

Here are the most important WS-BPEL constructs used when defining WS-BPEL 
definitions:

WS-BPEL construct Description
process This is the root element of a WS-BPEL process definition and uses 

attributes to declare a number of the process-related namespaces.
partnerLinks Contains a set of partnerLink elements. Each partnerLink 

element establishes the relationship between the process serviceestablishes the relationship between the process service 
and one of its partners.

variables Contains a set of variable elements. Each variable element defines 
a variable used by the process.

faultHandlers Contains fault handlers that describe the actions to be taken in 
response to the faults that may arise during the process execution.



Chapter 5

[ 167 ]

WS-BPEL construct Description
sequence Contains one or more activities performed one after another, as 

they appear within the construct. In a complex scenario, several 
sequences maybe grouped within the flow construct, which 
enables concurrency and synchronization.

flow Enables concurrency between the activities enclosed within this 
construct. For example, you may start several invoke activities 
concurrently, enabling synchronization dependencies  
between them.

receive Receives a message from a partner client service. Usually, this 
activity is used with the createInstance attribute set to yes in 
order to instantiate the business process.

invoke Calls the partner service specified by the partnerLink attribute 
of the activity.

reply Sends a response message to the request received by a receive 
activity, assuming a request-response operation is involved.

assign Contains the from and to pairs wrapped in a copy element, which 
are used to update the values of variables defined within the 
variables section.

If Allows you to add conditional logic to your process definition. 
By using nested elseif elements and an optional else element, 
you can define one or more conditional branches within the if 
activity. Note that if/elseif/else are new WS-BPEL 2.0 
elements. In BPEL4WS 1.1, you use switch/case/otherwise 
instead.

throw Explicitly throws a named fault inside the business process. 
You can optionally use the faultVariable attribute to specify 
a variable with the fault data. A thrown fault should be then 
handled by a corresponding fault handler defined within a 
faultHandlers construct.

The example in the following section shows how to use the above mentioned  
WS-BPEL constructs in a WS-BPEL process definition.

An Example of a WS‑BPEL Definition
Suppose you want to define a WS-BPEL process that will return the required 
information about the specified order. For simplicity's sake, the WS-BPEL process 
discussed in this section will interact with a single partner service implemented in 
PHP. In particular, the process will utilize the poOrderDocService partner service 
discussed in the Building Fine-Grained Services section in Chapter 4. If you recall, the 
poOrderDocService service returns the entire po document whose pono is equal to 
the one specified in the request message sent by a consumer.



Composing SOA Solutions with WS-BPEL

[ 168 ]

So, this example assumes no conditional logic in the WS-BPEL process, since it has 
a very simple structure—the only information returned about the specified order is 
going to be the entire document representing that order.

When continuing with this example in the Implementing Service-Oriented 
Orchestrations section later in this chapter, you will learn how to utilize 
another partner service, namely poOrderStatusService, which 
is discussed in the Building Fine-Grained Services section in Chapter 4. 
Then, you will look at how to enhance the process definition by adding 
conditional logic responsible for determining what partner service should 
be invoked.

Schematically, the above design might look as follows:

client
partner
service

partner serviceWS-BPEL service

<?php
class {

?>

<?xml>
<definitions...

</definitions>

1

4

2

3

<?xml>
<definitions...

</definitions>

Here is the explanation of the steps in the figure, from the WS-BPEL process 
instance's standpoint:

Step 1: The WS-BPEL process receives a request message from the client 
partner service. This is done with the help of the receive WS-BPEL language 
construct. In fact, this is the first step in the lifecycle of a WS-BPEL process 
instance, since a new instance of the business process is created upon 
receiving a request message from the client.
Step 2, 3: The business process invokes the partner service implemented 
with PHP. This example assumes a synchronous request-response operation 
between the process and the client. That is why both Steps 2 and 3 can be 
implemented using a single invoke activity in the WS-BPEL process.
Step 4: The business process replies to the client's request made in Step 1. To 
do this, the reply activity can be used.

•

•

•



Chapter 5

[ 169 ]

As you no doubt have realized, the WS-BPEL process depicted in the figure should 
include at least the following three activities:

receive

invoke

reply

Before moving on to the WS-BPEL process definition though, let's look at the WSDL 
document that might be used to expose that process service to its consumers. This 
helps you understand the structure of the WS-BPEL process definition discussed 
latter in this section.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="poInfo" 
    targetNamespace="http://localhost:8081/active-bpel/services/
poInfoService.wsdl"
    xmlns:tns="http://localhost:8081/active-bpel/services/
poInfoService.wsdl"
    xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:ns2="http://localhost/WebServices/wsdl/poOrderDoc"

    xmlns="http://schemas.xmlsoap.org/wsdl/">
  <import namespace="http://localhost/WebServices/wsdl/poOrderDoc"

          location="http://localhost/WebServices/wsdl/ 
             po_orderdoc.wsdl"/>

  <types>
    <schema attributeFormDefault="qualified"
            elementFormDefault="qualified"
            targetNamespace=
      "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
            xmlns="http://www.w3.org/2001/XMLSchema">
      <element name="poInfoRequest">
        <complexType>
          <sequence>
            <element name="input" type="xsd:string"/>
          </sequence>
        </complexType>
      </element>
     </schema>
  </types>
  <message name="poInfoResponseMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <message name="poInfoRequestMessage">

•

•

•



Composing SOA Solutions with WS-BPEL

[ 170 ]

    <part name="payload" element="tns:poInfoRequest"/>
  </message>
  <portType name="poInfoPT">
    <operation name="getInfo">
      <input message="tns:poInfoRequestMessage"/>
      <output message="tns:poInfoResponseMessage"/>
    </operation>
  </portType>
  <plnk:partnerLinkType name="poInfoLT">
   <plnk:role name="poInfoProviderRole">
      <plnk:portType name="tns:poInfoPT"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="poDocLT">
   <plnk:role name="poDocProviderRole">
      <plnk:portType name="ns2:poOrderDocServicePortType"/>

   </plnk:role>
  </plnk:partnerLinkType>
</definitions>

The most interesting thing to note about the above WSDL definition is that it 
contains no binding and service sections. As you will learn later in this chapter, the 
WS-BPEL engine will generate these definitions implicitly, thus providing the client 
service with the required binding information.

Another important thing to note here is that the above WSDL imports another WSDL 
document, namely po_orderdoc.wsdl, which describes the poOrderDocService 
partner service.

The po_orderdoc.wsdl WSDL document is discussed in the Building 
Fine-Grained Services section in Chapter 4.

If you recall from Chapter 4, the po_orderdoc.wsdl document defines the 
poOrderDocServicePortType port type used in the above document when defining 
the poDocLT partner link type. This partner link type along with the other one—
poInfoLT, which was described previously and is used to represent the interaction 
between the business process and the client service—are then used when defining 
partner links in the WS-BPEL process definition discussed below.

Now that you have looked through the WSDL document describing the WS-BPEL 
process depicted in the previous figure, it's time to look at the WS-BPEL process 
definition itself. For the purpose of this discussion, the WS-BPEL process definition 
document is divided into pieces, each of which is explained in detail.



Chapter 5

[ 171 ]

Like any other WS-BPEL definition, this process definition starts with the process 
root element, establishing the namespaces related to the process:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/
executable"
     xmlns:ns1=
      "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
     xmlns:ns2="http://localhost/WebServices/wsdl/poOrderDoc"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     name="poInfo.bpel"
     suppressJoinFailure="yes"
     targetNamespace="http://poInfo.bpel">

Next, you import WSDL definitions that are used in the WS-BPEL definition. In 
particular, you import the WSDL document describing the process to its consumers 
and the WSDL describing the poOrderDocService partner service:

   <import importType="http://schemas.xmlsoap.org/wsdl/" 
           location="wsdl/poInfo.wsdl"
           namespace=
    "http://localhost:8081/active-bpel/services/poInfoService.wsdl"/>
   <import importType="http://schemas.xmlsoap.org/wsdl/"
           location= 
                  "http://localhost/WebServices/wsdl/po_orderdoc.wsdl"
           namespace="http://localhost/WebServices/wsdl/poOrderDoc"/>

Looking through the above snippet, you may be wondering why the location 
attribute related to the WSDL describing the WS-BPEL process doesn't contain a full 
path to the document. The fact is that this example assumes that the process will be 
deployed to an ActiveBPEL engine. As you will learn in the Your First ActiveBPEL 
Project section later in this chapter, the WSDL describing the WS-BPEL process is 
included in the wsdl folder within the deployment archive, so that you can refer to 
that WSDL as shown in the above example.

The next step is to define the partner links representing relationships between the 
WS-BPEL process and its partners:

   <partnerLinks>
      <partnerLink myRole="poInfoProviderRole" name="poInfoProvider" 
                           partnerLinkType="ns1:poInfoLT"/>
      <partnerLink name="poDocRequester" 
      partnerLinkType="ns1:poDocLT" partnerRole="poDocProviderRole"/>
   </partnerLinks>



Composing SOA Solutions with WS-BPEL

[ 172 ]

In the partnerLinks section, you define two partner links. The first one specifies 
the relationship between the process and its client. The second one specifies the 
relationship between the process and the partner service.

If you recall from the Basic Principles of Service Orientation section in Chapter 1, 
statelessness is one of the key principles of service orientation, meaning that services 
don't maintain their state specific to an activity. As mentioned, building stateless 
fine-grained services encourages loose coupling, reusability, and composability. 
However, when you combine services into an SOA application you are likely 
interested in building a solution that supports stateful interactions between partners. 
To achieve this goal in WS-BPEL, you use variables. In the following variables 
section, you define variables that will then be used to store state information between 
the process interactions:

   <variables>
      <variable messageType= 
            "ns1:poInfoRequestMessage" name="poInfoRequestMessage"/>
      <variable messageType= 
            "ns1:poInfoResponseMessage" name="poInfoResponseMessage"/>
      <variable messageType= 
            "ns2:getOrderDocInput" name="poDocRequestMessage"/>
      <variable messageType= 
            "ns2:getOrderDocOutput" name="poDocResponseMessage"/>
   </variables>

Now you are ready to define the sequence activity, which instructs the WS-BPEL 
engine to start sequential processing of the activities nested within it.

   <sequence>

The first activity you employ within the sequence is receive, which specifies 
the partnerLink containing the myRole used to receive a request message 
from a client service. The payload of the request message will be passed to the 
poInfoRequestMessage variable specified by the variable attribute of the  
receive activity:

      <receive createInstance="yes" 
               operation="getInfo"
               partnerLink="poInfoProvider"
               portType="ns1:poInfoPT"
               variable="poInfoRequestMessage"/>

As you can see, the createInstance attribute of the receive activity is set to yes, 
meaning that performing this activity will instantiate the business process.



Chapter 5

[ 173 ]

Actually, using the createInstance attribute with a receive or pick 
activity is the only way in which you can create an instance of a  
WS-BPEL process.

Next, you copy the value of the input element, which is nested within the XML 
fragment held in the poInfoRequestMessage variable to the pono part of the 
poDocRequestMessage variable as shown below:

      <assign>
         <copy>
            <from part="payload" variable="poInfoRequestMessage">
               <query>ns1:input</query>
            </from>
            <to part="pono" variable="poDocRequestMessage"/>
         </copy>
      </assign>

Now you are ready to invoke the poOrderDocService partner service, using the 
invoke activity, as shown below:

      <invoke inputVariable="poDocRequestMessage"
              outputVariable="poDocResponseMessage"
              operation="getOrderDoc"
              partnerLink="poDocRequester"
              portType="ns2:poOrderDocServicePortType ">
      </invoke>

You specify the poDocRequestMessage variable set in the preceding step as the input 
variable and specify the poDocResponseMessage variable as the output variable 
in the above invoke activity. Also note that the operation attribute of the activity 
is set to getOrderDoc, which, as you may recall from Chapter 4, is the name of 
the operation specified in the po_orderdoc.wsdl WSDL document describing the 
poOrderDocService service.

It is important to understand that a partner service invoked during  
the course of the process execution maybe a WS-BPEL process service 
itself. In such a case, the parent WS-BPEL process is used to describe 
cross-business process interactions performed via WSDL interfaces.



Composing SOA Solutions with WS-BPEL

[ 174 ]

Once this invoke activity has been performed, the poDocResponseMessage output 
variable should contain the result message returned by the poOrderDocService 
partner service. Before you can define the reply activity that will complete the 
operation started by the receive activity defined at the beginning of the sequence, 
you should copy the value of the doc part of the poDocResponseMessage variable to 
the payload part of poInfoResponseMessage. One way to do this is as follows :

      <assign>
         <copy>
            <from>$poDocResponseMessage.doc</from>
            <to>$poInfoResponseMessage.payload</to>
         </copy>
      </assign>

Now you can define the reply activity that will be associated with the receive 
activity defined at the beginning of the sequence:

      <reply operation="getInfo"
             partnerLink="poInfoProvider"
             portType="ns1:poInfoPT"
             variable="poInfoResponseMessage"/>
   </sequence>
</process>

The reply activity is the last one in this WS-BPEL definition. After this activity is 
completed, you explicitly end the sequence and then the process.

As mentioned, the above process, after it has been deployed to a WS-BPEL engine, 
is executed when a client sends a request message to it. The request message should 
contain the pono whose value is then passed to the poOrderDocService partner 
service invoked from within the process. The poOrderDocService service, in turn, 
returns the entire po document with the specified pono. The process then returns this 
document to the client that instantiated the process. That is it.

Using ActiveBPEL Engine
Now that you have a grasp of WS-BPEL and have seen an example of a WS-BPEL 
definition, it's time to look at how you can put it into action. To achieve this goal, 
you first need to obtain and install a WS-BPEL engine against which you will execute 
your WS-BPEL processes.



Chapter 5

[ 175 ]

The ActiveBPEL engine is an open-source implementation of a WS-BPEL 
engine implemented in Java. To get a brief introduction to the ActiveBPEL 
engine, you can refer to the ActiveBPEL Open Source Engine page at 
http://www.active-endpoints.com/open-source-active-
bpel-Intro.htm.

An ActiveBPEL process will run in a standard servlet container. So, before you can 
install the ActiveBPEL engine, you should have a servlet container installed and 
configured properly on your computer. Diagrammatically, this architecture might 
look like the following figure:

SOAP
message

processing
logic

WS-BPEL engine

Servlet container

Note that although the ActiveBPEL engine should run under any 
standard servlet container, it has been tested with Apache Tomcat 5.x. So, 
this chapter assumes that you install the ActiveBPEL engine upon Apache 
Tomcat 5.x. For more details on installing the ActiveBPEL engine, you 
can visit the Installing and Configuring the ActiveBPEL Engine page that can 
be found at http://www.active-endpoints.com/installation-
guide.htm or refer the Installing ActiveBPEL Engine section in Appendix 
A at the end of this book.

When using the ActiveBPEL engine, it is assumed that you manually build a  
WS-BPEL definition to be executed against the engine. Thus, you need to have some 
knowledge of WS-BPEL language constructs and how to build them within a process 
definition. The Your First ActiveBPEL Project section later in this chapter discusses  
in detail how to build and then deploy a WS-BPEL process service to the  
ActiveBPEL engine.



Composing SOA Solutions with WS-BPEL

[ 176 ]

In reality, you likely will want to use a visual WS-BPEL tool for building and 
deploying WS-BPEL solutions. However, even by using a visual tool for WS-BPEL 
development such as ActiveBPEL Designer discussed in the next chapter, you won't 
be that efficient without knowledge of how to manually build a WS-BPEL definition.

Taking Advantage of the ActiveBPEL  
Open‑Source Engine Project
As mentioned, the ActiveBPEL engine is an open-source project. Actually, you can 
use the ActiveBPEL engine under either an Open-Source License or a Commercial 
License that can be acquired by contacting Active Endpoints, Inc.

The Open-Source License assumes that you develop open-source applications. In this 
case, the ActiveBPEL engine is licensed free of charge.

For commercial applications, the ActiveBPEL enterprise software, which includes 
ActiveBPEL engine, is licensed for a fee, under the terms of a commercial  
license agreement.

To learn more about Active Endpoints' licensing polices, you can visit the 
ActiveBPEL Open Source Licensing Policies page at  http://www.active-
endpoints.com/open-source-license.htm.

Your First ActiveBPEL Project
One easy way to get started with ActiveBPEL engine is to play with the samples that 
can be obtained from Active Endpoints' Website.

The samples can be obtained from the ActiveBPEL Samples page at 
http://www.active-endpoints.com/active-bpel-samples.htm.

One disadvantage of the above approach is that the samples may rely on partner 
services built with Java, rather than with PHP. Moreover, if you have just started 
with WS-BPEL, many of the samples may look too complicated to you. So, in the 
following sections you will learn how to build an ActiveBPEL project from scratch. 
For simplicity's sake, the WS-BPEL process in the ActiveBPEL project discussed in 
the next sections will not utilize partner services. It is going to be a hello WS-BPEL 
process that receives a name from the client service and returns a corresponding 



Chapter 5

[ 177 ]

hello message back to the client. Then, in the Implementing Service-Oriented 
Orchestrations section, you will see how to implement and then deploy a WS-BPEL 
process service that interacts with partner services.

Structure of the Business Process Archive (BPR) to 
be Deployed to the ActiveBPEL Engine
Before delving into the details of building the documents composing an ActiveBPEL 
project, let's look at how these documents should be combined to create a structure 
that will be deployed to the ActiveBPEL engine.

To deploy a WS-BPEL process so that it can then be executed against an ActiveBPEL 
engine, you need to create a deployment archive containing all the required 
documents. This archive document must be a JAR archive with extension bpr, and 
must have the following structure:

Myproc.bpel

bpel META-INF

MyBPEL_
Project

wsdlMyproc.pdd

wsdlCatalog.
xml service.wsdl service.xsd

As you can see in the figure, the archive contains the root folder and three subfolders 
in it. You are free to choose any name for the root folder, while the names of 
subfolders are predefined:



Composing SOA Solutions with WS-BPEL

[ 178 ]

BPR archive folder Description
bpel Contains the WS-BPEL definition document that, using WS-BPEL 

language constructs, describes the behavior and interactions of a 
process instance.

META-INF Contains the wsdlCatalog.xml document, which is a catalog of 
the WSDL and XML schema definitions related to the WS-BPEL 
process and stored in the wsdl folder of the archive..

wsdl Contains the WSDL and XML schema definitions related to the 
WS-BPEL process.

Also worth noting is the Process Deployment Descriptor (PDD) file that is located in 
the root directory of the deployment archive. This document contains information 
about the process to be deployed, which is required for the ActiveBPEL engine to 
perform the deployment.

Turning back to the hello project discussed here, you need to create a folder in your 
file system, to which you may give a custom name, say, hello. Next, you need to 
create the META-INF, bpel, and wsdl folders within the hello folder.

The following four sections take you through creating the documents composing  
the bpr archive of a hello WS-BPEL process service. Then, in the Deploying the  
WS-BPEL Process Service section, you will see how to combine these documents into a 
bpr archive and then deploy it to the ActiveBPEL engine.

Designing WSDL for the WS‑BPEL Process Service
As stated earlier, a WS-BPEL process can be considered as a service, since it provides 
a WSDL interface to its consumers. So, it would be a good idea to start developing a 
WS-BPEL process with creating the WSDL definition describing this process service 
to its clients.

If you recall, designing WSDL definitions for composite services built 
with WS-BPEL was already discussed in the WSDL Definitions for 
Composite Services section in Chapter 1.

Here is the hello.wsdl document that you should save in the wsdl folder of your 
project, created as discussed in the preceding section:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions targetNamespace="http://localhost:8081/active-bpel/
services/hello"
      xmlns:tns="http://localhost:8081/active-bpel/services/hello"
      xmlns="http://schemas.xmlsoap.org/wsdl/"



Chapter 5

[ 179 ]

      xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
      xmlns:xsd="http://www.w3.org/2001/XMLSchema"    
      xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

                                                              link/">  

<!-- abstract characteristics of the WS-BPEL process service -->
<message name="inputMessage">
   <part name="firstName" type="xsd:string"/>
</message>
<message name="outputMessage">
   <part name="hello" type="xsd:string"/>
</message>
<portType name="helloServicePT">
   <operation name="hello">
      <input name="inputMessage" message="tns:inputMessage"/>
      <output name="outputMessage" message="tns:outputMessage"/>
   </operation>
</portType>
<!-- partnerLinkType section representing interaction 
                  between the WS-BPEL service and its client -->
<plnk:partnerLinkType name="helloPartnerLinkType">

   <plnk:role name="helloServiceRole">

       <plnk:portType name="tns:helloServicePT"/>

   </plnk:role>

</plnk:partnerLinkType>

</definitions>

As you can see, this WSDL document doesn't contain deployment information 
(binding and address information). The fact is that the client services will use a 
modified version of the above WSDL document. Based on the above WSDL, the 
ActiveBPEL engine will dynamically generate the document containing the required 
binding and address information.

The highlighted block in the above WSDL represents the partnerLinkType construct 
within which you define the relationship between the WS-BPEL process and itsthe relationship between the WS-BPEL process and its 
consumer (client service).

Actually, you must specify a partnerLinkType construct for each 
partner service involved. In this particular case, though, the WS-BPEL 
process has only one partner, its consumer, thus, you specify only one 
partnerLinkType construct in the WSDL document describing the  
WS-BPEL process service.



Composing SOA Solutions with WS-BPEL

[ 180 ]

Creating the WSDL Catalog
Now that you have the WSDL document describing the WS-BPEL process service 
created, you can move on and create the wsdlCatalog.xml document in the META-
INF directory of the project. This document contains information about all the WSDL 
and XML schema definitions to be used. In this particular case, thought, it contains 
only one entry, which refers to the hello.wsdl document shown in the preceding 
section.

<?xml version="1.0" encoding="UTF-8"?>
<wsdlCatalog>
 <wsdlEntry location="wsdl/hello.wsdl"
            classpath="wsdl/hello.wsdl" />
</wsdlCatalog>

The ActiveBPEL engine will use information from this document to find the 
hello.wsdl WSDL document within the BPR deployment archive discussed in the 
Deploying the WS-BPEL Process Service section later.

Designing the WS‑BPEL Process Definition
The next step in building the hello project discussed here is to implement the  
WS-BPEL process definition. Here is the hello.bpel definition that you have to  
save in the bpel folder of the project:

<?xml version="1.0" encoding="UTF-8"?>
<process name="hello"
         xmlns=
            "http://schemas.xmlsoap.org/ws/2003/03/business-process/"
         xmlns:bpws=
            "http://schemas.xmlsoap.org/ws/2003/03/business-process/" 
         xmlns:lns="http://localhost:8081/active-bpel/services/hello" 
         xmlns:xsd="http://www.w3.org/2001/XMLSchema"
         suppressJoinFailure="yes"
         targetNamespace="http://hello">
   <partnerLinks>
      <partnerLink myRole="helloServiceRole" name="customer" 

                         partnerLinkType="lns:helloPartnerLinkType"/>

   </partnerLinks>
   <variables>
      <variable messageType="lns:inputMessage" name="inputMessage"/>
      <variable messageType="lns:outputMessage" 
                                 name="outputMessage"/>
   </variables>
   <sequence>



Chapter 5

[ 181 ]

      <receive createInstance="yes" 

               operation="hello"
               partnerLink="customer" 
               portType="lns:helloServicePT"
               variable="inputMessage"/>
      <assign>
         <copy>
            <from expression="concat( 'Hello, ', 

           bpws:getVariableData('inputMessage', 'firstName'),'!' )"/>

            <to part="hello" variable="outputMessage"/>

         </copy>
      </assign>
      <reply operation="hello" 
             partnerLink="customer"
             portType="lns:helloServicePT"
             variable="outputMessage"/>
   </sequence>
</process>

The partnerLinks section contains partnerLink sections establishing relationships 
with the partner services that interact with the business process during the course of 
its execution. In the above document, the partnerLinks section contains only one 
entry—the one that represents the relationship between the process service and the 
client service. In this case, you use the myRole attribute in the partnerLink element 
because the WS-BPEL process service is the service provider to the client service.

It is important to note that the name specified in the partnerLinkType attribute 
of the partnerLink element is equal to the one specified in the corresponding 
partnerLinkType section in the hello.wsdl document discussed earlier.

The sequence of activities defined within the sequence construct is fairly 
straightforward. The first one is the receive activity that is used to handle a request 
message sent by a client service. By setting the createInstance attribute of the 
receive activity to yes, you instruct the ActiveBPEL engine to create a process 
instance when this activity receives a request message.

The next activity defined within the sequence construct is assign. Here you actually 
generate the output message, based on the information that arrived with the  
input message.

Finally, you define the reply activity, which is responsible for sending the output 
message to the client service.



Composing SOA Solutions with WS-BPEL

[ 182 ]

Creating the Process Deployment Descriptor (PDD) 
Document
Now that you have the WSDL and WS-BPEL definitions created, you need to create 
the Process Deployment Descriptor (PDD) document that contains the information 
required for the ActiveBPEL engine to deploy the process service discussed  
here. Here is the hello.pdd document that you should save in the root folder of  
the project:

<?xml version="1.0" encoding="UTF-8"?>
<process name="bpelns:hello"
         location="bpel/hello.bpel"
         xmlns=
          "http://schemas.active-endpoints.com/pdd/2004/09/pdd.xsd"
         xmlns:bpelns="http://hello"
         xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<partnerLinks>
  <partnerLink name="customer">
   <myRole allowedRoles="" binding="RPC"
          service="helloServicePT"/>
  </partnerLink>
</partnerLinks>
<wsdlReferences>
  <wsdl location="wsdl/hello.wsdl" 
    namespace="http://localhost:8081/active-bpel/services/hello"/>
</wsdlReferences>
</process>

As you can see, the above pdd document includes the partnerLinks section 
containing the partnerLink section related to the one defined in the process 
definition discussed in the preceding section.

Deploying the WS‑BPEL Process Service
Now that you have all the project components ready, it's time to move on and deploy 
the WS-BPEL process to the ActiveBPEL engine. This section provides a description 
of the deployment of the WS-BPEL process discussed above.

Before you can deploy the newly created WS-BPEL process service, you have  
to create the Business Process Archive (BPR). To do this, you might use the 
operating-system command prompt. First, you need to change the current directory 
to the root directory of the project and then issue the following command:

jar cf hello.bpr *.pdd META-INF bpel wsdl



Chapter 5

[ 183 ]

As a result of this command, you should have a deployable hello.bpr Business 
Process Archive (BPR). All that's left is to copy that file to the $CATALINA_HOME/bpr 
directory created during the installation of the ActiveBPEL engine.

Once you copy the BPR archive to the $CATALINA_HOME/bpr directory, the 
ActiveBPEL engine will implicitly deploy the WS-BPEL process, provided there are 
no typos in the files included in the archive.

One way to make sure that the process has been successfully deployed is to look 
at the deployment log. To do this, you can use the BPEL Administrative Console 
graphical tool installed by default during the ActiveBPEL engine installation as 
shown in the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

To load the BPEL Administrative Console (also known as BpelAdmin), enter theBPEL Administrative Console (also known as BpelAdmin), enter theBpelAdmin), enter the 
following URL in your browser:

http://localhost:8081/BpelAdmin



Composing SOA Solutions with WS-BPEL

[ 184 ]

This URL assumes that you have installed your Tomcat server at 
http://localhost:8081/. The fact is that the Oracle XML DB HTTP 
server runs on port 8080 by default. So, if you have an Oracle database 
installed on your machine, you can choose another port when installing a 
Tomcat server; say, 8081.

Once you have loaded BpelAdmin, you can open the Deployment Log page by 
clicking the Deployment Log link available in the Deployment Status group. As a 
result, you might see the page shown below.

If the deployment fails, the information provided on the Deployment Log page may 
help you figure out what's wrong. In that case, you need to fix the problem and then 
rebuild the deployment archive.

If the process has been successfully deployed, you should see the following messagethe process has been successfully deployed, you should see the following message 
in the Deployment Log box:

05/22/2007 08:59:27:328 [hello.bpr] [hello.wsdl] Added resource mapped 
to location hint: wsdl/hello.wsdl
05/22/2007 08:59:28:812 [hello.bpr] [hello.pdd] Successfully deployed.

Now you can click the Deployed Services link from the Deployment Status group 
to look at the information related to the deployed service. The Deployed Services 
page should look like the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

Another way to make sure that the process service has been successfully deployed is 
to enter the following URL:

http://localhost:8081/active-bpel/services/helloServicePT?wsdl

If you recall from the hello.pdd discussed in the Creating the Process 
Deployment Descriptor (PDD) Document section earlier, helloServicePT 
is specified as the service name of the process service.



Chapter 5

[ 185 ]

As a result, the browser should output the following WSDL definition:

<?xml version="1.0" encoding="UTF-8" ?> 
<definitions targetNamespace=
                   "http://localhost:8081/active-bpel/services/hello"
       xmlns="http://schemas.xmlsoap.org/wsdl/"
       xmlns:plnk=
            "http://schemas.xmlsoap.org/ws/2003/05/partner-link/" 
       xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
       xmlns:tns="http://localhost:8081/active-bpel/services/hello" 
       xmlns:xsd="http://www.w3.org/2001/XMLSchema">
   <message name="outputMessage">
    <part name="hello" type="xsd:string" /> 
   </message>
   <message name="inputMessage">
    <part name="firstName" type="xsd:string" /> 
   </message>
   <portType name="helloServicePT">
    <operation name="hello">
     <input message="tns:inputMessage" name="inputMessage" /> 
     <output message="tns:outputMessage" name="outputMessage" /> 
    </operation>
   </portType>
   <binding name="helloServicePTBinding" type="tns:helloServicePT">

    <soap:binding style="rpc" 

          transport="http://schemas.xmlsoap.org/soap/http" 

          xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" /> 

    <operation name="hello">

     <soap:operation soapAction="" style="rpc" 

       xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" /> 

      <input>

       <soap:body 

         encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

          use="encoded" xmlns:soap=

            "http://schemas.xmlsoap.org/wsdl/soap/" /> 

      </input>

      <output>

       <soap:body 

         encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

          use="encoded" xmlns:soap=

         "http://schemas.xmlsoap.org/wsdl/soap/" /> 

      </output>

    </operation>



Composing SOA Solutions with WS-BPEL

[ 186 ]

  </binding>

  <service name="helloServicePT">

   <port binding="tns:helloServicePTBinding" 

                                name="helloServicePTPort">

     <soap:address location=

         "http://localhost:8081/active-bpel/services/helloServicePT" 

          xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" /> 

   </port>

  </service>

  </definitions>

As you can see, the above document is based on the hello.wsdl WSDL document 
discussed in the Designing WSDL for the WS-BPEL Process Service section earlier. 
The ActiveBPEL engine implicitly generated the binding and service definitions, 
thus making it possible for a client partner service to consume the process service 
discussed here.

Testing the WS‑BPEL Process Service
Now that the hello process service has been deployed and you know how to obtain 
the WSDL document describing this service to its clients, it's time to test it. For that, 
you might create and then run the following PHP script: 

<?php 
 //File: SoapClient_hello.php
 $client = new SoapClient("http://localhost:8081/active-

                         bpel/services/helloServicePT?wsdl"); 

 try {
  print($client->hello('Larry')); 
 }
 catch (SoapFault $e) {
  print $e->getMessage();
 }
?> 

When executed, the above script should invoke the hello process service discussed in 
the preceding sections, and output the following hello message:

Hello, Larry!



Chapter 5

[ 187 ]

Implementing Service‑Oriented 
Orchestrations
The hello process service we have discussed is a simplified example of a WS-BPEL 
process service. It doesn't use partner services to get the job done, simply composing 
a hello message based on the data sent by the client. In contrast, a real-world  
WS-BPEL process may invoke a lot of partner services during its execution. 

The following sections take you through creating the documents composing the bpr 
archive of a poInfo WS-BPEL process service that interacts with two partner services. 
The partner services used in this example are the following: poOrderDocService 
and poOrderStatusService—both are discussed in the Building Fine-Grained 
Services section in Chapter 4. So, the following sections do not discuss how to create 
these services, since it is assumed that you have them already created.

The poInfo process service discussed here is invoked when a client sends a request 
message containing two parameters: pono and par. The first one specifies the pono 
of the order document on which you need to get information, while the second 
one specifies what kind of information should be returned, meaning two possible 
choices: the entire document or the status of the document.

Since you are going to deploy the poInfo process service to the ActiveBPEL engine, 
you first need to create the required folders in your file system for the project. Forneed to create the required folders in your file system for the project. For 
example, you may create the folder named poInfo and then create the META-INF, 
bpel, and wsdl folders within it.

Creating the WSDL Definition Describing the 
WS‑BPEL Process
As usual, the first step in creating the service is to create the WSDL definition 
describing that service to its clients. Here is the poInfo.wsdl document that you 
should save in the wsdl folder created within the poInfo folder, which is the root 
folder for this project:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="poInfo" 
    targetNamespace=
     "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
    xmlns:tns=
     "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
    xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:ns2="http://localhost/WebServices/wsdl/poOrderDoc"



Composing SOA Solutions with WS-BPEL

[ 188 ]

    xmlns:ns3="http://localhost/WebServices/wsdl/poOrderStatus"
    xmlns="http://schemas.xmlsoap.org/wsdl/">
  <import namespace="http://localhost/WebServices/wsdl/poOrderDoc"
    location="http://localhost/WebServices/wsdl/po_orderdoc.wsdl"/>
  <import namespace="http://localhost/WebServices/wsdl/poOrderStatus"
    location="http://localhost/WebServices/wsdl/po_orderstatus.wsdl"/>
  <types>
    <schema attributeFormDefault="qualified"
            elementFormDefault="qualified"
            targetNamespace=
      "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
            xmlns="http://www.w3.org/2001/XMLSchema">
      <element name="poInfoRequest">
        <complexType>
          <sequence>
            <element name="pono" type="xsd:string"/>
            <element name="par" type="xsd:string"/>
          </sequence>
        </complexType>
      </element>
     </schema>
  </types>
  <message name="poInfoResponseMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <message name="poInfoRequestMessage">
    <part name="payload" element="tns:poInfoRequest"/>
  </message>
  <portType name="poInfoPT">
    <operation name="getInfo">
      <input message="tns:poInfoRequestMessage"/>
      <output message="tns:poInfoResponseMessage"/>
    </operation>
  </portType>
  <plnk:partnerLinkType name="poInfoLT">
   <plnk:role name="poInfoProviderRole">
      <plnk:portType name="tns:poInfoPT"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="poDocLT">
   <plnk:role name="poDocProviderRole">
      <plnk:portType name="ns2:poOrderDocServicePortType"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="poStatusLT">
   <plnk:role name="poStatusProviderRole">



Chapter 5

[ 189 ]

      <plnk:portType name="ns3:poOrderStatusServicePortType"/>

   </plnk:role>
  </plnk:partnerLinkType>
</definitions>

As you can see, the above WSDL definition imports two definitions describing the 
poOrderDocService and poOrderStatusService partner services.partner services.

This example assumes that you have the po_orderdoc.wsdl and 
po_orderstatus.wsdl documents created as discussed in the in thein the 
Building Fine-Grained Services section in Chapter 4.

Note the use of the poInfoRequest complex type when defining the input message. 
This structure makes it possible for the client to send two parameters, namely pono 
and par, within a single request message.

Another important thing to note here is the use of three partner links. The first 
one defines the interaction between the WS-BPEL process service and its client, 
while the other two define the relationships between the WS-BPEL service and the 
poOrderDocService and poOrderStatusService partner services respectively.partner services respectively.

Creating the WSDL Catalog
The next step is to create the wsdlCatalog.xml WSDL catalog document in the 
META-INF directory of the project. In this example, the document contains only one 
entry that refers to the poInfo.wsdl document discussed in the preceding section.

<?xml version="1.0" encoding="UTF-8"?>
<wsdlCatalog>
 <wsdlEntry location="wsdl/poInfo.wsdl"
            classpath="wsdl/poInfo.wsdl" />
</wsdlCatalog>

Creating the WS‑BPEL Business Definition 
Containing Conditional Logic
The WS-BPEL definition you create in this example is a bit complicated than the 
one you saw in the An Example of a WS-BPEL Definition section at the beginning 
of this chapter. This is because the poInfo.bpel definition shown below contains 
conditional logic.



Composing SOA Solutions with WS-BPEL

[ 190 ]

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/
executable"
     xmlns:ns1=
      "http://localhost:8081/active-bpel/services/poInfoService.wsdl"
     xmlns:ns2="http://localhost/WebServices/wsdl/poOrderDoc"
     xmlns:ns3="http://localhost/WebServices/wsdl/poOrderStatus"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     name="poInfo.bpel"
     suppressJoinFailure="yes"
     targetNamespace="http://poInfo.bpel">
   <import importType="http://schemas.xmlsoap.org/wsdl/" 
           location="wsdl/poInfo.wsdl"
           namespace=
    "http://localhost:8081/active-bpel/services/poInfoService.wsdl"/>
   <import importType="http://schemas.xmlsoap.org/wsdl/"
         location="http://localhost/WebServices/wsdl/po_orderdoc.wsdl"
         namespace="http://localhost/WebServices/wsdl/poOrderDoc"/>
   <import importType="http://schemas.xmlsoap.org/wsdl/"
      location="http://localhost/WebServices/wsdl/po_orderstatus.wsdl"
           namespace= 
                  "http://localhost/WebServices/wsdl/poOrderStatus"/>

   <partnerLinks>
      <partnerLink myRole="poInfoProviderRole" name="poInfoProvider" 
partnerLinkType="ns1:poInfoLT"/>
      <partnerLink name="poDocRequester" partnerLinkType="ns1:poDocLT" 
partnerRole="poDocProviderRole"/>
      <partnerLink name="poStatusRequester" partnerLinkType="ns1:
poStatusLT" partnerRole="poStatusProviderRole"/>
   </partnerLinks>
   <variables>
      <variable messageType="ns1:poInfoRequestMessage" name="poInfoReq
uestMessage"/>
      <variable messageType="ns1:poInfoResponseMessage" name="poInfoRe
sponseMessage"/>
      <variable messageType="ns2:getOrderDocInput" name="poDocRequest
Message"/>
      <variable messageType="ns2:getOrderDocOutput" name="poDocRespon
seMessage"/>
      <variable messageType="ns3:getOrderStatusInput" name="poStatusRe
questMessage"/>
      <variable messageType="ns3:getOrderStatusOutput" name="poStatusR
esponseMessage"/>
   </variables>



Chapter 5

[ 191 ]

   <sequence>
     <receive createInstance="yes" 
               operation="getInfo"
               partnerLink="poInfoProvider"
               portType="ns1:poInfoPT"
               variable="poInfoRequestMessage"/>
      <if>
       <condition>($poInfoRequestMessage.payload/ns1:par = 
                                        'doc')</condition>
       <sequence>
        <assign>
         <copy>
            <from part="payload" variable="poInfoRequestMessage">
               <query>ns1:pono</query>
            </from>
            <to part="pono" variable="poDocRequestMessage"/>
         </copy>
        </assign>
        <invoke inputVariable="poDocRequestMessage"
              outputVariable="poDocResponseMessage"
              operation="getOrderDoc"
              partnerLink="poDocRequester"
              portType="ns2:poOrderDocServicePortType">
        </invoke>
        <assign>
         <copy>
            <from>$poDocResponseMessage.doc</from>
            <to>$poInfoResponseMessage.payload</to>
         </copy>
        </assign>
       </sequence>
       <elseif>
        <condition>($poInfoRequestMessage.payload/ns1:par = 
                                       'status')</condition>
        <sequence>
        <assign>
         <copy>
            <from part="payload" variable="poInfoRequestMessage">
               <query>ns1:pono</query>
            </from>
            <to part="pono" variable="poStatusRequestMessage"/>
         </copy>
        </assign>
        <invoke inputVariable="poStatusRequestMessage"



Composing SOA Solutions with WS-BPEL

[ 192 ]

              outputVariable="poStatusResponseMessage"
              operation="getOrderStatus"
              partnerLink="poStatusRequester"
              portType="ns3:poOrderStatusServicePortType">
        </invoke>
        <assign>
         <copy>
            <from>$poStatusResponseMessage.status</from>
            <to>$poInfoResponseMessage.payload</to>
         </copy>
        </assign>
       </sequence>
       </elseif>
       <else> 
        <assign>
         <copy>
            <from>'Wrong input parameter. Should be either 
                                     doc or status!'</from>
            <to>$poInfoResponseMessage.payload</to>
         </copy>
        </assign>
       </else>
      </if>
      <reply operation="getInfo"
             partnerLink="poInfoProvider"
             portType="ns1:poInfoPT"
             variable="poInfoResponseMessage"/>
   </sequence>
</process>

The most interesting part of the above WS-BPEL process definition is the if/
elseif/else construct. Schematically it looks like the following:

   <sequence>

      activities

      <if>
       <condition>...</condition>
       <sequence>

        activities

       </sequence>
     <elseif>



Chapter 5

[ 193 ]

       <condition>...</condition>

       <sequence>

        activities

       </sequence>
      </elseif>
      <else>
       activity
      </else>
     </if>
   
     activities
  
   </sequence>

Note the use of the inner sequence constructs in the above structure. The fact is that 
WS-BPEL doesn't allow you to use more than one activity within if or elseif or 
else blocks. That is why you have to enclose a set of activities within any of those 
blocks with sequence.

Creating the PDD Document
Before you build the deployment archive for this project, you need to create the 
Process Deployment Descriptor document. Here is the poInfo.pdd document that 
you should save in the root folder of the project:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.active-endpoints.com/pdd/2006/08/pdd.
xsd" 
 xmlns:bpelns="http://poInfo.bpel"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 location="bpel/poInfo.bpel"
 name="bpelns:poInfo.bpel">
   <partnerLinks>
      <partnerLink name="poDocRequester">
         <partnerRole endpointReference="static">
            <wsa:EndpointReference xmlns:s= 
                       "http://localhost/WebServices/wsdl/poOrderDoc">
             <wsa:Address>http://localhost/WebServices/ch4/ 
                                              SoapServer_orderdoc.php
                                              </wsa:Address>
             <wsa:ServiceName PortName=
        "poOrderDocServicePort">s:poOrderDocService</wsa:ServiceName>



Composing SOA Solutions with WS-BPEL

[ 194 ]

            </wsa:EndpointReference>
         </partnerRole>
      </partnerLink>
      <partnerLink name="poStatusRequester">
         <partnerRole endpointReference="static">
            <wsa:EndpointReference xmlns:s=
              "http://localhost/WebServices/wsdl/poOrderStatus">
              <wsa:Address>http://localhost/WebServices/ch4/ 
                    SoapServer_orderstatus.php</wsa:Address>
                <wsa:ServiceName PortName="poOrderStatusServicePort">
                             s:poOrderStatusService</wsa:ServiceName>
            </wsa:EndpointReference>
         </partnerRole>
      </partnerLink>
      <partnerLink name="poInfoProvider">
         <myRole allowedRoles="" binding="RPC" 
                                 service="poInfoService"/>
      </partnerLink>
   </partnerLinks>
   <wsdlReferences>
      <wsdl location= 
                 "http://localhost/WebServices/wsdl/po_orderdoc.wsdl" 
  namespace="http://localhost/WebServices/wsdl/poOrderDoc"/>
      <wsdl location= 
               "http://localhost/WebServices/wsdl/po_orderstatus.wsdl" 
  namespace="http://localhost/WebServices/wsdl/poOrderStatus"/>
      <wsdl location="wsdl/poInfo.wsdl" namespace=
    "http://localhost:8081/active-bpel/services/poInfoService.wsdl"/>
   </wsdlReferences>
</process>

As you can see, the above pdd document contains three partnerLink sections, each 
of which is related to the corresponding partnerLink section defined in the process 
definition discussed in the preceding section.

Deploying the WS‑BPEL Process Service
Now that you have all the project components ready, you can create the  
deployment archive.

Using your operating-system command prompt, you should change the current 
directory to the root directory of the project, and then issue the following command:

jar cf poInfo.bpr *.pdd META-INF bpel wsdl



Chapter 5

[ 195 ]

As a result, you should have a deployable poInfo.bpr archive. Make sure to copy 
that file to the $CATALINA_HOME/bpr directory to deploy it to the ActiveBPEL engine.

To make sure that the process has been successfully deployed, you can use the BPELBPEL 
Administrative Console, loading the Deployment Log page. Or you can enter the 
following URL in your browser:

http://localhost:8081/active-bpel/services/poInfoService?wsdl

As a result, you should see the WSDL based on the poInfo.wsdl with the service 
and binding sections automatically added by the ActiveBPEL engine.

Testing the WS‑BPEL Process Service
After the poInfo process service has been successfully deployed, it's time to test it. 
For that, you might create and then run the following PHP script: 

<?php 
 //File: SoapClient_poInfo.php
 $client = new SoapClient
  ("http://localhost:8081/active-bpel/services/poInfoService?wsdl"); 
 $xmldoc = '<wrapper><pono>108128476</pono><par>doc</par></wrapper>';
 $xmldoc = simplexml_load_string($xmldoc);
 try {
  print($client->getInfo($xmldoc)); 
 }
 catch (SoapFault $e) {
  print $e->getMessage();
 }
?>

This should output the entire po document whose pono is 108128476. When setting 
the $xmldoc variable in the above script as shown below:

$xmldoc = '<wrapper><pono>108128476</pono><par>status</par></ 
                                                   wrapper>';

you should receive a short message: shipped, which indicates the status of  
the document.



Composing SOA Solutions with WS-BPEL

[ 196 ]

Summary 
As you have learned in this chapter, WS-BPEL can be used to build both simple 
WS-BPEL process services that do not rely on partner services and WS-BPEL 
orchestrations that combine single loosely coupled services into composite  
stateful applications. In particular, you saw an example of how to combine a set  
of fine-grained services into a coarse-grained one with WS-BPEL. The chapter  
also provided a description of the deployment of a WS-BPEL process to the 
ActiveBPEL engine.

Now that you have seen how a set of individual services can be combined into an 
SOA with WS-BPEL, it's time to move on and learn how the process of building SOA 
solutions can be simplified with the help of a WS-BPEL visual tool. That's the subject 
of the next chapter, in which we will look at the ActiveBPEL Designer, a free visual 
tool for creating and testing WS-BPEL-based solutions.



ActiveBPEL Designer
While the preceding chapter gave some background on WS-BPEL and focused 
mostly on how to write WS-BPEL code and then build deployable archives, this 
chapter discusses how you might simplify the process of creating WS-BPEL process 
services using the ActiveBPEL Designer—a free graphical tool for WS-BPEL process 
design, debugging, and simulation.

With the ActiveBPEL Designer, you can graphically orchestrate Web services into 
multi-step business processes (composite services). Being a fully-functional WS-BPEL 
development tool, the ActiveBPEL Designer provides a graphical drag-and-drop 
user interface that simplifies the process of creating a WS-BPEL process service.

In this chapter, you will learn how to create, deploy, and test WS-BPEL process 
services with the ActiveBPEL Designer. In particular, we will look at:

ActiveBPEL Designer's user interface
Building WS-BPEL processes using a drag-and-drop approach
Building and deploying a hello WS-BPEL process service
Combining a set of fine-grained services into a WS-BPEL-based composition

Getting Started with ActiveBPEL 
Designer
As you no doubt have guessed, the ActiveBPEL Designer is an efficient means  
when it comes to building composite applications based on the principles of service 
orientation. The following section touches upon the ActiveBPEL Designer's user 
interface. Then, you will learn how to build a hello WS-BPEL process service 
discussed in the preceding chapter, with the ActiveBPEL Designer.

•

•

•

•



ActiveBPEL Designer

[ 198 ]

For information on how to get and install the ActiveBPEL Designer, refer 
the Installing ActiveBPEL Designer section in the Appendix.

Overview of ActiveBPEL Designer's User 
Interface
ActiveBPEL Designer's user interface consists of a series of views, editors, palettes, 
toolbars, and menus.

The following figure shows what an ActiveBPEL Designer IDE might look like when 
you open it for the first time:

 
© Copyright 2007 Active Endpoints. All rights reserved.

Looking at the ActiveBPEL Designer perspective, you may notice that it includesActiveBPEL Designer perspective, you may notice that it includes, you may notice that it includes 
several views, each of which is designed to display information of a certain  
type. Here are the most important views belonging to the the ActiveBPELthe ActiveBPEL  
Designer perspective::



Chapter 6

[ 199 ]

ActiveBPEL Designer 
view

Description

Navigator Enables you to manipulate projects and files. Through the Navigator, 
you can copy and paste files from the file system to projects.

Web References Enables you to add Web references, each of which is either a Web 
Services Description Language (WSDL) document or XSD schema, 
making them available for all projects.

Process Variables Displays the list of variables related to the WS-BPEL process you are 
working on.

Outline Displays all the major components of the WS-BPEL process selectedof the WS-BPEL process selected 
in the Navigator.

Properties Displays names and values of properties of the resource selected in 
the ActiveBPEL Process Editor canvas.

Problems Displays errors and warnings related to the validation of the WS-
BPEL process you are working on.

To create a WS-BPEL process, you use the ActiveBPEL Process Editor. To build a 
WS-BPEL process with the ActiveBPEL Process Editor, you use a drag-and-drop 
approach, dragging required components from the Palette to the canvas.

The following figure shows what the ActiveBPEL Process Editor might look like:

 
© Copyright 2007 Active Endpoints. All rights reserved.



ActiveBPEL Designer

[ 200 ]

In the Creating the WS-BPEL Process section later, you will see the ActiveBPEL Process 
Editor in action when building a hello WS-BPEL process service.

Your First Project in ActiveBPEL Designer
The ActiveBPEL Designer is shipped with samples that might be used to start 
playing with. To quickly familiarize yourself with the ActiveBPEL Designer, you 
might take advantage of the ActiveBPEL Tutorial that is included in the Help 
contents shipped with Designer. The ActiveBPEL Tutorial consists of step-by-step 
instructions on how to build, deploy, run, and debug a sample process.

Creating the Project
When you need to create a new WS-BPEL process service with the ActiveBPEL 
Designer, the first step is to create a project. To do this, you might select File | New 
|Project, choose Project in the Wizard, and then click Next. In the next window of 
the Wizard as shown in the following figure, you should specify the name for the 
project. For the project discussed here, you might use hello_designer as the name.

 
© Copyright 2007 Active Endpoints. All rights reserved.

After you have specified the name of the project, click Finish.

The following figure illustrates what the Navigator view might look like after you've 
created the hello_designer project as discussed above.

 
© Copyright 2007 Active Endpoints. All rights reserved.



Chapter 6

[ 201 ]

Adding the WSDL Definition
The next step is to add a WSDL document to this project. To keep things simple, you 
might use the hello.wsdl document discussed in thediscussed in the Designing WSDL for the WS-
BPEL Process Service section in Chapter 5. It would be a good idea to copy this file to 
a single subfolder within your project. So, you first need to create that subfolder. This 
can be done via the Navigator shown in the previous figure:

Right-click the hello_designer folder in the Navigator.
In the pop-up menu, choose New->Other…
In the first Wizard window, choose Folder and click Next.
In the second Wizard window, type in wsdl as the name for the folder being 
created and click Finish.

Now that you have created the wsdl folder in your project, you can copy the hello.
wsdl file to it. To achieve this goal, you might use the Import… wizard as follows:

Right-click the newly created wsdl folder in the Navigator.
In the pop-up menu, choose Import…
In the first Wizard window, choose File System and click Next.
In the second Wizard window, click the Browse… button to the right of 
the From directory: box and select the wsdl directory of the hello project 
discussed in Chapter 5. In the right pane, select hello.wsdl and click Finish.

As a result, the hello.wsdl document should appear in the wsdl folder created in 
the hello_designer folder.

Although you have the hello.wsdl WSDL document in the wsdl folder located 
within the root folder of your project, it doesn't mean that this WSDL will be 
automatically available within the project. To solve this problem, you need to add 
the hello.wsdl WSDL document as a Web Reference, thus creating a registry of 
namespaces, messages, and other elements defined in this WSDL document.

To add a Web Reference, you need to move on to the Web References view, which is 
placed next to the Navigator, and perform the following steps:

Right-click within Web References view.
In the pop-up menu, choose Add Web Reference.

•

•

•

•

•

•

•

•

•

•



ActiveBPEL Designer

[ 202 ]

In the Add Web Reference dialog, click the Browse Projects… button and 
select /hello_designer/wsdl/hello.wsdl. As a result, the Add Web Reference 
dialog should look like the following figure. Then, to complete the operation, 
you should click OK.

 
© Copyright 2007 Active Endpoints. All rights reserved.

As a result, the hello.wsdl node should appear in the Web References view. Now 
if you expand this node by clicking the plus sign next to the file name, the Web 
References view should look like the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

As you can see in the figure, the Web References view allows you to look through  
the structure of the WSDL document added as a Web Reference. In the next section, 
we look at how you might use the elements of a Web Reference when building a  
WS-BPEL process with a drag-and-drop approach.

•



Chapter 6

[ 203 ]

Creating the WS‑BPEL Process
Now that you have added the hello.wsdl document to the project and added it as 
a Web Reference, you can move on and build the WS-BPEL process definition. To do 
this, you should follow the steps below:

Turn back to the Navigator view by clicking the Navigator tab.
In the Navigator, right-click the hello_designer folder and select  
New->BPEL Process.
In the Wizard dialog, enter hello.bpel in the File name box and click 
Finish. As a result, hello.bpel should appear in the Navigator within the 
hello_designer folder, and you also should see the hello.bpel tab in the 
ActiveBPEL Process Editor.
Turn back to the Web References view by clicking the Web References tab.
In the Web References view, expand hello.wsdl and then helloServicePT, 
which should contain the operation hello.
Drag the hello operation from the Web References view to the hello.bpel 
canvas displayed within the ActiveBPEL Process Editor. As a result, the 
Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:hello dialog should appear.
In the Operation:hello dialog, make sure that the Receive-Reply option is 
selected, and click Finish. As a result, the Receive and Reply activities will 
be automatically added to the canvas.
Turn back to the Navigator view by clicking the Navigator tab.
In the ActiveBPEL Process Editor, expand the Palette by putting the mouse 
cursor on its tab.
In the Palette, choose Sequence from the Container section and put it on  
the canvas.
Drag the Receive activity located on the canvas to the Sequence container 
created in the preceding step, so that the Receive activity is within  
the container.
Drag the Reply activity located on the canvas to the Sequence container, so 
that the Reply activity is within the container and under the Receive activity.

•

•

•

•

•

•

•

•

•

•

•

•

•



ActiveBPEL Designer

[ 204 ]

In the Palette, choose Assign from the Activity section and put it on the 
canvas under the Receive activity and above the Reply activity, within the 
Sequence container. The result should look like the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

You have just built the hello.bpel WS-BPEL process whose visual representation is 
shown in the previous figure. The next step is to set up the properties of the activities 
composing the process to the appropriate values:

On the canvas, select the Receive activity located within the Sequence 
container and open the Properties view by clicking the Properties tag located 
at the bottom of the ActiveBPEL Designer perspective.
In the Properties view, change the value of the Create Instance property  
to Yes.
On the canvas, select the Assign activity located within the Sequence 
container and get back to the Properties view.
 In the Properties view, click the … button to the right of the value field of  
the Copy Operations property. As a result, the Copy Operations dialog 
should appear.

•

•

•

•

•



Chapter 6

[ 205 ]

In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, select Expression in the Type combo-box 
within the From group and then click the … button located to the right of the 
Expression box. As a result, the Expression Builder dialog should appear.
In the Expression Builder dialog, enter the following expression in the 
Expression box: concat('Hello, ', bpws:getVariableData('inputMessage', 
'firstName'),'!'), and click OK. As a result, you should get back to the Copy 
Operation dialog.
In the Copy Operation dialog, move on to the elements within the To group 
and set the properties to the following values: Type to Variable; Variable 
to outputMessage, Part to hello. Once you've done all that, click OK. As a 
result, you should get back to the Copy Operations dialog.
In the Copy Operations dialog, click OK.

Examining the expression you used in the above example, you may notice that the 
getVariableData function is used with the bpws prefix. If you recall from Chapter 5, 
in the hello.bpel process this prefix is associated with the following namespace:

http://schemas.xmlsoap.org/ws/2003/03/business-process/

So, you have to add the above namespace to the hello.bpel process discussed here. 
To do this, move on to the Outline view located at bottom part of the ActiveBPEL 
Designer perspective. The folllowing figure shows what the Outline view may  
look like:

 
© Copyright 2007 Active Endpoints. All rights reserved.

Now you should perform the following steps to set up the namespace  
mentioned above:

In the Outline view, right-click the Namespaces node, which is under the 
hello node.
In the pop-up menu, select Add->Declaration->Namespace.

•

•

•

•

•

•

•



ActiveBPEL Designer

[ 206 ]

Move on to the Properties view and set the Namespace properties as 
follows: Prefix to bpws, and URI to http://schemas.xmlsoap.org/ws/2003/03/
business-process/.

That is it. You can now save the hello.bpel process by selecting the hello.bpel in 
the ActiveBPEL Process Editor and then selecting File->Save. You also may want 
to look at the WS-BPEL code generated by the ActiveBPEL Designer for the hello.
bpel document. To do this, click the Source tab in the ActiveBPEL Process Editor. 
The code for the hello.bpel document should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--
BPEL Process Definition
Edited using ActiveBPEL(tm) Designer Version 3.0.0 (http://www.active-
endpoints.com)
-->
<bpel:process xmlns:bpel=
         "http://docs.oasis-open.org/wsbpel/2.0/process/executable" 
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/" 
xmlns:ns1="http://localhost:8081/active-bpel/services/hello" xmlns:
xsd="http://www.w3.org/2001/XMLSchema" name="hello" suppressJoinFailur
e="yes" targetNamespace="http://hello">
   <bpel:import importType="http://schemas.xmlsoap.org/wsdl/" 
     location="wsdl/hello.wsdl" 
     namespace="http://localhost:8081/active-bpel/services/hello"/>
   <bpel:partnerLinks>
      <bpel:partnerLink myRole="helloServiceRole" name="helloPartnerLi
nkType" partnerLinkType="ns1:helloPartnerLinkType"/>
   </bpel:partnerLinks>
   <bpel:variables>
      <bpel:variable messageType="ns1:inputMessage" 
name="inputMessage"/>
      <bpel:variable messageType="ns1:outputMessage" 
name="outputMessage"/>
   </bpel:variables>
   <bpel:sequence>
      <bpel:receive createInstance="yes" operation="hello" partnerLin
k="helloPartnerLinkType" portType="ns1:helloServicePT" variable="inpu
tMessage"/>
      <bpel:assign>
         <bpel:copy>
            <bpel:from>concat( 'Hello, ', bpws:getVariableData('inputM
essage', 'firstName'),'!')</bpel:from>
            <bpel:to part="hello" variable="outputMessage"/>
         </bpel:copy>
      </bpel:assign>

•



Chapter 6

[ 207 ]

      <bpel:reply operation="hello" partnerLink="helloPartnerLinkType" 
portType="ns1:helloServicePT" variable="outputMessage"/>
   </bpel:sequence>
</bpel:process>

Finally, make sure that the Problems view displays no error. If so, you can move on 
to the deployment phase discussed in the next two sections.

Creating the Deployment Descriptor
As you may recall from the Creating the Process Deployment Descriptor (PDD) 
Document section in Chapter 5, the Process Deployment Descriptor document holds 
the deployment information required for the ActiveBPEL engine to execute in the 
ActiveBPEL server environment. While the above section from Chapter 5 discusses 
how to manually build a descriptor document, this section shows you how to create 
a pdd with the ActiveBPEL Designer.

To create the pdd document for the hello WS-BPEL process discussed here, follow the 
steps below:

In the Navigator view, right-click within the view to invoke the pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the hello_designer folder 
and select the hello.bpel document, so that it appears in the Select BPEL 
Process file textbox and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine and click Next.
In the next screen of the New Deployment Descriptor dialog, select the 
helloPartnerLinkType in the Partner Links: listbox. Then, move on to the 
MyRole tab located at the bottom of the same window.
On the MyRole tab, set the properties as follows: Binding to RPC Literal, 
Service to helloService, and click Finish.

After you've performed the above steps, the newly created descriptor document 
should appear in the ActiveBPEL Process Editor, and should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.active-
  endpoints.com/pdd/2006/08/pdd.xsd" xmlns:bpelns="http://hello" 
  xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing" 
  location="bpel/hello_designer/hello.bpel" name="bpelns:hello">
   <partnerLinks>

•

•

•

•

•

•



ActiveBPEL Designer

[ 208 ]

      <partnerLink name="helloPartnerLinkType">
         <myRole allowedRoles="" binding="RPC-LIT" 
                                 service="helloService"/>
      </partnerLink>
   </partnerLinks>
   <references>
      <wsdl location="project:/hello_designer/wsdl/hello.wsdl" 
       namespace="http://localhost:8081/active-bpel/services/hello"/>
   </references>
</process>

Since the hello WS-BPEL process discussed here doesn't utilize partner 
services, the above descriptor contains the only partner link—the one  
that represents the relationship between the process service and its  
client service.

In the above pdd document, pay attention to the value of the location attribute of 
the wsdl element. In particular, notice the use of project: followed by the path 
to the hello.wsdl file. The ActiveBPEL Designer thus specifies the location of the 
WSDL document making it possible for the ActiveBPEL engine to find this document 
within the deployment archive, regardless of the actual location to which that 
deployment archive will be deployed.

Creating the Deployment Archive
Now that you have all the project components created, you are ready to create the 
Business Process Archive file required to deploy the newly created hello WS-BPEL 
process service to an ActiveBPEL server.

Since it's always a good idea to create a deployment archive file in a separate folder, 
let's do it before creating the archive file:

In the Navigator view, right-click the hello_designer folder.
In the pop-up menu, select New->Other…
In the first screen of the New wizard, select the Folder node in the box, and  
click Next.
In the next screen of the wizard, make sure that the Enter or select the parent 
folder editbox contains hello_designer. If so, enter bpr in the Folder name 
editbox, and click Finish.

•

•

•

•



Chapter 6

[ 209 ]

After performing these steps, the bpr folder should appear within the  
hello_designer folder in the Navigator. Now you can create the deployment  
archive for the hello WS-BPEL process service and deploy it to the ActiveBPEL 
engine by following the steps below:

In the Navigator view, right-click the hello_designer folder.
In the pop-up menu, select Export…
In the Export dialog, make sure that Business Process Archive File under 
ActiveBPEL node is selected and click Next.
In the Export Business Process Archive dialog, make sure that the checkbox 
on the left of the hello.pdd node within the hello_designer folder is  
checked on.
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\hello_designer\bpr\hello_designer.bpr.

Depending on the directory in which you installed the ActiveBPEL 
Designer, you may have another path to the Designer\eclipse\
workspace\hello_designer\bpr folder.

In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\Program Files\Apache 
Software Foundation\Tomcat 5.5\bpr, and click Finish.

In fact, the ActiveBPEL Designer comes with the Tomcat/ActiveBPEL 
Server to which you can deploy your WS-BPEL process services. This 
particular example though, assumes that you are using the same Tomcat 
server and ActiveBPEL engine running on it, as you used in Chapter 5 
meaning the Tomcat/ActiveBPEL Server is installed separately from the 
ActiveBPEL Designer.

To make sure that the hello WS-BPEL process service has been deployed to the 
ActiveBPEL engine successfully, enter and then check out the following page 
generated by Axis:

http://localhost:8081/active-bpel/services

In this page, you should see the following nodes among others:

helloService (wsdl) 

hello

•

•

•

•

•

•



ActiveBPEL Designer

[ 210 ]

If so, the hello WS-BPEL process service discussed here has been  
deployed successfully.

Deploying the WS‑BPEL Service to the ActiveBPEL 
Server Shipped with ActiveBPEL Designer
As mentioned, you don't have to install another ActiveBPEL engine on your machine 
in order to test WS-BPEL processes you build with ActiveBPEL Designer. The fact 
is that the ActiveBPEL Designer comes with the ActiveBPEL engine running under 
Apache Tomcat.

This section discusses how to deploy the hello WS-BPEL service discussed above to 
the ActiveBPEL Server shipped with the ActiveBPEL Designer.

To start with, you need to run the ActiveBPEL Server. However, before you can 
do this, make sure that another Web server is not running on the port that your 
ActiveBPEL Server is going to use.

If you have an Oracle database installed on your machine, the 8080 port is 
likely used by the Oracle XML DB HTTP server. If so, choose another port 
for your Tomcat server; say, 8081.

Suppose you want to run the ActiveBPEL Server shipped with the ActiveBPEL 
Designer on port 8081. To do this, you first need to perform the following 
preliminary steps:

Change 8080 in the ActiveBPEL Designer\Server\ActiveBPEL_Tomcat\
conf\server.xml document to 8081.
Stop the Tomcat server that you have installed to follow examples provided 
in Chapter 5, since this server is running on the same port: 8081.

With all that done, you can start the ActiveBPEL Server that comes with ActiveBPEL 
Designer. To achieve this, you have two choices: you can do either of:

Click the Start button on the Windows taskbar, select Programs->Active 
Endpoints->ActiveBPEL Designer->Start ActiveBPEL Tomcat Server.
In the ActiveBPEL Designer\Server\ActiveBPEL_Tomcat\bin folder 
double-click the startup.bat file.

The Tomcat server shipped with the ActiveBPEL Designer runs in a 
command window, which you may minimize.

•

•

•

•



Chapter 6

[ 211 ]

To make sure that the ActiveBPEL Server is running, you can launch the ActiveBPEL 
Administration Console by entering the following URL in your browser:

http://localhost:8081/BpelAdmin

If you recall from Chapter 5, the ActiveBPEL Administration Console is a 
graphical tool shipped with the ActiveBPEL engine. This tool makes  
it easier to work with the WS-BPEL processes deployed to the  
ActiveBPEL engine.

Now that you have the ActiveBPEL Server shipped with ActiveBPEL Designer 
running on your computer, you can move on and deploy the hello WS-BPEL process 
service to it. To achieve this goal, you should export the deployment archive for the 
hello process, as follows:

In the Navigator view, right-click the hello_designer folder.
In the pop-up menu, select Export…
In the Export dialog, make sure that Business Process Archive File under the 
ActiveBPEL node is selected and click Next.
In the Export Business Process Archive dialog, make sure that the checkbox 
on the left of the hello.pdd node within the hello_designer folder is  
checked on.
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\hello_designer\bpr\hello_designer.bpr.

Once again, you may have another path to the Designer\eclipse\
workspace \hello_designer\bpr folder, depending on the 
ActiveBPEL Designer installation directory.

In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\ActiveBPEL_Designer\
Server\ActiveBPEL_Tomcat\bpr and click Finish.

To make sure that the hello WS-BPEL process service has been deployed 
successfully, you can look at the Deployed Services page in the ActiveBPEL 
Administration Console. To do this, load the console by entering http://
localhost:8081/BpelAdmin and then click the Deployed Services link. On the 
Deployed Services page, you should see the helloService within the list of the 
deployed services.

•

•

•

•

•

•



ActiveBPEL Designer

[ 212 ]

Testing the WS‑BPEL Process Service
To test the hello WS-BPEL process service just deployed to the ActiveBPEL Server 
shipped with the ActiveBPEL Designer, you might use the following script: 

<?php 
 //File: SoapClient_hello.php
 $client = new SoapClient

   ("http://localhost:8081/active-bpel/services/helloService?wsdl"); 

 try {
  print($client->hello('Larry')); 
 }
 catch (SoapFault $e) {
  print $e->getMessage();
 }
?>

The above script invokes the hello WS-BPEL process service discussed here and 
outputs the following hello message:

Hello, Larry!

Implementing Service‑Oriented 
Orchestrations with ActiveBPEL 
Designer
Turning back to the example discussed in the Implementing Service-Oriented 
Orchestrations section in Chapter 5, let's look at how you might build the 
poInfo WS-BPEL process service that interacts with the two partner services: 
poOrderDocService and poOrderStatusService, using the ActiveBPEL Designer.

Just one reminder before you proceed further. The poOrderDocService 
and poOrderStatusService services are discussed in theare discussed in the Building Fine-
Grained Services section in Chapter 4. It is assumed that you have them 
already created.

As you may recall from Chapter 5, the poInfo WS-BPEL process service discussed 
here is invoked upon receiving a request message containing two parameters: pono 
and par. The first one specifies the pono of the purchase order on which you need to 
get information, while the second one specifies what kind of information should be 
returned, meaning two possible choices: the entire document or the status of  
the document.



Chapter 6

[ 213 ]

The following sections take you through the process of creating and deploying the 
poInfo WS-BPEL process service with ActiveBPEL Designer.

Creating the Project
To create the project for the poInfo WS-BPEL process service in the ActiveBPEL 
Designer, you can follow the steps below:

In ActiveBPEL Designer, select File->New->Project.
In the first screen of the Wizard, choose Project and click Next.
In the next window of the Wizard, specify poInfo_designer as the name for 
the project and click Finish.

After you have performed the above steps, you should see the poInfo_designer 
folder in the Navigator view, containing the .project document.

Adding the WSDL Describing the WS‑BPEL 
Process
Now that you have created the project for the poInfo WS-BPEL process, you can 
add a WSDL document describing this process service to the project. Of course, you 
might create this WSDL from the beginning. However, for simplicity's sake, you 
might use the poInfo.wsdl document discussed in the Creating the WSDL Definition 
Describing the WS-BPEL Process section in Chapter 5.

To start with, create a subfolder wsdl, within the poInfo_designer project folder in 
the Navigator view, as described at the beginning of the Adding the WSDL Definition 
section earlier in this chapter.

Now that you have created the wsdl folder in the root project folder, you can copy 
the poInfo.wsdl file to it. To do this, you should follow the steps below:

Right-click the newly created wsdl folder in the Navigator.
In the pop-up menu, choose Import…
In the first Wizard window, choose File System and click Next.
In the second Wizard window, click the Browse… button to the right of 
the From directory: box and select the wsdl directory of the poInfo project 
discussed in the Implementing Service-Oriented Orchestrations section in 
Chapter 5. In the right pane, select poInfo.wsdl and click Finish.

As a result, the poInfo.wsdl document should be in the wsdl folder, which is in the 
poInfo_designer root project folder.

•

•

•

•

•

•

•



ActiveBPEL Designer

[ 214 ]

The next step is to add the poInfo.wsdl document as a Web Reference. To do this, 
you need to move on to the Web References view, and perform the following steps:

Right-click within the Web References view.
In the pop-up menu, choose Add Web Reference.
In the Add Web Reference dialog, click the Browse Projects… button and 
select /poInfo_designer/wsdl/poInfo.wsdl, and click OK.

As a result, the poInfo.wsdl node should appear in the Web References view.

Adding the WSDL Definitions Describing the 
Partner Services
If you recall, the poInfo WS-BPEL process service discussed here utilizes the two 
partner services, namely poOrderDocService and poOrderStatusService created 
as described in Chapter 4. This section discusses how to add WSDL documents 
describing these services as Web References.

First, let's add the po_orderdoc.wsdl located—if you recall from Chapter 4—at 
http://localhost/WebServices/wsdl/po_orderdoc.wsdl.

Right-click within the Web References view.
In the pop-up menu, choose Add Web Reference.
In the Add Web Reference dialog, insert http://localhost/WebServices/wsdl/
po_orderdoc.wsdl into the WSDL or Schema URLs textbox, and click OK.

As a result, the po_orderdoc.wsdl node should appear in the Web References view. 
Next, add the po_orderstatus.wsdl located at http://localhost/WebServices/
wsdl/po_orderstatus.wsdl:

Right-click within the Web References view.
In the pop-up menu, choose Add Web Reference.
In the Add Web Reference dialog, insert http://localhost/WebServices/wsdl/
po_orderstatus.wsdl into the WSDL or Schema URLs textbox, and click OK.

As a result, the po_orderstaus.wsdl node should appear in the Web References view.

Creating the Process Definition
Now that you have added the poInfo.wsdl document to the project and added it, 
as well as the WSDL documents describing partner services, as Web References, it's 
time to build the WS-BPEL process definition for the poInfo service. To do this, you 
should follow the steps shown next:

•
•
•

•
•
•

•
•
•



Chapter 6

[ 215 ]

In the Navigator view, right-click the poInfo_designer folder and select 
New->BPEL Process.
In the Wizard dialog, enter poInfo.bpel in the File name box and click 
Finish. As a result, poInfo.bpel should appear in the Navigator view within 
the poInfo_designer folder. The poInfo.bpel tab should also appear in the 
ActiveBPEL Process Editor.
In the Web References view, expand the poInfo.wsdl node and then 
poInfoPT, which should contain the operation getInfo.
Drag the getInfo operation from the Web References view to the poInfo.
bpel canvas displayed within the ActiveBPEL Process Editor. As a result, the 
Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:getInfo dialog should appear.
In the Operation:getInfo dialog, make sure that the Receive-Reply option is 
selected and click Finish. As a result, the Receive and Reply activities will be 
automatically added to the poInfo.bpel canvas.
In the ActiveBPEL Process Editor, expand the Palette by putting the mouse 
cursor on its tab.
In the Palette, choose Sequence from the Container section and put it on  
the canvas.

With the next steps, you just add all the required activities to the process 
definitions. Then, you will set up the properties of these activities.set up the properties of these activities.

Drag the Receive activity located on the canvas to the Sequence container 
created in the preceding step, so that the Receive activity is within the 
container.
Drag the Reply activity located on the canvas to the Sequence container, so 
that the Reply activity is within the container and under the Receive activity.
In the Palette, choose If from the Container section and put it on the canvas, 
into the Sequence container between the Receive and Reply activities.
In the Palette, choose Sequence from the Container section and put it into 
the If container added in the preceding step.

The Sequence container is required here because the If container will 
contain more than one activity.

•

•

•

•

•

•

•

•

•

•

•

•



ActiveBPEL Designer

[ 216 ]

In the Web References view, expand the po_orderdoc.wsdl node and  
then poOrderDocServicePortType, which should contain the  
getOrderDoc operation.
Drag the getOrderDoc operation from the Web References view to the 
poInfo.bpel canvas to the Sequence container located within the If 
container. As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:getOrderDoc dialog should appear.
In the Operation:getOrderDoc dialog, select the invoke option and click 
Finish. As a result, the Invoke activity will be automatically added to the 
poInfo.bpel canvas, in the Sequence container located within the  
If container.
In the Palette, choose Assign from the Activity section and put it into the 
Sequence container just above the Invoke activity added in the  
preceding step.
Add another Assign activity, putting it just under the Invoke activity within 
the Sequence container, which is within the If container.
In the Palette, choose If Condition from the Other section and put it at the 
top of the If container added earlier. As a result, the ElseIf container should 
appear to the right of the If container.

When adding If Condition from the Other section to an If container, the 
ActiveBPEL Designer adds the ElseIf container. In this way, you can add 
as many ElseIf containers as needed. In this particular example, though, 
you need only one ElseIf block.

In the Palette, choose Sequence from the Container section and put it into 
the ElseIf container added in the preceding step.
In the Web References view, expand the po_orderstatus.wsdl node and  
then poOrderStatusServicePortType, which should contain the 
getOrderStatus operation.
Drag the getOrderStatus operation from the Web References view to 
the poInfo.bpel canvas, to the Sequence container located within the If 
container. As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:getOrderStatus dialog should appear.
In the Operation:getOrderStatus dialog, select the invoke option and click 
Finish. As a result, the Invoke activity will be automatically added to the 
poInfo.bpel canvas, in the Sequence container located within the  
ElseIf container.

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 6

[ 217 ]

In the Palette, choose Assign from the Activity section and put it into the 
Sequence container within the ElseIf container, just above the Invoke 
activity added in the preceding step.
Add another Assign activity, putting it just under the Invoke activity within 
the Sequence container, which is within the ElseIf container.
In the Palette, choose Else from the Other section and put it to the right of 
the ElseIf container added earlier. As a result, the Else container should 
appear to the right of the ElseIf container.
In the Palette, choose Assign from the Activity section and put it into the 
Else container added in the preceding step.

Within the Else container used here, you don't use the Sequence 
container as you did when constructing the If and ElseIf blocks earlier 
in this example. This is because the Else container contains only one 
activity here.

The following figure shows what the poInfo.bpel canvas in the ActiveBPEL Process 
Editor should look like after you've completed the above steps.

 
© Copyright 2007 Active Endpoints. All rights reserved.

•

•

•

•



ActiveBPEL Designer

[ 218 ]

The next step in building the WS-BPEL process discussed here is to set up the 
properties of the activities composing the process to the appropriate values:

On the canvas, select the Receive activity located within the Sequence 
container and open the Properties view by clicking the Properties tag located 
in the bottom part of the ActiveBPEL Designer perspective.
In the Properties view, change the value of the Create Instance property  
to Yes.
On the canvas, right-click the If container and select Edit If Expression… 
from the pop-up menu.
In the If Expression Builder dialog, enter the following expression in the If 
Expression box: $poInfoRequestMessage.payload/ns1:par = 'doc' and  
click OK.
On the canvas, right-click the ElseIf container and select Edit If Expression… 
from the pop-up menu.
In the If Expression Builder dialog, enter the following expression in the If 
Expression box: $poInfoRequestMessage.payload/ns1:par = 'status' and 
click OK.
On the canvas, select the Assign activity located at the top of the Sequence 
container within the If container and get back to the Properties view.
In the Properties view, click to the … button to the right of the value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Variable, Variable to poInfoRequestMessage, Part to 
payload, Query to ns1:pono. In the To group, Type to Variable, Variable to 
getOrderDocInput, Part to pono. Then, click OK.
In the Copy Operations dialog, click OK.

Looking through the visual representation of the WS-BPEL process 
discussed here, you may notice that it contains five Assign activities. The 
above five steps set up only one of the Assign activities used. Next, you 
set up the other four in a similar way.

On the canvas, select the Assign activity located at the bottom of the 
Sequence container within the If container, and get back to the  
Properties view.

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 6

[ 219 ]

In the Properties view, click to the … button to the right of the value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Variable, Variable to getOrderDocOutput, Part to doc. In 
the To group, Type to Variable, Variable to poInfoResponseMessage, Part 
to payload. Then, click OK.
In the Copy Operations dialog, click OK.

You just finished setting up the Assign activities located within the 
If container. Next, you set up the Assign activities located within the 
ElseIf container.

On the canvas, select the Assign activity located at the top of the Sequence 
container within the ElseIf container and get back to the Properties view.
In the Properties view, click to the … button to the right of the value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button to invoke the Copy 
Operation dialog.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Variable, Variable to poInfoRequestMessage, Part to 
payload, Query to ns1:pono. In the To group, Type to Variable, Variable to 
getOrderStatusInput, Part to pono. Then, click OK.
In the Copy Operations dialog, click OK.
On the canvas, select the Assign activity located at the bottom of the 
Sequence container within the ElseIf container and get back to the  
Properties view.
In the Properties view, click to the … button to the right of the value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button to invoke the Copy 
Operation dialog.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Variable, Variable to getOrderStatusOutput, Part to status. 
In the To group, Type to Variable, Variable to poInfoResponseMessage, 
Part to payload. Then, click OK.
In the Copy Operations dialog, click OK.

•

•

•

•

•

•

•

•

•
•

•

•

•

•



ActiveBPEL Designer

[ 220 ]

The last Assign activity you need to set up is the one located within the Else container.

On the canvas, select the Assign activity located at the bottom of the 
Sequence container within the Else container and get back to the  
Properties view.
In the Properties view, click to the … button to the right of the value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button to invoke the Copy 
Operation dialog.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Literal, Literal Contents to Wrong input parameter. Should 
be either doc or status!. In the To group, Type to Variable, Variable to 
poInfoResponseMessage, Part to payload. Then, click OK.

That is it. You just finished the poInfo WS-BPEL process definition. Now, select  
File->Save to save the process. Then, check out the Problems view; it should display 
no error.

Now if you click the Source tab in the ActiveBPEL Process Editor, assuming that the 
poInfo.bpel canvas is selected, you should see the following WS-BPEL code:

<?xml version="1.0" encoding="UTF-8"?>
<!--
BPEL Process Definition
Edited using ActiveBPEL(tm) Designer Version 3.0.0 (http://www.active-
endpoints.com)
-->
<bpel:process xmlns:bpel="http://docs.oasis-
  open.org/wsbpel/2.0/process/executable" 
  xmlns:ns1="http://localhost:8081/active-bpel/services/poInfoService.
wsdl" 
  xmlns:ns2="http://localhost/WebServices/wsdl/poOrderDoc" 
  xmlns:ns3="http://localhost/WebServices/wsdl/poOrderStatus" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="poInfo" 
  suppressJoinFailure="yes" targetNamespace="http://poInfo">
   <bpel:import importType="http://schemas.xmlsoap.org/wsdl/" 
  location="wsdl/poInfo.wsdl" 
  namespace="http://localhost:8081/active-
  bpel/services/poInfoService.wsdl"/>
   <bpel:import importType="http://schemas.xmlsoap.org/wsdl/" 
  location="http://localhost/WebServices/wsdl/po_orderdoc.wsdl" 
  namespace="http://localhost/WebServices/wsdl/poOrderDoc"/>
   <bpel:import importType="http://schemas.xmlsoap.org/wsdl/" 

•

•

•

•



Chapter 6

[ 221 ]

  location="http://localhost/WebServices/wsdl/po_orderstatus.wsdl" 
  namespace="http://localhost/WebServices/wsdl/poOrderStatus"/>
   <bpel:partnerLinks>
      <bpel:partnerLink myRole="poInfoProviderRole" name="poInfoLT" 
        partnerLinkType="ns1:poInfoLT"/>
      <bpel:partnerLink name="poDocLT" partnerLinkType="ns1:poDocLT" 
        partnerRole="poDocProviderRole"/>
      <bpel:partnerLink name="poStatusLT" 
        partnerLinkType="ns1:poStatusLT" 
          partnerRole="poStatusProviderRole"/>
   </bpel:partnerLinks>
   <bpel:variables>
      <bpel:variable messageType="ns1:poInfoRequestMessage" 
        name="poInfoRequestMessage"/>
      <bpel:variable messageType="ns1:poInfoResponseMessage" 
        name="poInfoResponseMessage"/>
      <bpel:variable messageType="ns2:getOrderDocInput" 
        name="getOrderDocInput"/>
      <bpel:variable messageType="ns2:getOrderDocOutput" 
        name="getOrderDocOutput"/>
      <bpel:variable messageType="ns3:getOrderStatusInput" 
        name="getOrderStatusInput"/>
      <bpel:variable messageType="ns3:getOrderStatusOutput" 
        name="getOrderStatusOutput"/>
   </bpel:variables>
   <bpel:sequence>
      <bpel:receive createInstance="yes" operation="getInfo" 
        partnerLink="poInfoLT" portType="ns1:poInfoPT" 
        variable="poInfoRequestMessage"/>
      <bpel:if>
         <bpel:condition expressionLanguage=
                   "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">$
                   poInfoRequestMessage.payload/ns1:par = 
                  'doc'</bpel:condition>
         <bpel:sequence>
            <bpel:assign>
               <bpel:copy>
                  <bpel:from part="payload" 
                    variable="poInfoRequestMessage">
                     <bpel:query>ns1:pono</bpel:query>
                  </bpel:from>
                  <bpel:to part="pono" variable="getOrderDocInput"/>
               </bpel:copy>
            </bpel:assign>



ActiveBPEL Designer

[ 222 ]

            <bpel:invoke inputVariable="getOrderDocInput" 
              operation="getOrderDoc" 
              outputVariable="getOrderDocOutput" 
              partnerLink="poDocLT" 
              portType="ns2:poOrderDocServicePortType"/>
            <bpel:assign>
               <bpel:copy>
                  <bpel:from part="doc" 
                    variable="getOrderDocOutput"/>
                  <bpel:to part="payload" 
                    variable="poInfoResponseMessage"/>
               </bpel:copy>
            </bpel:assign>
         </bpel:sequence>
         <bpel:elseif>
            <bpel:condition expressionLanguage=
              "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">$
               poInfoRequestMessage.payload/ns1:par = 
              'status'</bpel:condition>
            <bpel:sequence>
               <bpel:assign>
                  <bpel:copy>
                     <bpel:from part="payload" 
                        variable="poInfoRequestMessage">
                        <bpel:query>ns1:pono</bpel:query>
                     </bpel:from>
                     <bpel:to part="pono" 
                       variable="getOrderStatusInput"/>
                  </bpel:copy>
               </bpel:assign>
               <bpel:invoke inputVariable="getOrderStatusInput" 
     operation="getOrderStatus" outputVariable="getOrderStatusOutput" 
     partnerLink="poStatusLT" 
     portType="ns3:poOrderStatusServicePortType"/>
               <bpel:assign>
                  <bpel:copy>
                     <bpel:from part="status" 
                       variable="getOrderStatusOutput"/>
                     <bpel:to part="payload" 
                       variable="poInfoResponseMessage"/>
                  </bpel:copy>
               </bpel:assign>
            </bpel:sequence>
         </bpel:elseif>



Chapter 6

[ 223 ]

         <bpel:else>
            <bpel:assign>
               <bpel:copy>
                  <bpel:from>
                     <bpel:literal>Wrong input parameter. Should be 
                        either doc or status!</bpel:literal>
                  </bpel:from>
                  <bpel:to part="payload" 
                    variable="poInfoResponseMessage"/>
               </bpel:copy>
            </bpel:assign>
         </bpel:else>
      </bpel:if>
      <bpel:reply operation="getInfo" partnerLink="poInfoLT" 
         portType="ns1:poInfoPT" variable="poInfoResponseMessage"/>
   </bpel:sequence>
</bpel:process>

As you can see, the ActiveBPEL Designer generated all the required WS-BPEL code 
for you. Now you can move on to the deployment phase discussed in the next  
two sections.

Creating the Process Deployment Descriptor
Now that you have the WS-BPEL definition created, it's time to create the Process 
Deployment Descriptor document containing the deployment information. 
Following are the steps to create the pdd document for the poInfo WS-BPEL process 
service discussed here, with the ActiveBPEL Designer:

In the Navigator view, right-click within the view to invoke the pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the poInfo_designer folder 
and select the poInfo.bpel document, so that it appears in the Select BPEL 
Process file textbox, and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine and click Next.
In the next screen of the New Deployment Descriptor dialog, the Partner 
Links listbox should contain the following three items: poDocLT, poInfoLT, 
poStatusLT. Note that the status of poDocLT and poStatusLT is set to the 
following: Missing a partner role endpoint reference type.

•

•

•

•

•



ActiveBPEL Designer

[ 224 ]

In the Partner Links listbox, select poDocLT and then move on to the Partner 
Role group. In the Invoke Handler combobox, select address and in the 
Endpoint type combobox, select static. As a result, the following code should 
appear in the Endpoint Reference box:

   <wsa:EndpointReference 
     xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
     xmlns:s="FILL_IN_NAMESPACE">
     <wsa:Address>FILL_IN_ADDRESS_URI</wsa:Address>
     <wsa:ServiceName PortName="FILL_IN_PORT_NAME">s:FILL_IN_SERVICE_
NAME</wsa:ServiceName>
</wsa:EndpointReference>

In the Endpoint Reference box, replace the above code with the following:
   <wsa:EndpointReference 
     xmlns:s="http://localhost/WebServices/wsdl/poOrderDoc">
      <wsa:Address>http://localhost/WebServices/ch4
         /SoapServer_orderdoc.php</wsa:Address>
         <wsa:ServiceName 
                PortName="poOrderDocServicePort">s:
                poOrderDocService</wsa:ServiceName>
              </wsa:EndpointReference>

In the Partner Links listbox, select poStatusLT. In the Invoke Handler 
combobox, select address, and in the Endpoint type combobox, select static.
In the Endpoint Reference box, replace the generated code with  
the following:

 <wsa:EndpointReference xmlns:s= 
                    "http://localhost/WebServices/wsdl/poOrderStatus">
  <wsa:Address>http://localhost/WebServices/ch4/ 
                              SoapServer_orderstatus.php</wsa:Address>
  <wsa:ServiceName PortName="poOrderStatusServicePort"> 
                              s:poOrderStatusService</wsa:ServiceName>
 </wsa:EndpointReference>

In Partner Links listbox, select poInfoLT.
On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to poInfoService and click Finish.

After you've performed the above steps, the newly created poInfo.pdd descriptor 
document should appear in the ActiveBPEL Process Editor and should look  
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.active-endpoints.com/pdd/2006/08/pdd.

•

•

•

•

•

•



Chapter 6

[ 225 ]

xsd" xmlns:bpelns="http://poInfo" xmlns:wsa="http://schemas.xmlsoap.
org/ws/2003/03/addressing" location="bpel/poInfo_designer/poInfo.bpel" 
name="bpelns:poInfo">
   <partnerLinks>
      <partnerLink name="poDocLT">
         <partnerRole endpointReference="static" 
             invokeHandler="default:Address">
            <wsa:EndpointReference 
              xmlns:s="http://localhost/WebServices/wsdl/poOrderDoc">
             <wsa:Address>http://localhost/WebServices/ch4/SoapServer_
orderdoc.php</wsa:Address>
             <wsa:ServiceName 
              PortName="poOrderDocServicePort">s:poOrderDocService
              </wsa:ServiceName>
            </wsa:EndpointReference>
         </partnerRole>
      </partnerLink>
      <partnerLink name="poInfoLT">
         <myRole allowedRoles="" binding="RPC" 
           service="poInfoService"/>
      </partnerLink>
      <partnerLink name="poStatusLT">
         <partnerRole endpointReference="static" 
           invokeHandler="default:Address">
            <wsa:EndpointReference 
           xmlns:s="http://localhost/WebServices/wsdl/poOrderStatus">
              <wsa:Address>http://localhost/WebServices/ch4/
SoapServer_orderstatus.
    php</wsa:Address>
                <wsa:ServiceName 
           PortName="poOrderStatusServicePort">s:poOrderStatusService
            </wsa:ServiceName>
            </wsa:EndpointReference>
         </partnerRole>
      </partnerLink>
   </partnerLinks>
   <references>
      <wsdl location="project:/poInfo_designer/wsdl/poInfo.wsdl" 
        namespace="http://localhost:8081/active-
         bpel/services/poInfoService.wsdl"/>
      <wsdl 
       location="http://localhost/WebServices/wsdl/po_orderdoc.wsdl" 
       namespace="http://localhost/WebServices/wsdl/poOrderDoc"/>
      <wsdl 



ActiveBPEL Designer

[ 226 ]

    location="http://localhost/WebServices/wsdl/po_orderstatus.wsdl" 
    namespace="http://localhost/WebServices/wsdl/poOrderStatus"/>
   </references>
</process>

As you can see, the ActiveBPEL Designer can not only generate the WS-BPEL 
definitions but also pdd documents. The above document contains all the information 
required to deploy the poInfo WS-BPEL process service to an ActiveBPEL engine.

Deploying the WS‑BPEL Process Service
Now that you have created all the required components for the poInfo WS-BPEL 
process service, you can deploy it.

To start with, let's create a separate folder in which you will save the deployment 
archive file:

In the Navigator view, right-click the poInfo_designer folder.
In the pop-up menu, select New->Other…
In the first screen of the New wizard, select the node Folder in the box and  
click Next.
In the next screen of the wizard, make sure that the Enter or select the parent 
folder editbox contains poInfo_designer. If so, enter bpr in the Folder name 
editbox, and click Finish.

As a result, the bpr folder should appear within the poInfo_designer folder in the 
Navigator. Now you can create the deployment archive for the poInfo WS-BPEL 
process service and deploy it to the ActiveBPEL Server by following the steps below:

In the Navigator view, right-click the poInfo_designer folder.
In the pop-up menu, select Export…
In the Export dialog, make sure that Business Process Archive File under the 
ActiveBPEL node is selected and click Next.
In the Export Business Process Archive dialog, make sure that the checkbox 
on the left to the poInfo.pdd node within the poInfo_designer folder is 
checked on.
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\poInfo_designer\bpr\poInfo_designer.bpr.

•

•

•

•

•

•

•

•

•



Chapter 6

[ 227 ]

This example assumes that you have installed the ActiveBPEL Designer in 
the C:\ActiveBPEL_Designer folder. Actually, you may have  
another location.

In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\ActiveBPEL_Designer\
Server\ActiveBPEL_Tomcat\bpr, and click Finish.

This example assumes that you are using the ActiveBPEL Server shipped 
with the ActiveBPEL Designer. So, you need to have this server running. 
For more details, you can go back to the Deploying the WS-BPEL Service to 
the ActiveBPEL Server Shipped with ActiveBPEL Designer section.

To check to see if the poInfo WS-BPEL process service has been deployed to the 
ActiveBPEL Server successfully, enter and then check out the following page 
generated by Axis:

http://localhost:8081/active-bpel/services

In this page, you should see, among others, the following nodes:

poInfoService (wsdl) 

getInfo

The above indicates that the poInfo WS-BPEL process service discussed here has 
been deployed successfully.

Testing the WS‑BPEL Process Service
To test the poInfo WS-BPEL process service just deployed to the ActiveBPEL Server 
shipped with the ActiveBPEL Designer, you might use the following script:

<?php 
 //File: SoapClient_poInfo.php
 $client = new SoapClient("http://localhost:8081/active-
          bpel/services/poInfoService?wsdl"); 
 $xmldoc = '<wrapper><pono>108128476</pono><par>doc</par></wrapper>';
 $xmldoc = simplexml_load_string($xmldoc);
 try {
  print($client->getInfo($xmldoc)); 
 }
 catch (SoapFault $e) {

•



ActiveBPEL Designer

[ 228 ]

  print $e->getMessage();
 }
?>

The above script invokes the hello WS-BPEL process service discussed here, and 
outputs the entire po document whose pono is 108128476.

When setting the $xmldoc variable in this script as shown below:

$xmldoc = '<wrapper><pono>108128476</pono><par>status</par></
wrapper>';

you should receive a short message: shipped, which indicates the status of  
the document.

Finally, if you specify neither doc nor status as the value of the par element, say,  
like this:

$xmldoc = '<wrapper><pono>108128476</pono><par>docum</par></wrapper>';

you should receive the following error message:

Wrong input parameter. Should be either doc or status!

Summary
As you no doubt have realized, the most important thing about the ActiveBPEL 
Designer is that it doesn't require you to manually code the WS-BPEL processes, 
providing a visual environment for creating and deploying WS-BPEL process services.

In this chapter, we looked at how the ActiveBPEL Designer can be used to quickly 
build all the required components of a WS-BPEL project, using a drag-and-drop user 
interface, and then deploy the WS-BPEL process service to either the ActiveBPEL 
Server shipped with ActiveBPEL Designer or a separate ActiveBPEL Server.



WS-BPEL Process Modeling
As you learned in the preceding two chapters, WS-BPEL is an efficient means when 
it comes to composing fine-grained services into composite service-oriented solutions 
supporting stateful interactions between partners. Although you've seen only simple 
examples of WS-BPEL orchestrations so far, WS-BPEL can actually be used to model 
complex service-oriented solutions.

While creating a complex WS-BPEL orchestration may require use of a set of 
different techniques and technologies together, the main emphasis of this chapter 
will be on how to implement parallel processing of activities within a WS-BPEL 
process. It also discusses asynchronous communication as an efficient way to call 
partner services without blocking the execution of the calling WS-BPEL process. In 
particular, in this chapter we will look at the following aspects:

Parallel processing using the Flow container
Parallel repetitive execution with the forEach activity
Asynchronous interactions between WS-BPEL processes
What to do if something goes wrong

Concurrency, Synchronization, and 
Asynchronous Communication in  
WS‑BPEL
In the WS-BPEL examples discussed in the preceding chapters, you grouped 
activities within a WS-BPEL process with the Sequence container, thus instructing 
your BPEL engine to perform these activities sequentially.

This approach is appropriate if every subsequent activity within the container relies 
on the data returned by the preceding activity. In such cases, sequential processing is 
the only option for you. You have to organize the activities in the order in which they 
depend on each other.

•
•
•
•



WS-BPEL Process Modeling

[ 230 ]

However, often, you don't have to invoke the preceding activity to invoke the 
current one. If so, you may group several activities to be executed in parallel, since 
they don't depend on each other. To achieve this goal, you can group the activities 
within the Flow container.

Sometimes, you may want to model parallel repetitive execution. For example, when 
processing the purchase order items in a loop to submit requests to the concerned 
warehouses, you probably will not have to wait for completion of the current loop 
iteration to start the next one. In such cases, you can use the parallel form of the 
forEach activity.

The following sections discuss the above points in greater detail.

Parallel Processing versus Sequential 
Processing
It is important to understand that in practice partner services invoked from within 
a WS-BPEL process and that calling the WS-BPEL process are executed on different 
servers, which in turn may be running on different machines. This means that 
executing several partner services in parallel doesn't usually lead to increasing the 
load on a certain component in your system.

The following figure shows how sequential processing may result in run-time 
inefficiency, requiring a significant amount of time to get the job done.

Servlet container

WS-BPEL engine
Web/PHP
Server 1

Web/PHP
Server 2

Time

Seq...

Invoke

Invoke

Partner
service 1

Partner
service 2



Chapter 7

[ 231 ]

If in your WS-BPEL process you have several activities that might be started 
concurrently, it is often a good idea to do so rather than performing them 
sequentially. By doing this, you can significantly reduce the amount of time your 
WS-BPEL process takes to get the job done.

The following figure shows parallel processing efficiency in terms of time.

Servlet container

WS-BPEL engine

Web/PHP
Server 1

Web/PHP
Server 2

Time

Flow

Invoke Invoke
Partner

service 1
Partner

service 2

As you can see, the Flow activity actually lets you implement concurrent processing 
within a WS-BPEL process. You don't have to wait until Partner service 1 is 
completed in order to invoke Partner service 2—they are invoked simultaneously. 
The Flow is completed when all the activities enclosed within it have  
been completed.

Parallel Processing in a Loop
WS-BPEL allows you to process activities in a parallel loop. To achieve this, you can 
use the forEach activity with the parallel attribute set to yes. In that case, every 
loop iteration will be executed concurrently rather than sequentially. A parallel loop 
can be useful when you need to process parts of the same document, for example, 
items of a purchase order.

The section Implementing a Parallel Loop, later in this chapter, discusses 
how to implement parallel processing with WS-BPEL using the parallel 
form of the forEach activity.



WS-BPEL Process Modeling

[ 232 ]

The following figure illustrates that a parallel loop can be much more efficient in 
terms of time than a sequential one. This is because the former performs all the 
iterations simultaneously, in parallel, rather than performing them sequentially.

Servlet container

WS-BPEL engine

Invoke

Time

Scope

For Each

Seq...

Web/PHP

Server

parallel=”yes”

N calls in a loop
Partner

service

Note that the forEach container activity groups activities within the inner scope. 
As you will learn in the Implementing a Parallel Loop section later, if you invoke a 
partner service from within a loop, a parallel forEach, in order to perform parallel 
processing correctly, requires you to define and use the inner scope local variables 
being used for the invoke activity's messages.

Asynchronous Communication
Another interesting way to model efficient WS-BPEL processes is using 
asynchronous communication.

The WS-BPEL examples discussed in the preceding chapters used the 
synchronous model, assuming that the WS-BPEL process service sends 
a message to its partner and waits for a response. This model can be 
useful when an immediate response is required and the partner service is 
supposed to generate that response quickly. However, in some situations 
your WS-BPEL process doesn't need to wait until the transaction is 
completed and can continue with some other processing. This is where 
asynchronous messaging comes into play.



Chapter 7

[ 233 ]

The following figure shows an example of asynchronous conversation in action. 
In this example, two WS-BPEL process services running on the same server 
communicate asynchronously.

Servlet container

WS-BPEL engine

Called processCalling process

Invoke

InvokeReceive

Receive

Seq...

Web/PHP
Server

[Some
processing]

[Some
processing]

Async
request

Async
response

Partner
service

In the example depicted in the figure, the calling WS-BPEL process (left) sends an 
asynchronous request to the called process that is executed on the same WS-BPEL 
server. While the called process processes the request, say, makes a synchronous call 
to a partner service deployed to a Web/PHP server, the calling service can perform 
some other processing, rather than waiting for a response from the called service. 
Once the called service has completed its processing it sends the response back to  
the caller.

To correlate asynchronous responses with the correct process instances, 
the ActiveBPEL engine can either use correlation sets or engine-managed 
correlation. While the latter makes the ActiveBPEL engine automatically 
correlate inbound messages using WS-Addressing references in the SOAP 
header of a message, the approach based on correlation sets assumes 
that you explicitly define correlation properties in WSDL and WS-BPEL 
process definitions. We look at an example of using correlation sets when 
building an example discussed in the Building an Asynchronous WS-BPEL 
Process Service section later in this chapter.



WS-BPEL Process Modeling

[ 234 ]

Implementing Concurrency with the Flow 
Container
In the preceding examples, you looked at how you can implement sequential 
processing of activities in WS-BPEL using the Sequence container. In practice, though, 
you may have to organize parallel processing of activities used in your WS-BPEL 
process. The Flow container is specifically designed to address this problem.

The following sections walk you through creating a simple WS-BPEL process that 
uses parallel processing.

Defining Partner Services
Before we move on to create the WS-BPEL process, let's first build the partner 
services that will be invoked from it. For the sake of this example, two partner 
services will be enough. Since you are building a generic sample, the partner services 
being used might be called thread1 and thread2. Each of these services should 
provide a time-consuming operation, so that you can see a noticeable difference 
between sequential and parallel processing performed by the WS-BPEL processes 
invoking these operations.

Let's start by creating the WSDL document describing the thread1 service.  
Here is the thread1.wsdl document that you should save in the  
WebServices\wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="thread1Service"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace="http://localhost/WebServices/wsdl/
thread1"
             xmlns:tns="http://localhost/WebServices/wsdl/thread1">
    <message name="thread1Input">
        <part name="payload" type="xsd:string"/>
    </message>
    <portType name="thread1PortType">
        <operation name="startThread1">
           <input message="tns:thread1Input"/>
        </operation>



Chapter 7

[ 235 ]

    </portType>
    <binding name="thread1ServiceBinding" type="tns:thread1PortType">
        <soap:binding style="rpc" 
           transport="http://schemas.xmlsoap.org/soap/http"/>
        <operation name="startThread1">
           <soap:operation 
             soapAction="http://localhost/WebServices/ch7/
startThread1"/>
           <input>
               <soap:body use="literal"/>
           </input>
        </operation>
    </binding>
    <service name="thread1Service">
        <port name="thread1ServicePort" 
            binding="tns:thread1ServiceBinding">
           <soap:address 
     location="http://localhost/WebServices/ch7/SOAPServer_thread1.
php"/>
        </port>
    </service>
</definitions>

As you can see, the operation defined in the above definition is a one-way operation 
assuming an inbound request only. This means that the service described by the 
above definition is not supposed to return anything to the consumer. That is OK  
for this particular example, since all you want from the partner service here is  
that it performs time-consuming processing when invoked by the WS-BPEL  
process service. 

In the same way, you should create the thread2.wsdl document, replacing 
each occurrence of thread1 with thread2. For example, the operation name 
startThread1 should be replaced with startThread2. In all other respects, 
thread2.wsdl should be the same as thread1.wsdl shown in the above listing.  
Like thread1.wsdl, you should save the thread2.wsdl document in the 
WebServices\wsdl directory.

Thehe thread2.wsdl document is not shown here to save space. As 
mentioned, thread2.wsdl should have the same structure as thread1.
wsdl shown above.



WS-BPEL Process Modeling

[ 236 ]

The next step in creating the thread1 service is to create the PHP handler class for it. 
Here is the thread1.php handler class, which you should save in the WebServices\
ch7 directory:

<?php
 //File thread1.php
 class thread1 {
   function startThread1($salutation) {

    sleep(15);
    ob_start();
    var_dump($salutation. ' thread1. Current time: '.date("H:i:s"));
    $buffer = ob_get_flush();
    file_put_contents('thread1.txt', $buffer);
    ob_end_clean();
   }
 }
?>

Note the use of the sleep function in the above PHP code. You use it here to 
simulate the time-consuming processing. By specifying 15 as the parameter of sleep, 
you instruct PHP to delay script execution for 15 seconds.

Similarly, you should create the thread2 handler class for thehandler class for the thread2 service, 
replacing each occurrence of thread1 with thread2. Like thread1.php, you should 
save thread2.php in the WebServices\ch7 directory.

The last step in creating the thread1 service is to create the SOAP server script. Here 
is the SoapServer_thread1.php script that you should save in the WebServices\
ch7 directory:

<?php
//File: SoapServer_thread1.php
require_once "thread1.php"; 
$wsdl= "http://localhost/WebServices/wsdl/thread1.wsdl";
$srv= new SoapServer($wsdl);
$srv->setClass("thread1");
$srv->handle();
?>

In the same way, you should create the SoapServer_thread2.php script, replacing, replacingreplacing 
each occurrence of thread1 with thread2. Like SoapServer_thread1.php, you 
should save SoapServer_thread2.php in the WebServices\ch7 directory.



Chapter 7

[ 237 ]

Creating the Project
Now that you have the partner services created and ready for use, you can move on 
and build the WS-BPEL process service that will invoke these services in parallel.

As usual, you start by creating the project for the WS-BPEL process service you are 
going to build. To do this in the ActiveBPEL Designer, you can follow the steps 
shown below:

In the ActiveBPEL Designer, select File->New->Project.
In the first screen of the Wizard, choose Project and click Next.
In the next window of the Wizard, specify check_concurrency as the nameas the name 
for the project and click Finish.

After you have performed the above steps, you should see the check_concurrency 
folder in the Navigator view, containing the .project document.

Creating the WSDL Describing the WS‑BPEL 
Process
Unlike the examples discussed in the preceding chapter where you made use of an 
already existing WSDL document for the WS-BPEL process service, you now create a 
WSDL document for the check_concurrency process service discussed here,  
from scratch.

Before you proceed to create the WSDL describing the check_concurrency process 
service, create the, create the wsdl subfolder within the check_concurrency project folder. Toproject folder. To 
do this, perform the following steps:

Right-click the check_concurrency folder in the Navigator.folder in the Navigator.
In the pop-up menu, choose New->Other…
In the first Wizard window, choose Folder and click Next.
In the second Wizard window, type in wsdl as the name for the folder being 
created and click Finish.

The next step is to create the checkconcur.wsdl document in the wsdl folder created 
as discussed above. To do this, the following steps should be followed:

Right-click the newly created wsdl folder in the Navigator.
In the pop-up menu, choose New->Other…
In the first Wizard window, choose File and click Next.

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 238 ]

In the second Wizard window, type in checkconcur.wsdl in the File name: 
textbox and click Finish. As a result, the checkconcur.wsdl document should 
appear in the check_concurrency/wsdl folder in the Navigator view.
Right-click the newly created checkconcur.wsdl file in the Navigator view.
In the pop-up menu, select Open With\BPR Deployment Script Editor. 
As a result, the empty checkconcur.wsdl document should appear in the 
ActiveBPEL Process Editor.
In the checkconcur.wsdl canvas, insert the WSDL definition shown below:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="check_concur" 
    targetNamespace="http://localhost:8081/active-
      bpel/services/check_concur.wsdl"
    xmlns:tns="http://localhost:8081/active-
      bpel/services/check_concur.wsdl"
    xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:ns2="http://localhost/WebServices/wsdl/thread1"
    xmlns:ns3="http://localhost/WebServices/wsdl/thread2"
    xmlns="http://schemas.xmlsoap.org/wsdl/">
  <import namespace="http://localhost/WebServices/wsdl/thread1"
          location="http://localhost/WebServices/wsdl/thread1.wsdl"/>
  <import namespace="http://localhost/WebServices/wsdl/thread2"
          location="http://localhost/WebServices/wsdl/thread2.wsdl"/>
  <message name="checkconcurResponseMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <message name="checkconcurRequestMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <portType name="checkconcurPT">
    <operation name="getRslt">
      <input message="tns:checkconcurRequestMessage"/>
      <output message="tns:checkconcurResponseMessage"/>
    </operation>
  </portType>
  <plnk:partnerLinkType name="checkconcurLT">
   <plnk:role name="checkconcurRole">
      <plnk:portType name="tns:checkconcurPT"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="thread1LT">
   <plnk:role name="thread1Role">

•

•

•

•



Chapter 7

[ 239 ]

      <plnk:portType name="ns2:thread1PortType"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="thread2LT">
   <plnk:role name="thread2Role">
      <plnk:portType name="ns3:thread2PortType"/>
   </plnk:role>
  </plnk:partnerLinkType>
</definitions>

Select File->Save to save the above WSDL document.

Now that you have created the checkconcur.wsdl document, the next step is to 
add this WSDL as a Web Reference. To do this, you need to move on to the Web 
References view, and perform the following steps:

Right-click within Web References view.
In the pop-up menu, choose Add Web Reference.
In the Add Web Reference dialog, click the Browse Projects… button and 
select /check_concurrency/wsdl/checkconcur.wsdl and click OK.

As a result, the checkconcur.wsdl node should appear in the Web References view.

Adding Partner WSDL Definitions as Web 
References
The next step is to add the WSDL definitions describing the thread1 and thread2 
services created as described in the Defining Partner Services section earlier, as 
Web References. To do this, you need to move on to the Web References view and 
perform the following steps:

Right-click within Web References view.
In the pop-up menu, choose Add Web Reference.
In the Add Web Reference dialog, insert http://localhost/WebServices/wsdl/
thread1.wsdl into the WSDL or Schema URLs textbox, and click OK.

Repeat the above steps for the thread2.wsdl, inserting http://localhost/
WebServices/wsdl/thread2.wsdl into the WSDL or Schema URLs textbox in 
the Add Web Reference dialog.

As a result, the thread1.wsdl and thread2.wsdl nodes should appear in the Web 
References view.

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 240 ]

Creating the Process Definition
Now that you have added the checkconcur.wsdl document and the WSDL 
documents describing partner services as Web References to the project, it's time to 
build the WS-BPEL process definition for the check_concurrency service. To do 
this, you should follow the steps below:

First you look at how to implement sequential processing of the 
invoke activities used to call the partner services. Then, by replacing 
the Sequence container enclosing the invoke activities with the Flow 
container, you move on to parallel processing of those invoke activities.

In the Navigator view, right-click the check_concurrency folder and select 
New->BPEL Process.
In the Wizard dialog, enter checkconcur.bpel in the File name box and click 
Finish. As a result, checkconcur.bpel should appear in the Navigator view 
within the check_concurrency folder. The checkconcur.bpel tab should also 
appear in the ActiveBPEL Process Editor.
In the Web References view, expand the checkconcur.wsdl node and thennode and then 
checkconcurPT, which should contain the operation getRslt.
Drag the getRslt operation from the Web References view to the 
checkconcur.bpel canvas displayed within the ActiveBPEL Process Editor. 
As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:getRslt dialog should appear.
In the Operation:getRslt dialog, make sure that the Receive-Reply option is 
selected, and click Finish. As a result, the Receive and Reply activities will 
be automatically added to the checkconcur.bpel canvas.
In the ActiveBPEL Process Editor, expand the Palette by putting the mouse 
cursor on its tab.
In the Palette, choose Sequence from the Container section and put it on  
the canvas.

The Sequence container added in the above step is used to enclose all the 
activities of the process. Later, you add another, inner Sequence container 
to enclose the invoke activities used to call the partner services.

Drag the Receive activity located on the canvas to the Sequence container 
created in the preceding step, so that the Receive activity is within  
the container.

•

•

•

•

•

•

•

•

•



Chapter 7

[ 241 ]

Drag the Reply activity located on the canvas to the Sequence container, so 
that the Reply activity is within the container and under the Receive activity.

In the next step, you add the Sequence container that will then be used to enclose 
the Invoke activities calling the partner services. As mentioned, later you replace 
this Sequence container with Flow, thus moving from the sequential processing to 
parallel processing.

In the Palette, choose Sequence from the Container section and put it on the 
canvas within the already existing Sequence between the Receive and Reply 
activities added above.

In the following four steps, you add the Invoke activity used to call the thread1 
partner service.

In the Web References view, expand the thread1.wsdl node and then 
thread1PortType, which should contain the startThread1 operation.
Drag the startThread1 operation from the Web References view to the 
checkconcur.bpel canvas, to the inner Sequence container. As a result, the 
Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:startThread1 dialog should appear.
In the Operation:startThread1 dialog, select the invoke option and click 
Finish. As a result, the Invoke activity will be automatically added to the 
checkconcur.bpel canvas, within the inner Sequence container.
Repeat the above four steps for the thread2.wsdl node located in the Web 
References view. As a result, you should have two Invoke activities within 
the inner Sequence container.

Next, you need to add three Assign activities as described in the following steps.

In the Palette, choose Assign from the Activity section and put it into 
the outer Sequence container between the Receive activity and the inner 
Sequence container.

Add another Assign activity, putting it just under the Assign activity added 
in the preceding step.

Finally, put another Assign between the inner Sequence and Reply activity.

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 242 ]

The following figure shows a fragment of the check_concurrency WS-BPEL process 
visual representation, representing the inner Sequence container.

Invoke

Invoke

Seq...

The next step in building the check_concurrency WS-BPEL process service 
discussed here is to set up the properties of the activities composing the process to 
the appropriate values. To do this, follow the steps below:

On the canvas, select the Receive activity located within the outer Sequence 
container and open the Properties view by clicking the Properties tag located 
in the bottom part of the ActiveBPEL Designer perspective.
In the Properties view, change the value of the Create Instance property  
to Yes.
On the canvas, select the upper Assign activity within the outer Sequence 
container and get back to the Properties view.
In the Properties view, click to the … button to the right of the Value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows. In the From 
group: Type to Variable, Variable to checkconcurRequestMessage, Part to 
payload; in the To group, Type to Variable, Variable to thread1Input, Part 
to payload. Then, click OK.
In the Copy Operations dialog, click OK.

•

•

•

•

•

•

•



Chapter 7

[ 243 ]

On the canvas, select the Assign activity located below the Assign whose 
properties were set as described in the previous steps and get back to the 
Properties view. Then, repeat the previous four steps, setting the properties 
in the Copy Operation dialog as follows: In the From group: Type to 
Variable, Variable to checkconcurRequestMessage, Part to payload; in the 
To group: Type to Variable, Variable to thread2Input, Part to payload.
On the canvas, select the lowest Assign activity located above the Reply 
activity and get back to the Properties view. Then, repeat the four steps 
as above, setting the properties in the Copy Operation dialog as follows: 
In the From group: Type to Literal, Literal Contents to Two threads 
completed successfully!; in the To group: Type to Variable, Variable to 
checkconcurResponseMessage, Part to payload.

You have just finished the check_concurrency WS-BPEL process definition. All that's 
left is to select File->Save to save the definition. Then, check out the Problems view 
to make sure that it displays no errors.

Creating the Process Deployment Descriptor
Now that you have the WS-BPEL definition created, it's time to create the Process 
Deployment Descriptor document containing the deployment information. The 
following steps create the pdd document for the check_concurrency WS-BPEL 
process service discussed here, with the ActiveBPEL Designer:

In the Navigator view, right-click within the view to invoke the pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the check_concurrency 
folder and select the checkconcur.bpel document, so that it appears in the 
Select BPEL Process file textbox, and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine and click Next.
In the next screen of the New Deployment Descriptor dialog, the Partner 
Links listbox should contain the following three items: checkconcurLT, 
thread1LT, and thread2LT. Note that the status of the last two is set to the 
following: Missing a partner role endpoint reference type.
In the Partner Links listbox, select thread1LT and then move on to the 
Partner Role group. In the Invoke Handler combobox, select address, and 
in the Endpoint type combobox, select static. As a result, the following code 
should appear in the Endpoint Reference box:

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 244 ]

      <wsa:EndpointReference 
        xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
        xmlns:s="FILL_IN_NAMESPACE">
          <wsa:Address>FILL_IN_ADDRESS_URI</wsa:Address>
          <wsa:ServiceName 
            PortName="FILL_IN_PORT_NAME">s:FILL_IN_SERVICE_NAME
              </wsa:ServiceName>
       </wsa:EndpointReference>

In the Endpoint Reference box, replace the above code with the following:
       <wsa:EndpointReference  
         xmlns:s="http://localhost/WebServices/wsdl/thread1">
      
     <wsa:Address>http://localhost/WebServices/ch7/SoapServer_thread1.
php
      </wsa:Address>
        <wsa:ServiceName 
        PortName="thread1ServicePort">s:thread1Service</wsa:
ServiceName>
         </wsa:EndpointReference>

In the Partner Links listbox, select thread2LT. In the Invoke Handler 
combobox, select address, and in the Endpoint type combobox, select static.
In the Endpoint Reference box, replace the generated code with  
the following:

      <wsa:EndpointReference 
        xmlns:s="http://localhost/WebServices/wsdl/thread2">
      
     <wsa:Address> 
               http://localhost/WebServices/ch7/SoapServer_thread2.php
         </wsa:Address>
         <wsa:ServiceName 
         PortName= 
               "thread2ServicePort">s:thread2Service</wsa:ServiceName>
           </wsa:EndpointReference>

In the Partner Links listbox, select checkconcurLT.
On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to checkconcurService, and click Finish.

As a result, the checkconcur.pdd descriptor document should appear in the  
check_concurrency folder in the Navigator, and in the ActiveBPEL Process Editor, 
where you may review it.

•

•

•

•

•



Chapter 7

[ 245 ]

Deploying the Process Service
Now that you have created all the required components for the check_concurrency 
WS-BPEL process service, you can deploy it.

Before proceeding further, you might want to create a separate folder within the 
check_concurrency folder, to which you will save the deployment archive file. To do to which you will save the deployment archive file. To do 
this, perform the following steps:

In the Navigator view, right-click the check_concurrency folder.
In the pop-up menu, select New->Other…
In the first screen of the New Wizard, select the node Folder in the box, and  
click Next.
In the next screen of the Wizard, make sure that the Enter or select the 
parent folder editbox contains check_concurrency. If so, enter bpr in the 
Folder name editbox and click Finish.

After you've performed the above steps, the bpr folder should appear within the 
check_concurrency folder in the Navigator. Now you can create the deployment 
archive for the check_concurrency WS-BPEL process service and deploy it to the 
ActiveBPEL Server by following the steps below:

In the Navigator view, right-click the check_concurrency folder.
In the pop-up menu, select Export…
In the Export dialog, make sure that Business Process Archive File under the 
ActiveBPEL node is selected and click Next.
In the Export Business Process Archive dialog, make sure that the checkbox 
on the left of the checkconcur.pdd node within the check_concurrency folder 
is checked on.
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\check_concurrency\bpr\checkconcur.bpr.
In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\ActiveBPEL_Designer\
Server\ActiveBPEL_Tomcat\bpr, and click Finish.

In this example, you are using the ActiveBPEL Server shipped with 
your ActiveBPEL Designer, assuming you have this server running. For 
more details, you can refer to the Deploying the WS-BPELService to the 
ActiveBPEL Server Shipped with ActiveBPEL Designer section in Chapter 6.

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 246 ]

Once you've done all that, you should have the check_concurrency WS-BPEL 
process service deployed to the ActiveBPEL Server and ready for use. The simplest 
way to check to see if the WS-BPEL process service has been deployed successfully is 
to enter and then check out the following page generated by Axis:

http://localhost:8081/active-bpel/services

In this page, you should see the following nodes among others:

checkconcurService (wsdl) 

getRslt

If so, the check_concurrency WS-BPEL process service discussed here has been 
deployed successfully.

Testing the Sequential Version of the  
WS‑BPEL Process
Now that you have the sequential version of thethe sequential version of the check_concurrency WS-BPEL 
process service, it's time to test it. For that, you might use the checkConcurClient.
php SOAP client script shown below:

<?php 
 //File: checkConcurClient.php
 $client = new SoapClient("http://localhost:8081/active-
         bpel/services/checkconcurService?wsdl"); 
 $sol = 'Hello,';
 try {
  print($client->getRslt($sol)); 
 }
 catch (SoapFault $e) {
  print $e->getMessage();
 }
?>

When executed, the above script invokes the check_concurrency WS-BPEL process 
service created and deployed as discussed in the preceding sections, passing the 
Hello string as the payload in the request message. The above script should produce 
the following output:

Two threads completed successfully!



Chapter 7

[ 247 ]

Execution should take at least 30 seconds, because each partner service invoked 
by the WS-BPEL process is executed for at least 15 seconds, and they are executed 
sequentially. Now if you check the WebServices\ch7 directory in which you saved 
the checkConcurClient.php script discussed here, you should notice the thread1.
txt and thread2.txt files. If you open the thread1.txt file, it might contain the 
following contents:

string(38) "Hello, thread1. Current time: 22:33:00"

The thread2.txt might contain the following:

string(38) "Hello, thread2. Current time: 22:33:15"

As you might have guessed, the thread2.txt file was created 15 seconds after the 
thread1.txt file. This is because the thread1 and thread2 services were invoked 
by the check_concurrency WS-BPEL process service in sequential order.

Replacing Sequence with Flow
Now that you've seen how the sequential version of the check_concurrency  
WS-BPEL process works, let's move on and modify this WS-BPEL process so that it 
invokes the thread1 and thread2 partner services in parallel. To achieve this goal, 
you should accomplish the following general steps:

In the check_concurrency WS-BPEL process definition, replace the inner 
Sequence container with a Flow container.
Re-deploy the check_concurrency WS-BPEL process service.

To implement the first task, you should perform the following steps:

In the ActiveBPEL Process Editor, click the checkconcur.bpel tab to move on 
to the visual representation of the checkconcur.bpel process definition.
On the canvas, drag the Invoke activities from within the inner Sequence 
container to any other area on the canvas.
On the canvas, select the inner Sequence container and hit Delete on your 
keyboard in order to delete the container.
In the Palette, choose Flow from the Container section and put it between the 
second and third Assign activities on the canvas, where the inner Sequence 
container was located before deletion.

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 248 ]

Drag the Invoke activities earlier located within the inner Sequence 
container to the Flow container created in the previous step. As a result, 
the fragment of the diagram representing the Flow container on the canvas 
should look like the following figure:

Invoke Invoke

Flow

After you've performed the above steps, select File | Save to save the changes 
made. Then, to make sure that everything is OK, check to see that the Problems view 
displays no errors.

The next step is to re-deploy the check_concurrency WS-BPEL process service. To 
do this, you should use the Export Wizard as discussed in detail in the Deploying the 
Process Service section earlier. As a result, the check_concurrency WS-BPEL  
process service will be re-deployed to the ActiveBPEL Server shipped with your 
ActiveBPEL Designer.

Testing the WS‑BPEL Process Using a 
Parallel Flow to Handle Partner Services
To test the check_concurrency WS-BPEL process service modified as discussed in the 
preceding section, you can use the checkConcurClient.php script discussed in the 
Testing the Sequential Version of the WS-BPEL Process section earlier. This time, though, 
the checkConcurClient.php script, when executed, will behave a little differently in 
that it is executed for about 15 seconds rather than the 30 seconds it took when you 
tested the sequential version of the check_concurrency WS-BPEL process. Now if 
you open the thread1.txt file, it should contain contents like the following:

string(38) "Hello, thread1. Current time: 21:54:44"

The thread2.txt file's contents might look as follows:

string(38) "Hello, thread2. Current time: 21:54:44"

•



Chapter 7

[ 249 ]

As you can see, both these files were created at the same time. This means that both 
the thread1 and thread2 services were invoked at the same time rather  
than at the 15 second interval you had in the case of the sequential version of the 
check_concurrency WS-BPEL process.

Implementing a Parallel Loop
As you learned in the Parallel Processing in a Loop section previously, performing all 
the loop iterations simultaneously is usually more efficient in terms of time than 
performing them sequentially.

It is important to realize, though, that there are some situations in 
which you cannot use a parallel loop. For example, if every subsequent 
loop iteration depends on the preceding one, of course you cannot take 
advantage of a parallel loop.

The following sections take you through the process of creating a WS-BPEL process 
service that calls a partner service in a loop, processing items of a purchase order. 
First, you build a WS-BPEL process that uses a sequential forEach loop to get the job 
done. Then, you move on to the parallel form of the forEach loop.

Defining the Partner Service Being Called 
from within the Loop
First, you need to build the partner service, say, orderProcessing that will be invokedorderProcessing that will be invoked that will be invoked 
from within the loop in the WS-BPEL process, processing items of a purchase order.

As usual, let's start by creating the WSDL document describing the 
orderProcessing partner service. Here is the orderProcessing.wsdl document 
that you should save in the WebServices\wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="orderProcessingService"
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace="http://localhost/WebServices/wsdl/
orderProcessing"
             xmlns:tns="http://localhost/WebServices/wsdl/
orderProcessing">
    <message name="orderProcessingInput">



WS-BPEL Process Modeling

[ 250 ]

    <part name="partId" type="xsd:int"/>
    <part name="quantity" type="xsd:decimal"/>
    </message>
    <portType name="orderProcessingPortType">
    <operation name="startProcessing">
       <input message="tns:orderProcessingInput"/>
    </operation>
    </portType>
    <binding name="orderProcessingServiceBinding" type="tns:
orderProcessingPortType">
        <soap:binding style="rpc" transport="http://schemas.xmlsoap.
org/soap/http"/>
        <operation name="startProcessing">
           <soap:operation soapAction="http://localhost/WebServices/
ch7/startProcessing"/>
           <input>
               <soap:body use="literal"/>
           </input>
        </operation>
    </binding>
    <service name="orderProcessingService">
        <port name="orderProcessingServicePort" binding="tns:
orderProcessingServiceBinding">
           <soap:address location=
      "http://localhost/WebServices/ch7/SOAPServer_orderProcessing.
php"/>
        </port>
    </service>
</definitions>

As you can see, the orderProcessing service described by the above WSDL 
definition offers the startProcessing operation, which is a one-way operation since 
it includes only an input message. This means that the WS-BPEL process service 
will send only request messages to this service, receiving nothing in response. 
With request messages, the WS-BPEL service will send data for processing. In 
this particular example, a request message is supposed to contain the partId and 
quantity of a purchase order item being processed.

Next, let's create the PHP handler class for the service. For that, you might create 
the orderProcessing class in the orderProcessing.php script as show below. You 
should save orderProcessing.php in the WebServices\ch7 directory.

<?php
 //File orderProcessing.php
 class orderProcessing {



Chapter 7

[ 251 ]

   function startProcessing($partId, $quantity) {
    sleep(5);
    $item = "Part id: ".$partId. " Quantity: ".$quantity.
            " Current time: ".date("H:i:s")."\n";
    $handle = fopen('orderProcessingLog.txt', 'a');
    fwrite($handle, $item);
    fclose($handle);
   }
 }
?>

As you can see, the above code doesn't perform actual processing. Instead, it simply 
delays execution for 5 seconds and then logs the information about the purchase 
order item being processed along with the current time to the orderProcessingLog.
txt text file.

Later, looking through thethe orderProcessingLog.txt log file, you  
can easily determine the way in which the request messages arrive  
and, therefore, understand why parallel processing is more efficient  
than sequential.

Finally, you should create the SOAP server script. Here is the  
SoapServer_orderProcessing.php script that you should also save in the 
WebServices\ch7 directory:

<?php
//File: SoapServer_orderProcessing.php
require_once "orderProcessing.php"; 
$wsdl= "http://localhost/WebServices/wsdl/orderProcessing.wsdl";
$srv= new SoapServer($wsdl);
$srv->setClass("orderProcessing");
$srv->handle();
?>

Creating the Project
Now that you have the orderProcessing partner service created and ready for use, 
you can switch your focus to building the WS-BPEL process service that will invoke 
this service from within the loop when processing a purchase order.



WS-BPEL Process Modeling

[ 252 ]

As usual, let's start by creating the project for the WS-BPEL process service. To do 
this in ActiveBPEL Designer, you can follow the steps below:

In ActiveBPEL Designer, select File->New->Project.
In the first screen of the Wizard, choose Project and click Next.
In the next window of the Wizard, specify parallel_loop as the name for the 
project and click Finish.

After you have performed the above steps, you should see the parallel_loop folder 
in the Navigator view, containing the .project document.

Creating the WSDL Describing the WS‑BPEL 
Process
Before you can create the WSDL describing the parallel_loop WS-BPEL process 
service, you should create the subfolder wsdl within the parallel_loop project 
folder. To do this, perform the following steps:

Right-click the parallel_loop folder in the Navigator.
In the pop-up menu, choose New->Other…
In the first Wizard window, choose Folder and click Next.
In the second Wizard window, type in wsdl as the name for the folder 
being created and click Finish.

The next step is to create the parallelloop.wsdl document in the wsdl folder 
created as discussed above. To do this, you should follow the steps below:

Right-click the newly created wsdl folder in the Navigator.
In the popup menu, choose New->Other…
In the first Wizard window, choose File and click Next.
In the second Wizard window, type in parallelloop.wsdl in the File name: 
textbox and click Finish. As a result, the parallelloop.wsdl document should 
appear in the parallel_loop/wsdl folder in the Navigator view.
Right-click the newly created parallelloop.wsdl file in the Navigator view.
In the pop-up menu, select Open With\BPR Deployment Script Editor. 
As a result, the empty parallelloop.wsdl document should appear in the 
ActiveBPEL Process Editor.

•

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 7

[ 253 ]

In the parallelloop.wsdl canvas, insert the WSDL definition shown below:

      <?xml version="1.0" encoding="UTF-8"?>
      <definitions name="parallel_loop" 
          targetNamespace="http://localhost:8081/active-
            bpel/services/parallel_loop"
           xmlns:tns="http://localhost:8081/active-
            bpel/services/parallel_loop"
          xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/ 
                                                       partner-link/"
          xmlns:xsd="http://www.w3.org/2001/XMLSchema"
          xmlns:xsd1="http://localhost/XSD/po/"
          xmlns:ns2= 
                  "http://localhost/WebServices/wsdl/orderProcessing"
          xmlns="http://schemas.xmlsoap.org/wsdl/">
        <import namespace=
              "http://localhost/WebServices/wsdl/orderProcessing"
          
      location= 
            "http://localhost/WebServices/wsdl/orderProcessing.wsdl"/>
          <types>
           <schema elementFormDefault="qualified" 
             targetNamespace="http://localhost/XSD/po/"
              xmlns="http://www.w3.org/2001/XMLSchema">
             <element name="purchaseOrder">
              <complexType>
               <sequence>
                <element name="pono" type="xsd:string" /> 
                <element name="shipTo" type="xsd1:AddressType" /> 
                <element name="billTo" type="xsd1:AddressType"/>
                <element name="items" type="xsd1:LineItemsType"/>
               </sequence> 
              </complexType>
             </element> 
             <complexType name="AddressType">
              <sequence>
               <element name="name" type="xsd:string"/>
               <element name="street" type="xsd:string"/>
               <element name="city" type="xsd:string"/>
               <element name="state" type="xsd:string"/>
               <element name="zip" type="xsd:int"/>
               <element name="country" type="xsd:NMTOKEN" />
              </sequence>
             </complexType>
             <complexType name="LineItemsType">

•



WS-BPEL Process Modeling

[ 254 ]

              <sequence>
               <element minOccurs= 
                                "1" maxOccurs="unbounded" name="item" 
                 type="xsd1:LineItemType" />
              </sequence>
             </complexType>
             <complexType name="LineItemType">
              <sequence>
               <element name="partId" type="xsd:int"/>
               <element name="quantity" type="xsd:decimal"/>
               <element name="price" type="xsd:decimal"/>
              </sequence>
             </complexType>
           </schema >
          </types>
        <message name="loopProcessResponseMessage">
          <part name="payload" type="xsd:string"/>
        </message>
        <message name="loopProcessRequestMessage">
          <part name="order" element="xsd1:purchaseOrder"/>
        </message>
        <portType name="loopProcessPT">
          <operation name="processOrder">
            <input message="tns:loopProcessRequestMessage"/>
            <output message="tns:loopProcessResponseMessage"/>
          </operation>
        </portType>
        <plnk:partnerLinkType name="loopProcessLT">
         <plnk:role name="loopProcessRole">
            <plnk:portType name="tns:loopProcessPT"/>
         </plnk:role>
        </plnk:partnerLinkType>
        <plnk:partnerLinkType name="orderProcessingLT">
         <plnk:role name="orderProcessingRole">
            <plnk:portType name="ns2:orderProcessingPortType"/>
         </plnk:role>
        </plnk:partnerLinkType>
      </definitions>

Finally, select File | Save to save the above wsdl document.

As you can see, this WSDL document contains the types construct in which the 
purchaseOrder complex element is described. The highlighted line is the item 
element of the LineItemType type, describing a line item of a purchase order 
document being processed.

•



Chapter 7

[ 255 ]

Adding WSDL Definitions as Web References
Once you have the parallelloop.wsdl document created as discussed in the 
preceding section, the next step is to add this WSDL as a Web Reference. To do this, 
you need to switch to the Web References view, and perform the following steps:

Right-click within the Web References view.
In the pop-up menu choose Add Web Reference.
In the Add Web Reference dialog, click the Browse Projects… button and 
select /parallel_loop/wsdl/parallelloop.wsdl and click OK.

As a result, the parallelloop.wsdl node should appear in the Web References view.

The next step is to add the WSDL definition describing the orderProcessing 
partner service created as described in the Defining the Partner Service Being Called 
from within the Loop section earlier, as a Web Reference. To do this, you need to move 
on to the Web References view and perform the following steps:

Right-click within the Web References view.
In the pop-up menu choose Add Web Reference.
In the Add Web Reference dialog insert http://localhost/WebServices/wsdl/
orderProcessing.wsdl into the WSDL or Schema URLs textbox and  
click OK.

As a result, the orderProcessing.wsdl nodes should appear in the Web  
References view.

Creating the Process Definition
Now you are ready to build the WS-BPEL process definition for the parallel_loop 
service. To do this, you should follow the steps shown below:

As mentioned, you first build a sequential version of the  
parallel_loop WS-BPEL process service, meaning you are using a 
sequential forEach loop. Then, you modify the process to use a parallel 
forEach loop.

In the Navigator view right-click the parallel_loop folder and select 
New->BPEL Process.
In the Wizard dialog, enter parallelloop.bpel in the File name box and click 
Finish. As a result, parallelloop.bpel should appear in the Navigator view 
within the parallel_loop folder. The parallelloop.bpel tab should also appear 
in the ActiveBPEL Process Editor.

•
•
•

•

•

•

•

•



WS-BPEL Process Modeling

[ 256 ]

In the Web References view expand the parallelloop.wsdl node and thennode and then 
loopProcessPT, which should contain the operation processOrder.
Drag the processOrder operation from the Web References view to the 
parallelloop.bpel canvas displayed within the ActiveBPEL Process Editor. 
As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog click Finish. As a result, the 
Operation:processOrder dialog should appear.
In the Operation:processOrder dialog make sure that the Receive-Reply 
option is selected and click Finish. As a result, the Receive and Reply 
activities will be automatically added to the parallelloop.bpel canvas.
In the ActiveBPEL Process Editor expand the Palette by putting the mouse 
cursor on its tab.
In the Palette choose Sequence from the Container section and put it on  
the canvas.
Drag the Receive activity located on the canvas to the Sequence container 
created in the preceding step, so that the Receive activity is within  
the container.
Drag the Reply activity located on the canvas to the Sequence container, so 
that the Reply activity is within the container and under the Receive activity.

Next, you add the forEach container, defining a loop in the process.

In the Palette, choose forEach from the Container section and put it on the 
canvas within the already existing Sequence between the Receive and Reply 
activities added above.
In the Palette, choose Sequence from the Container section and put it on the 
canvas within the Scope of the forEach activity added in the preceding step.

In the following four steps, you add the Invoke activity used to call the 
orderProcessing partner service.

In the Web References view expand the orderProcessing.wsdl node  
and then orderProcessingPortType, which should contain the 
startProcessing operation.
Drag the startProcessing operation from the Web References view to the 
parallelloop.bpel canvas, to the Sequence container within the Scope within 
the forEach container. As a result, the Define Partner Link Type dialog 
should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:startProcessing dialog should appear.

•

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 7

[ 257 ]

In the Operation:startProcessing dialog, select the invoke option, and click 
Finish. As a result, the Invoke activity will be automatically added to the 
parallelloop.bpel canvas, within the Sequence container that is in turn 
within the forEach container.

Next, you need to add two Assign activities as described in the following steps.

In the Palette, choose Assign from the Activity section and put it into the 
Sequence within the forEach scope in the area just above the Invoke activity 
added into this scope earlier.

Then, put another Assign between the forEach and the Reply activity.

The following figure shows a fragment of the parallel_loop WS-BPEL process 
visual representation, representing the forEach container.

Scope

For Each

Seq...

Invoke

Assign

Now that you have placed all the required activities on the parallelloop.bpel 
canvas, it's time to set up their properties to the appropriate values. To do this, 
follow the steps shown below:

On the canvas select the Receive activity located within the outer Sequence 
container, and open the Properties view by clicking the Properties tag 
located at the bottom part of the ActiveBPEL Designer perspective.
In the Properties view, change the value of the Create Instance property  
to Yes.
On the canvas select the forEach activity and get back to the Properties view.

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 258 ]

In the Properties view, set the properties of the forEach activity as follows: 
Counter Name to mycounter, Final Counter Value to count($loopProcessRe
questMessage.order/ns:items/ns:item), Start Counter Value to '1'.
On the canvas select the Assign activity within the Sequence container 
located within the forEach scope and get back to the Properties view.
In the Properties view, click to the … button to the right of the Value field 
of the Copy Operations property. As a result, the Copy Operations dialog 
should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows: in the From 
group: Type to Variable, Variable to loopProcessRequestMessage, Part to 
order, Query to ns:items/ns:item[$mycounter]/ns:partId; in the To group: 
Type to Variable, Variable to orderProcessingInput, Part to partId. Then, 
click OK.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear again.
In the Copy Operation dialog, set up properties as follows: in the From 
group: Type to Variable, Variable to loopProcessRequestMessage, Part to 
order, Query to ns:items/ns:item[$mycounter]/ns:quantity; in the To group: 
Type to Variable, Variable to orderProcessingInput, Part to quantity. Then, 
click OK.
In the Copy Operations dialog, click OK.
On the canvas, select the Assign activity located between the forEach and 
the Reply activity, and get back to the Properties view. Then, create a new 
operation as described above, setting the properties in the Copy Operation 
dialog as follows: in the From group: Type to Literal, Literal Contents 
to Order processing completed successfully!; in the To group, Type to 
Variable, Variable to loopProcessResponseMessage, Part to payload.

You have just finished the parallel_loop WS-BPEL process definition. Now you 
have to select File->Save to save the definition. Then, check out the Problems view to 
make sure that it displays no errors.

Creating the PDD Descriptor
The next step in building the parallel_loop WS-BPEL process service is to 
create the Process Deployment Descriptor document containing the deployment 
information. To do this, follow the as steps shown:

•

•

•

•

•

•

•

•

•



Chapter 7

[ 259 ]

In the Navigator view, right-click within the view to invoke the  
pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the parallel_loop folder 
and select the parallelloop.bpel document, so that it appears in the Select 
BPEL Process file textbox, and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine and click Next.
In the next screen of the New Deployment Descriptor dialog, the Partner 
Links listbox should contain the following two items: loopProcessLT, and 
orderProcessingLT. Note that the status of the latter is set to the following: 
Missing a partner role endpoint reference type. 
In the Partner Links listbox, select orderProcessingLT and then move on to 
the Partner Role group. In the Invoke Handler combobox, select address, 
and in the Endpoint type combobox, select static. As a result, the following 
code should appear in the Endpoint Reference box:

      <wsa:EndpointReference 
        xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
        xmlns:s="FILL_IN_NAMESPACE">
        <wsa:Address>FILL_IN_ADDRESS_URI</wsa:Address>
        <wsa:ServiceName 
          PortName="FILL_IN_PORT_NAME">s:FILL_IN_SERVICE_NAME
                                      </wsa:ServiceName>
      </wsa:EndpointReference>

In the Endpoint Reference box, replace the above code with the following:
      <wsa:EndpointReference 
        xmlns:s="http://localhost/WebServices/wsdl/orderProcessing">
            <wsa:Address>
       http://localhost/WebServices/ch7/SoapServer_orderProcessing.php
             </wsa:Address>
            <wsa:ServiceName  
           PortName="orderProcessingServicePort">s: 
                              orderProcessingService</wsa:ServiceName>
      </wsa:EndpointReference>

In the Partner Links listbox, select loopProcessLT.
On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to loopProcessService, and click Finish.

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 260 ]

As a result, the parallelloop.pdd descriptor document should appear in the 
parallel_loop folder in the Navigator and in the ActiveBPEL Process Editor, where 
you may review it.

Deploying the WS‑BPEL Process Service
Now that you have created the pdd descriptor for the parallel_loop WS-BPELWS-BPEL 
process service, you are ready to deploy it.

Let's start by creating a separate folder within the parallel_loop folder, in in  
which you will save the deployment archive file. To do this, perform the steps  
shown below:

In the Navigator view right-click the parallel_loop folder.
In the pop-up menu, select New->Other…
In the first screen of the New wizard, select the node Folder in the box, and  
click Next.
In the next screen of the wizard, make sure that the Enter or select the parent 
folder editbox contains parallel_loop. If so, enter bpr in the Folder name 
editbox and click Finish. 

After you've performed the above steps, the bpr folder should appear within the 
parallel_loop folder in the Navigator.folder in the Navigator.

To create the deployment archive for the parallel_loop WS-BPEL process service 
and deploy it to the ActiveBPEL Server, follow the steps shown below:

In the Navigator view, right-click the parallel_loop folder.
In the pop-up menu, select Export…
In the Export dialog, make sure that Business Process Archive File under 
ActiveBPEL node is selected, and click Next.
In the Export Business Process Archive dialog, make sure that the checkbox 
on the left to the parallelloop.pdd node within the parallel_loop folder is 
checked on.
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\parallel_loop\bpr\parallelloop.bpr. 
In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\ActiveBPEL_Designer\
Server\ActiveBPEL_Tomcat\bpr and click Finish.

•

•

•

•

•

•

•

•

•

•



Chapter 7

[ 261 ]

This example assumes that you are using the ActiveBPEL Server shipped 
with your ActiveBPEL Designer. For more details, you can refer to 
the Deploying the WS-BPELService to the ActiveBPEL Server Shipped with 
ActiveBPEL Designer section in Chapter 6.

Once you've done all that, you should have the parallel_loop WS-BPEL process 
service deployed to the ActiveBPEL Server and ready for use. Before proceeding 
further, you might want to check to see if the WS-BPEL process service has been 
deployed to the ActiveBPEL engine successfully. For that, enter and then check out 
the following page generated by Axis:

http://localhost:8081/active-bpel/services

In this page, you should see the following nodes among others:

loopProcessService (wsdl) 

processOrder

If you can see the above, the parallel_loop WS-BPEL process service discussed 
here has been deployed successfully.

It's important to understand that although the WS-BPEL process 
discussed here is called parallel_loop, the loop used in the process is 
still sequential. In the Moving to a Parallel forEach section later, you will see 
how to modify the parallel_loop WS-BPEL process to use the parallel 
form of the forEach activity.

Testing the Sequential Form of the forEach 
Activity
To test the parallel_loop WS-BPEL process service created and deployed as 
discussed in the preceding sections, you might use the, you might use the SoapClient_loopTest.php 
SOAP client script shown below:

<?php 
 //File: SoapClient_loopTest.php
 require_once "obj2Arr.php"; 
 $wsdl = "http://localhost:8081/active-
  bpel/services/loopProcessService?wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');
 $xmlarr = obj2Arr($xmldoc);
 $client = new SoapClient($wsdl);



WS-BPEL Process Modeling

[ 262 ]

 try {
  print $result=$client->processOrder($xmlarr);
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

Note that this script uses the obj2Arr function defined in the obj2Arr.
php script and discussed in the Structuring Complex Data for Sending section 
in Chapter 2. So, before you can run the above script, you should copy the 
obj2Arr.php script from the WebServices/ch2 to the WebServices/
ch7 directory. Another requirement is a purchaseOrder.xml file. 
You might use the one discussed in the Building the Service Requestor 
section in Chapter 2. Again, it's assumed that you copy this file from the 
WebServices/ch2 to the WebServices/ch7 directory.

When executed, the above script invokes the parallel_loop WS-BPEL process 
service discussed here, passing the purchaseOrder XML document stored in the 
purchaseOrder.xml file as the payload in the request message.

The script should produce the following output:

Order processing completed successfully!

If you've used the purchaseOrder XML document representing a purchase order 
with two line items, as discussed in the Building the Service Requestor section in 
Chapter 2, then the execution of the above script should take at least 10 seconds, 
because in this case the orderProcessing partner service will be invoked twice in a 
sequential loop and each invocation will take at least 5 seconds.

If you recall from the Defining the Partner Service Being Called from 
within the Loop section, the startProcessing method in the 
orderProcessing.php PHP handler class uses the sleep function 
with 5 as the argument to delay the execution for 5 seconds.

After the execution of the SoapClient_loopTest.php script is completed, the 
orderProcessingLog.txt file should appear in the WebServices\ch7 directory. At 
the moment, this file should contain two lines that might look like this:

Part id: 743 Quantity: 4 Current time: 22:08:04
Part id: 235 Quantity: 7 Current time: 22:08:09



Chapter 7

[ 263 ]

As you can see, the first line appeared in the file 5 seconds before the second line. 
This is because the forEach loop used in the WS-BPEL process is performed in the 
sequential mode.

After each execution, another two lines similar to these ones should appear in  
the file.

Moving to a Parallel forEach
Now that you've seen the sequential form of the forEach activity in action, it's time 
to move on and modify the parallel_loop WS-BPEL process so that it invokes 
the orderProcessing partner services from within a parallel forEach activity. To 
achieve this goal, you should accomplish the following general steps:

In the parallel_loop WS-BPEL process definition, set the Parallel 
Execution Flag property of the forEach activity to Yes.
Remove the orderProcessingInput variable holding a message of ns2:
orderProcessingInput from the global scope of the process and put it inside 
the forEach inner scope.
Re-deploy the parallel_loop WS-BPEL process service.

To implement the first task from the above list, you should perform the  
following steps:

In the ActiveBPEL Process Editor, click the parallelloop.bpel tab to move on 
to the visual representation of the parallelloop.bpel process definition.
On the parallelloop.bpel canvas, select the forEach container and get to the 
Properties view.
In the Properties view, set the Parallel Execution Flag property to Yes.

To save the changes made, selecto save the changes made, select File->Save.

To implement the second task, you should perform the following steps:

In the ActiveBPEL Process Editor, click the parallelloop.bpel tab.
In the Outline view, expand the following node: parallelloop/Variables and 
right-click the orderProcessingInput variable.
In the pop-up menu, select Cut. As a result, the orderProcessingInput 
variable should disappear from the Variables node.
In the Outline view, right-click the parallelloop/Process Activities/
Sequence/For Each/Scope/Variables node.

•

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 264 ]

In the pop-up menu, select Paste. As a result, the orderProcessingInput 
variable should appear in the parallelloop/Process Activities/
Sequence/For Each/Scope/Variables node. After you have pasted the 
orderProcessingInput variable, the Outline view might look like the 
following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

To save the changes made, select File->Save.

Finally, to re-deploy the parallel_loop WS-BPEL process service, you should use 
the Export wizard as discussed in the Deploying the WS-BPEL Process Service  
section earlier.

Testing the Parallel forEach
To test the parallel_loop WS-BPEL process service updated as discussed in the updated as discussed in the 
preceding section, you can use the SoapClient_loopTest.php script discussed inscript discussed in 
the Testing the Sequential Form of the forEach Activity section earlier. 

Now if you execute SoapClient_loopTest.php, it should take only 5 seconds 
to complete and not 10 seconds as before. This is because this time the 
orderProcessing service is invoked from within a parallel forEach activity, 
meaning loop iterations are performed in parallel and not sequentially.

When the execution is completed, two new lines should appear in the 
orderProcessingLog.txt file. They might look like the following:

Part id: 743 Quantity: 4 Current time: 22:15:24
Part id: 235 Quantity: 7 Current time: 22:15:24

•

•



Chapter 7

[ 265 ]

As you can see, this time both of these lines were created at the same time. This just 
confirms that the parallel_loop WS-BPEL process invoked the orderProcessing 
service concurrently and not sequentially.

Building an Asynchronous WS‑BPEL 
Process Service
The following sections take you through the process of building a kind of 
asynchronous echo example consisting of two WS-BPEL processes, where the first 
process makes an asynchronous call to the second one.

The example built as discussed in the next sections differs from the one depicted in 
the figure shown in the Asynchronous Communication section earlier in this chapter 
only in that the WS-BPEL process called asynchronously here doesn't make a 
synchronous call to a partner service built with PHP. This is done purely for the sake 
of simplicity.

Creating the Project
As usual, let's start by creating the project for the sample discussed here. To do this 
in ActiveBPEL Designer, you can follow the steps shown below:

In ActiveBPEL Designer, select File->New->Project.
In the first screen of the Wizard, choose Project and click Next.
In the next window of the Wizard, specify asyncSample as the name for the 
project and click Finish.

After you have performed the above steps, you should see the asyncSample folder infolder in 
the Navigator view, containing the .project document.

Unlike the examples discussed previously, this project will contain 
two WS-BPEL process definitions describing the process service called 
asynchronously and the process service making an asynchronous call. So, 
the project will contain two deployment descriptors.

•

•

•



WS-BPEL Process Modeling

[ 266 ]

Creating the WSDL Describing the 
Asynchronous WS‑BPEL Process
The next step is to create the async_called_service.wsdl document. To do this, 
you should follow the steps shown below:

Right-click the asyncSample folder in the Navigator.
In the pop-up menu choose New->Other…
In the first Wizard window choose File and click Next.
In the second Wizard window, type in async_called_service.wsdl in the File 
name: textbox and click Finish. As a result, the async_called_service.wsdl 
document should appear in the asyncSample folder in the Navigator view.
Right-click the newly created async_called_service.wsdl file in the  
Navigator view.
On the pop-up menu, select Open With\BPR Deployment Script Editor. As 
a result, the empty async_called_service.wsdl document should appear in 
the ActiveBPEL Process Editor.
In the async_called_service.wsdl canvas, insert the WSDL definition  
shown below:

      <?xml version="1.0" encoding="UTF-8"?>
      <wsdl:definitions targetNamespace="http://localhost:8081/active-
         bpel/services/async_called_service.wsdl" 
        xmlns:impl="http://localhost:8081/active-
          bpel/services/async_called_service.wsdl" 
        xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
        xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
        xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  
         <wsdl:message name="initiateRequestMessage">
            <wsdl:part name="payload" type="xsd:string"/>
         </wsdl:message>

         <wsdl:portType name="AsyncCalledServicePT">
            <wsdl:operation name="initiateAsync">
               <wsdl:input message="impl:initiateRequestMessage" 
                  name="initiateRequestMessage"/>
            </wsdl:operation>
         </wsdl:portType>
         <wsdl:binding name="AsyncCalledServiceBinding" 
            type="impl:AsyncCalledServicePT">
            <wsdlsoap:binding style="rpc" 

•

•

•

•

•

•

•



Chapter 7

[ 267 ]

               transport="http://schemas.xmlsoap.org/soap/http"/>
            <wsdl:operation name="initiateAsync">
               <wsdlsoap:operation soapAction=""/>
               <wsdl:input name="initiateRequestMessage">
                  <wsdlsoap:body 
                encodingStyle= 
                           "http://schemas.xmlsoap.org/soap/encoding/" 
                 namespace="http://localhost:8081/active-
                 bpel/services/async_called_service.wsdl"  
                                         use="encoded"/>
               </wsdl:input>
            </wsdl:operation>
         </wsdl:binding>
         <wsdl:service name="AsyncCalledServiceService">
            <wsdl:port binding="impl:AsyncCalledServiceBinding" 
               name="AsyncCalledServicePort">
               <wsdlsoap:address location= 
                  "http://localhost:8081/active-
                  bpel/services/AsyncCalledService"/>
            </wsdl:port>
         </wsdl:service>
      </wsdl:definitions>

Select File->Save to save the above wsdl document.

Note that this document contains binding information that will be used by the 
WS-BPEL process making an asynchronous call to this process. Including binding 
information in the WSDL document will allow you to call this process service much 
like any other partner service.

Creating the WSDL Describing the WS‑BPEL 
Process Calling the Asynchronous WS‑BPEL 
Process
In the same way as described in the preceding section, you should create the  
async_ service.wsdl document in the asyncSample project folder and fill it with 
the following code:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="async_service" 
targetNamespace="http://localhost:8081/active-
  bpel/services/async_service.wsdl" 
 xmlns:tns="http://localhost:8081/active-

•



WS-BPEL Process Modeling

[ 268 ]

  bpel/services/async_service.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" 
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
 xmlns:ns2="http://localhost:8081/active-
  bpel/services/async_called_service.wsdl" 
 xmlns="http://schemas.xmlsoap.org/wsdl/">
  <import namespace="http://localhost:8081/active-
  bpel/services/async_called_service.wsdl" location="project:/
asyncSample/async_called_service.wsdl"/>

  <message name="asyncResponseMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <message name="asyncRequestMessage">
    <part name="payload" type="xsd:string"/>
  </message>
  <portType name="asyncCallbackPT">
    <operation name="onResult">
      <input message="tns:asyncResponseMessage"/>
    </operation>
  </portType>
  <portType name="AsyncCallerPT">
    <operation name="echo">
      <input message="tns:asyncRequestMessage"/>
      <output message="tns:asyncResponseMessage"/>
    </operation>
  </portType>

     <binding name="asyncRequesterServiceBinding" 
        type="tns:asyncCallbackPT">
      <soap:binding style="rpc" 
         transport="http://schemas.xmlsoap.org/soap/http" 
          xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
      <operation name="onResult">
       <soap:operation soapAction="" style="rpc" 
         xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
         <input>
        <soap:body encodingStyle=
          "http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 
           xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
         </input>
      </operation>
   </binding>



Chapter 7

[ 269 ]

  <service name="asyncRequesterService">
      <port binding="tns:asyncRequesterServiceBinding" 
        name="asyncRequesterServicePort">
       <soap:address location="http://localhost:8081/active-
         bpel/services/asyncRequesterService" 
         xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
      </port>
  </service>

  <bpws:property name="asyncCorrelationData" type="xsd:string"/>
  <plnk:partnerLinkType name="AsyncCallerPLT">
   <plnk:role name="AsyncCallerRole">
      <plnk:portType name="tns:AsyncCallerPT"/>
   </plnk:role>
  </plnk:partnerLinkType>
  <plnk:partnerLinkType name="asyncRequester">
   <plnk:role name="asyncProvider">
      <plnk:portType name="ns2:AsyncCalledServicePT"/>
   </plnk:role>
   <plnk:role name="asyncReplyReceiver">
      <plnk:portType name="tns:asyncCallbackPT"/>
   </plnk:role>
  </plnk:partnerLinkType>

  <bpws:propertyAlias messageType="ns2:initiateRequestMessage" 
     part="payload" propertyName="tns:asyncCorrelationData"/>
  <bpws:propertyAlias messageType="tns:asyncResponseMessage" 
    part="payload" propertyName="tns:asyncCorrelationData" />

</definitions>

Note that this WSDL definition contains binding information describing the 
asyncRequesterService service exposing the on Result operation. This operation 
will be used by the called process to make an asynchronous callback. This is the 
simplest way in which you can provide information about the calling process to be 
used by the called service for the callback to be made.

Also note that the above definition doesn't contain binding information for the 
AsyncCallerPT port type providing the echo operation that will be used by a client 
consuming the calling WS-BPEL process. As you learned in the preceding examples, 
this information will be automatically generated during run time.

In the above definition, the highlighted lines are the ones in which you define 
the property to be used for message correlation, and the property aliases. Later, 
when defining the WS-BPEL definition for the calling process, you will define the 
correlation set based on the correlation property defined here.



WS-BPEL Process Modeling

[ 270 ]

Now that you have the async_service.wsdl and async_called_service.wsdl 
documents created, you should add them as Web References in the same way as 
described in the Adding WSDL Definitions as Web References section earlier in  
this chapter.

Creating the Process Definition for the Calling 
Process
Now you are ready to build the WS-BPEL process definition for the async_service 
process service that will be invoked by a client and then asynchronously call the 
async_called_service process service created as discussed in the Creating the 
Process Definition for the Called Process section later. To do this, you should perform 
the following steps:

In the Navigator view, right-click the asyncSample folder and select 
New->BPEL Process.
In the Wizard dialog, enter async_service.bpel in the File name box and 
click Finish. As a result, async_service.bpel should appear in the Navigator 
view within the asyncSample folder. The async_service.bpel tab should also 
appear in the ActiveBPEL Process Editor.
In the ActiveBPEL Process Editor, expand the Palette by putting the mouse 
cursor on its tab.
In the Palette, choose Sequence from the Container section and put it on the 
async_service.bpel canvas.

First, you create the Receive/Reply activity pair that is required to synchronously 
communicate with a client consuming the WS-BPEL process created here.

In the Web References view, expand the async_service.wsdl node and then 
AsyncCallerPT, which should contain the echo operation.
Drag the echo operation from the Web References view to the async_service.
bpel canvas displayed within the ActiveBPEL Process Editor, putting it into 
the Sequence container placed on the canvas earlier. As a result, the Define 
Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:echo dialog should appear.
In the Operation:echo dialog, make sure that the Receive-Reply option is 
selected and click Finish. As a result, the Receive and Reply activities will 
be automatically added to the async_service.bpel canvas, into the Sequence 
container added earlier.

•

•

•

•

•

•

•

•



Chapter 7

[ 271 ]

Next, you need to add the Assign activity whose Copy operation, added as 
discussed later in this section, will be used to initialize the message variable to be 
asynchronously sent to the called WS-BPEL process discussed in the next section.

In the Palette, choose Assign from the Activity section and put it into the 
Sequence container between the Receive and Reply activities added earlier.

Then, you have to add the Invoke activity required to make an asynchronous call to 
the called WS-BPEL process created as discussed in the next section.

In the Web References view, expand the async_called_service.wsdl node 
and then AsyncCalledServicePT, which should contain the operation 
initiateAsync.
Drag the initiateAsync operation from the Web References view to the 
async_service.bpel canvas displayed within the ActiveBPEL Process Editor, 
putting it into the Sequence container between the Assign and Reply 
activities. As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:initiateAsync dialog should appear.
In the Operation:initiateAsync dialog, select the Invoke option, and click 
Finish. As a result, the Invoke activity should appear in the async_service.
bpel canvas within the Sequence container between the Assign and  
Reply activities.

Next, you need to add the Receive activity that will be used to receive the 
asynchronous call sent back by the called WS-BPEL process.

In the Web References view, expand the async_service.wsdl node and then 
asyncCallbackPT, which should contain the operation onResult.
Drag the onResult operation from the Web References view to the  
async_service.bpel canvas displayed within the ActiveBPEL Process Editor, 
putting it into the Sequence container between the Invoke and Reply 
activities. As a result, the Define Partner Link Type dialog should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:onResult dialog should appear.
In the Operation:onResult dialog, make sure that the Receive option is 
selected and click Finish. As a result, the Receive activity should appear in 
the async_service.bpel canvas within the Sequence container between the 
Invoke and Reply activities.

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 272 ]

The next step in building the async_service WS-BPEL process service discussed 
here is to set up the properties of the activities added to the async_service.bpel 
canvas as discussed above. To do this, perform the following steps:

On the async_service.bpel canvas, select the upper Receive activity and 
move on to the Properties view.
In the Properties view, change the value of the Create Instance property  
to Yes.
On the canvas, double-click the Assign activity. As a result, the Copy 
Operations dialog should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows: in the 
From group: Type to Variable, Variable to asyncRequestMessage, 
Part to payload; in the To group, Type to Variable, Variable to 
initiateRequestMessage, Part to payload. Then, click OK.
In the Copy Operations dialog, click OK.
Select File->Save to save the changes made and to make sure that everything 
is OK so far, check out the Problems view; it should display no errors.

Next, you need to set up the correlation set that will be used to correlate 
asynchronous responses arriving from the called WS-BPEL process.

In the ActiveBPEL Process Editor, make sure that the async_service.bpel 
canvas is selected.
Move on to the Outline view.
In the Outline view, right-click the Correlation Sets node.
In the pop-up menu, select Add->Declaration->Correlation Set. As a result, 
the Correlation Set Properties dialog should appear.
In the Correlation Set Properties dialog, select the ns1:asyncCorrelationData 
item in the Available Properties box and click the >> button to move ns1:
asyncCorrelationData to the Selected Correlation Set Properties box. Then, 
click OK. As a result, CS1 should appear in the Correlations Sets in the 
Outline view.
On the async_service.bpel canvas, click the Invoke activity and get to the 
Properties view.
In the Properties view, click the … button to the right of the Value field of the 
Correlations property. As a result the Correlation Sets dialog should appear.

•

•

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 7

[ 273 ]

In the Correlation Sets dialog, click the Add button. As a result, a new 
correlation set containing none in each field should appear.
In the newly created record in the Correlation Sets dialog, double-click the 
Correlation Set field and then select CS1 from the list. Then, in the Initiate 
field select Yes. Finally, select Request in the Pattern field and click  
OK. As a result, the Correlation Set property should be set to (CS1,  
Yes, Request).
On the async_service.bpel canvas, click the Receive activity located under 
the Invoke activity and get back to the Properties view.
In the Properties view, click the … button to the right of the Value field of the 
Correlations property. As a result the Correlation Sets dialog should appear.
In the Correlation Sets dialog, click the Add button. As a result, a new 
correlation set containing none in each field should appear.
In the newly created record in the Correlation Sets dialog, double-click the 
Correlation Set field and then select CS1 from the list. Then, in the Initiate 
field, select No and click OK. As a result, the Correlation Set property 
should be set to (CS1, No).
Select File->Save to save the changes made. Make sure that the Problems 
view displays no errors.

You have just finished the WS-BPEL process definition async_service for the 
process that will make an asynchronous call to the async_called_service  
WS-BPEL process created as discussed in the next section.

Creating the Process Definition for the Called 
Process
Now let's build the WS-BPEL process definition for the async_called_service 
process service that will be asynchronously called by the async_service process 
service created as discussed in the preceding section later. To do this, perform the 
following steps:

In the Navigator view, right-click the asyncSample folder and select 
New->BPEL Process.
In the Wizard dialog, enter async_called_server.bpel in the File name box 
and click Finish. As a result, async_called_server.bpel should appear in the 
Navigator view within the asyncSample folder. The async_called_server.
bpel tab should also appear in the ActiveBPEL Process Editor.
In the ActiveBPEL Process Editor, expand the Palette, choose Sequence from 
the Container section, and put it on the async_called_service.bpel canvas.

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 274 ]

In the Web References view, expand the async_called_server.wsdl nodenode 
and then AsyncCalledServicePT, which should contain the operation 
initiateAsync.
Drag the initiateAsync operation from the Web References view to the 
async_called_server.bpel canvas, putting it into the Sequence container 
created earlier. As a result, the Define Partner Link Type dialog  
should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:initiateAsync dialog should appear.
In the Operation:initiateAsync dialog, make sure that the Receive option 
is selected, and click Finish. As a result, the Receive activity will be 
automatically added to the async_called_server.bpel canvas within the 
Sequence container.
In the Palette, choose Assign from the Activity section and put it into the 
Sequence container under the Receive activity.

In the ActiveBPEL Process Editor, expand the Palette, choose Wait from the 
Activity section and put it on the canvas into the Sequence container just 
under the Assign activity added in the preceding step.
In the Web References view, expand the async_server.wsdl node and thennode and then 
asyncCallbackPT, which should contain the operation onResult.
Drag the onResult operation from the Web References view to the  
async_called_server.bpel canvas, putting it into the Sequence container 
under the Wait activity. As a result, the Define Partner Link Type dialog 
should appear.
In the Define Partner Link Type dialog, click Finish. As a result, the 
Operation:onResult dialog should appear.
In the Operation:onResult dialog, make sure that the Invoke option 
is selected and click Finish. As a result, the Invoke activity will be 
automatically added to the async_called_server.bpel canvas within the 
Sequence container.

Now that you have placed all the required activities on the async_called_service.
bpel canvas, you have to set up the properties of these activities. To do this, follow 
the steps below:

On the async_called_service.bpel canvas, select the Receive activity, and 
move on to the Properties view.
In the Properties view, change the value of the Create Instance property  
to Yes.

•

•

•

•

•

•

•

•

•

•

•

•



Chapter 7

[ 275 ]

On the canvas, double-click the Assign activity. As a result, the Copy 
Operations dialog should appear.
In the Copy Operations dialog, click the New… button. As a result, the Copy 
Operation dialog should appear.
In the Copy Operation dialog, set up properties as follows: in the 
From group: Type to Variable, Variable to initiateRequestMessage, 
Part to payload; in the To group, Type to Variable, Variable to 
asyncResponseMessage, Part to payload. Then, click OK.
In the Copy Operations dialog, click OK.
On the canvas, select the Wait activity and get to the Properties view.
In the Properties view, set the Wait Type property to Duration, and Wait 
Expression to 'PT5S'.
Select File|Save to save the changes made and to make sure that everything 
is OK. check out the Problems view; it should display no errors.

Creating the PDD Descriptor for the Calling 
Process
The next step in building the example is to create the Process Deployment Descriptor 
document containing the deployment information for the async_service WS-BPEL 
process service created as discussed in the Creating the Process Definition for the Calling 
Process section earlier. To do this, perform the following steps:

In the Navigator view, right-click within the view to invoke the pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the asyncSample folder 
and select the async_service.bpel document, so that it appears in the Select 
BPEL Process file textbox, and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine and click Next.
In the next screen of the New Deployment Descriptor dialog, the Partner 
Links listbox should contain the following two items: AsyncCallerPLT and 
asyncRequester. Note that the status of the latter is set to the following: 
Missing a partner role endpoint reference type.
In the Partner Links listbox, select the AsyncCallerPLT.
On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to AsyncCallerService.

•

•

•

•

•

•

•

•

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 276 ]

In the Partner Links listbox, select the asyncRequester and then move on to 
the Partner Role group. In the Invoke Handler combobox, select address, 
and in the Endpoint type combobox, select static. As a result, the following 
code should appear in the Endpoint Reference box:

      <wsa:EndpointReference 
        xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
        xmlns:s="FILL_IN_NAMESPACE">
        <wsa:Address>FILL_IN_ADDRESS_URI</wsa:Address>
        <wsa:ServiceName 
          PortName="FILL_IN_PORT_NAME">s:FILL_IN_SERVICE_NAME
              </wsa:ServiceName>
      </wsa:EndpointReference>

In the Endpoint Reference box, replace the above code with the following:
      <wsa:EndpointReference xmlns:cs="http://localhost:8081/active-
         bpel/services/async_called_service.wsdl" 
         xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 
             <wsa:Address>http://localhost:8081/active-
               bpel/services/AsyncCalledServiceService</wsa:Address> 
             <wsa:ServiceName 
           PortName="AsyncCalledServicePort">cs:
AsyncCalledServiceService
            </wsa:ServiceName> 
               <wsa:ReferenceProperties>
                        <wsa:ReplyTo>
                           <wsa:ServiceName 
                              xmlns:s="http://localhost:8081/active-
                              bpel/services/async_service.wsdl" 
                              PortName="asyncRequesterServicePort"
                              >s:asyncRequesterService
                              </wsa:ServiceName>
                 <wsa:Address>http://localhost:8081/active-
                   bpel/services/asyncRequesterService</wsa:Address>
                       </wsa:ReplyTo>
               </wsa:ReferenceProperties>
      </wsa:EndpointReference>

On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to asyncRequesterService, and click Finish.

As a result, the async_service.pdd descriptor document should appear in the 
asyncSample folder in the Navigator, and in the ActiveBPEL Process Editor, where 
you may review it. If you click the async_service.pdd document in the Navigator, 
you should see the following code in the ActiveBPEL Process Editor:

•

•

•



Chapter 7

[ 277 ]

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.active-endpoints.com/pdd/2006/08/pdd.
xsd" xmlns:bpelns="http://async_service" xmlns:wsa="http://schemas.
xmlsoap.org/ws/2003/03/addressing" 
  location="asyncSample/async_service.bpel" name="bpelns:async_
service">
   <partnerLinks>
      <partnerLink name="AsyncCallerPLT">
         <myRole allowedRoles="" binding="RPC" 
           service="AsyncCallerService"/>
      </partnerLink>
      <partnerLink name="asyncRequester">
         <partnerRole endpointReference="static" 
           invokeHandler="default:Address">
            <wsa:EndpointReference 
              xmlns:cs="http://localhost:8081/active-
              bpel/services/async_called_service.wsdl" 
            xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/
addressing"> 
       <wsa:Address>http://localhost:8081/active-
         bpel/services/AsyncCalledServiceService</wsa:Address> 
       <wsa:ServiceName 
         PortName="AsyncCalledServicePort">cs:
AsyncCalledServiceService
           </wsa:ServiceName> 

         <wsa:ReferenceProperties>
                  <wsa:ReplyTo>
                     <wsa:ServiceName 
                       xmlns:s="http://localhost:8081/active-
                       bpel/services/async_service.wsdl" 
                       PortName="asyncRequesterServicePort"
                       >s:asyncRequesterService</wsa:ServiceName>
           <wsa:Address>http://localhost:8081/active-
             bpel/services/asyncRequesterService</wsa:Address>
                 </wsa:ReplyTo>
         </wsa:ReferenceProperties>

</wsa:EndpointReference>
         </partnerRole>
         <myRole allowedRoles="" binding="RPC" 
           service="asyncRequesterService"/>
      </partnerLink>
   </partnerLinks>
   <references>
      <wsdl location="project:/asyncSample/async_service.wsdl" 
        namespace="http://localhost:8081/active-



WS-BPEL Process Modeling

[ 278 ]

          bpel/services/async_service.wsdl"/>
      <wsdl location="project:/asyncSample/async_called_service.wsdl" 
         namespace="http://localhost:8081/active-
           bpel/services/async_called_service.wsdl"/>
   </references>
</process>

In this deployment descriptor, note the use of the <wsa:ReferenceProperties> 
element (highlighted) within the <wsa:EndpointReference> element describing 
the asyncRequester partner link. The <wsa:ReplyTo> used within <wsa:
ReferenceProperties> contains information about the service to which the process 
service called asynchronously should send a response. In this example, you specify 
that the service called asynchronously should send a response back to the calling 
service, in particular, to the asyncRequesterService service.

Creating the PDD Descriptor for the Called 
Process
The next step in building the sample is to create the Process Deployment Descriptor 
document containing the deployment information for the async_called_service 
WS-BPEL process service created as discussed in the Creating the Process Definition for 
the Called Process section earlier. To do this, perform the following steps:

In the Navigator view, right-click within the view to invoke the  
pop-up menu.
In the pop-up menu, select New->Deployment Descriptor to open the New 
Deployment Descriptor dialog.
In the New Deployment Descriptor dialog, open the asyncSample folder 
and select the async_called_service.bpel document, so that it appears in the 
Select BPEL Process file textbox, and click Next.
In the next screen of the New Deployment Descriptor dialog, make sure that 
the Deployment Platform field is set to ActiveBPEL Engine, and click Next.
In the next screen of the New Deployment Descriptor dialog, the Partner 
Links listbox should contain only the item asyncRequester. Note that the 
status of this partner link is set to the following: Missing a partner role 
endpoint reference type. 
In the Partner Links listbox, select asyncRequester and then move on to 
the Partner Role group. In the Invoke Handler combobox, select (System 
Default) and in the Endpoint type combobox, select invoke.
On the MyRole tab, set the properties as follows: Binding to RPC Encoded, 
Service to AsyncCalledServiceService, and click Finish.

•

•

•

•

•

•

•



Chapter 7

[ 279 ]

As a result, the async_called_service.pdd descriptor document should appear in 
the asyncSample folder in the Navigator. Now if you click async_called_service.
pdd in the Navigator, you should see the following code in the ActiveBPEL  
Process Editor:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.active-endpoints.com/pdd/2006/08/pdd.
xsd" xmlns:bpelns="http://async_called_service" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2003/03/addressing" 
  location="asyncSample/async_called_service.bpel" 
  name="bpelns:async_called_service">
   <partnerLinks>
      <partnerLink name="asyncRequester">
         <partnerRole endpointReference="invoker"/>
         <myRole allowedRoles="" binding="RPC" service="AsyncCalledSer
viceService"/>
      </partnerLink>
   </partnerLinks>
   <references>
      <wsdl location="project:/asyncSample/async_service.wsdl" 
        namespace="http://localhost:8081/active-
          bpel/services/async_service.wsdl"/>
      <wsdl location="project:/asyncSample/async_called_service.wsdl" 
        namespace="http://localhost:8081/active-
        bpel/services/async_called_service.wsdl"/>
   </references>
</process>

Deploying the Example
Now that you have created the deployment descriptors for the WS-BPEL processes 
discussed here, you can deploy the example. To do this, perform the following steps:

In the Navigator view, right-click the asyncSample folder.
In the pop-up menu, select New->Other…
In the first screen of the New Wizard, select the Folder node in the box and 
click Next.
In the next screen of the Wizard, make sure that the Enter or select the 
parent folder editbox contains asyncSample. If so, enter bpr in the Folder 
name editbox and click Finish.
In the Navigator view, right-click the asyncSample folder.
In the pop-up menu, select Export…

•

•

•

•

•

•



WS-BPEL Process Modeling

[ 280 ]

In the Export dialog, make sure that Business Process Archive File under the 
ActiveBPEL node is selected and click Next.
In the Export Business Process Archive dialog, make sure that both 
the async_service.pdd and async_called_service.pdd nodes within the 
asyncSample folder are checked on. 
In the Export Business Process Archive dialog, move on to the BPR file 
textbox and enter the following into it: C:\ActiveBPEL_Designer\Designer\
eclipse\workspace\asyncSample\bpr\asyncSample.bpr.
In the Export Business Process Archive dialog, move on to the Deployment 
group. In the Type combobox, select File. Next, move on to the Deployment 
location textbox and enter the following into it: C:\ActiveBPEL_Designer\
Server\ActiveBPEL_Tomcat\bpr and click Finish.

This example assumes that you are using the ActiveBPEL Server shipped 
with your ActiveBPEL Designer. For more details, you can refer to the 
Deploying the WS-BPEL Service to the ActiveBPEL Server Shipped with 
ActiveBPEL Designer section in Chapter 6.

Now if you open the ActiveBPEL Admin:

http://localhost:8081/BpelAdmin

and then click the Deployment Log link in the ActiveBPEL Admin page, you should 
see the log regarding the preceding deployment, which might look as follows:

06/27/2007 11:15:11:406 [asyncSample.bpr] [async_service.wsdl] Added 
resource mapped to location hint: project:/asyncSample/async_service.
wsdl
06/27/2007 11:15:11:406 [asyncSample.bpr] [async_called_service.wsdl] 
Added resource mapped to location hint: project:/asyncSample/async_
called_service.wsdl
06/27/2007 11:15:11:453 [asyncSample.bpr] [async_called_service.pdd] 
Successfully deployed.
06/27/2007 11:15:11:484 [asyncSample.bpr] [async_service.pdd] 
Successfully deployed.

Testing the Asynchronous Example
To test the example built and deployed as discussed in preceding sections, you might 
create and then execute the following PHP script:

<?php 
 //File: SoapClient_asyncSample.php
 $wsdl = "http://localhost:8081/active-

•

•

•

•



Chapter 7

[ 281 ]

  bpel/services/AsyncCallerService?wsdl";
 $client = new SoapClient($wsdl);
 try {
  print $result=$client->echo('Hello!');
 }
 catch (SoapFault $exp) {
  print $exp->getMessage();
 }
?>

When executed, the above script should produce the following output after about a 5 
second delay:

Hello!

The amount of delay depends on the value of the Wait Expression 
property of the Wait activity used in the async_called_service WS-
BPEL process created as discussed in the Creating the Process Definition for 
the Called Process section.

If Something Goes Wrong 
As you no doubt have realized, the task of building a WS-BPEL application using 
asynchronous communication may be a challenge. What if your asynchronous 
application doesn't work as expected and you cannot understand what the  
problem is?

Let's turn back to the example discussed in the preceding sections and try to simulate 
a problem. For example, you might remove the <wsa:ReferenceProperties> 
element from the async_service.pdd descriptor discussed in the Creating the PDD 
Descriptor for the Calling Process section earlier. The code to be removed is highlighted 
in the listing of async_service.pdd provided in that section. Then, re-deploy 
the sample as discussed in the Deploying the Example section. You should have no 
problem with deployment. However, when you run the SoapClient_asyncSample.
php script discussed in the preceding section, it hangs and eventually times out.

In this particular case, you know what the problem is—the calling process doesn't 
provide information about where to send a callback anymore and therefore, the 
called process cannot make a response. However, let's try to figure out the problem 
using the ActiveBPEL Admin tool installed by the default during the ActiveBPEL 
engine installation, and discussed in the Deploying the WS-BPEL Process Service 
section in Chapter 5.



WS-BPEL Process Modeling

[ 282 ]

First, you should load the ActiveBPEL Admin. The address you enter might  
look as follows, assuming that you have installed your Tomcat server at  
http://localhost:8081:

http://localhost:8081/BpelAdmin

Once it has been loaded, click the Configuration link. Then, on the Configuration 
page, set Logging Level to Full and click the Update button.

Assuming you have run the SoapClient_asyncSample.php script, click the Active 
Processes link in the ActiveBPEL Admin. As a result, you should see the Active 
Processes page, which might look like the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.



Chapter 7

[ 283 ]

Now, on the Active Processes page, if you click the async_called_service link whose 
state is Faulted, you should see the page shown in the following figure:

 
© Copyright 2007 Active Endpoints. All rights reserved.

As you can see in the figure, the problem occurred during processing the Invoke 
activity of the async_called_service process.

Now that you know where in the process the problem occurs, you might want to 
get more detailed information. To do this, you can select the Invoke activity on theactivity on thethe 
Active Process Detail page and then click the View Process Log button that can be 
found in the panel located at the top-left corner of the page. As a result, the Process 
Details page should appear, providing the log information that might look  
as follows:

[15][2007-06-27 14:39:03.734] : Executing [/process]
[15][2007-06-27 14:39:03.734] : Executing [/process/sequence]
[15][2007-06-27 14:39:03.734] : Executing [/process/sequence/receive]
[15][2007-06-27 14:39:03.750] : Completed normally [/process/ 
                                sequence/receive]
[15][2007-06-27 14:39:03.750] : Executing [/process/sequence/assign]
[15][2007-06-27 14:39:03.750] : Completed normally [/process/ 
                                sequence/assign]
[15][2007-06-27 14:39:03.750] : Executing [/process/sequence/wait]
[15][2007-06-27 14:39:03.750] Wait :  = Wed Jun 27 14:39:08 PDT 2007  
                                      [/process/sequence/wait]



WS-BPEL Process Modeling

[ 284 ]

[15][2007-06-27 14:39:08.750] : Completed normally [/process/sequence/
wait]
[15][2007-06-27 14:39:08.750] : Executing [/process/sequence/invoke]

[15][2007-06-27 14:39:08.765] : Completed with fault: systemError (Error 
calling invoke: No service name for endpoint reference.) :  [/process/
sequence/invoke] [f]

[15][2007-06-27 14:39:08.781] : Completed with fault: systemError 
(...) :  [/process/sequence] [f]
[15][2007-06-27 14:39:08.781] : Executing [/process_
ImplicitFaultHandler]
[15][2007-06-27 14:39:08.781] : Executing [/process_
ImplicitFaultHandler_ImplicitCompensateActivity]
[15][2007-06-27 14:39:08.781] : Completed normally [/process_
ImplicitFaultHandler_ImplicitCompensateActivity]
[15][2007-06-27 14:39:08.781] : Completed normally [/process_
ImplicitFaultHandler]
[15][2007-06-27 14:39:08.781] : Completed with fault: systemError 
(...) :  [/process] [f]

As you can see in the above log, the Invoke activity failed because of No service 
name for endpoint reference. To make the sample work again, you should  
go back to the async_service.pdd deployment descriptor and replace the  
<wsa:ReferenceProperties> element and then re-deploy the sample as  
discussed earlier.

Summary
In this chapter, we looked at concurrency, synchronization, and asynchronous 
communication in WS-BPEL. With the help of simple examples, you learned 
why parallel processing is more efficient than sequential processing, and how to 
organize parallel repetitive execution in a loop. Then, we moved to asynchronous 
communication, looking at how two WS�BPEL processes may interact asynchronously. 
At the end, you learned how the ActiveBPEL Admin tool installed by default with the 
ActiveBPEL engine might be used for finding problems that arise during execution of 
WS-BPEL processes.



Setting Up Your  
Work Environment

To follow the examples provided in this book, you need to have a few pieces of 
software installed and working properly in your system. In particular, you have to 
install the following software components:

A Web/PHP server with the PHP SOAP extension enabled
Oracle Database XE or MySQL server
Apache Tomcat 5.x
ActiveBPEL engine
ActiveBPEL Designer

It's important to note that all the above software can be downloaded and used for 
free. This appendix takes you through the steps needed to install and configure the 
above software components..

Installing Apache HTTP Server
Before you can install PHP, you must have a Web server installed and working 
in your system. Although PHP has support for most of the Web servers worth 
mentioning, Apache/PHP remains the most popular combination among developers.

The Apache HTTP server is distributed under the Apache License, a free  
software/open-source license whose current version can be found on the Licenses 
page of the Apache website at: http://www.apache.org/licenses/.

You can download the Apache HTTP server from the download page of the Apache 
website at: http://httpd.apache.org/download.cgi.

•

•

•

•

•



Setting Up Your Work Environment

[ 286 ]

Installing Apache is a very easy process. On Windows, if you have downloaded 
the version of Apache for Windows with the .msi extension (the recommended 
way), you just run the Apache .msi file and then follow the Wizard. On Unix-like 
systems, once you have downloaded a source version of the Apache HTTP server, 
you perform the standard operations that you normally deal with when it comes to 
installing new software from sources: extract, configure, compile, and install.

Once you have Apache installed and configured, you can start it. On Windows, 
Apache is normally run as a service. You can configure the service startup by 
choosing Automatic, Manual, or Disabled. On Unix-like systems, Apache, the httpd 
program, is run as a demon. It is recommended that you use the apachectl control 
script to invoke the httpd executable:

# /usr/local/apache2/bin/apachectl start

To make sure that your Web server is up and running on your machine, open your 
Web browser to the URL: http://localhost/.

The following figure shows the default page of Apache Web server.



Appendix A

[ 287 ]

Now that you have your Web server up and running, you can move on to the next 
step, obtaining and installing PHP.

Installing PHP
The current recommended releases of PHP are available for download from the 
downloads page of the php.net site at:

http://www.php.net/downloads.php

From this page, you can download the latest stable release of PHP 5 and then follow 
the steps shown below to install PHP in your system. For further assistance along 
the way, you may consult the Installation and Configuration manual available on the 
php.net website at: http://www.php.net/manual/install.php. Alternatively, you 
might read the install.txt file that is shipped with PHP.

Installing PHP on Windows
Here are the basic installation steps for PHP 5 on Windows:

Extract the distribution file into the c:\php directory.
Add the C:\php directory to the PATH to make php5ts.dll available to the 
Web server modules.
Rename php.ini-recommended to php.ini.
In php.ini, set the doc_root to your Apache htdocs directory.  
For example: 

   doc_root = c:\Program Files\Apache Group\Apache2\htdocs

In php.ini, uncomment the SOAP extension line in the Windows  
Extensions section:

   extension=php_soap.dll

In php.ini, uncomment the OCI8 extension line:
   extension=php_oci8.dll

It is assumed here that you will be using an Oracle database when 
following the book examples. If you're going to use MySQL, you need to 
uncomment the extension=php_mysql.dll and extension=php_
mysqli.dll lines in php.ini instead.

•

•

•

•

•

•



Setting Up Your Work Environment

[ 288 ]

In php.ini, set the extension_dir directive to the directory in which the 
extention DLLs reside:

   extension_dir= c:\php\ext

In the Apache httpd.conf configuration file, to install PHP as an Apache 
module, insert two lines that lookslike this:

   LoadModule php5_module "c:/php/php5apache2.dll"
   AddType application/x-httpd-php .php

In the Apache httpd.conf configuration file, configure the path to php.ini:
   PHPIniDir "C:/php"

Restart Apache.

As an alternative to the above manual installation, you might use the Windows PHP 
installer that is also available from the downloads page of the php.net website.

Although the Windows PHP installer is the fastest way to make PHP 
work, it doesn't allow you to set every option as you might want to. So, 
using the installer isn't the recommended method for installing PHP.

Once you have PHP installed on your Windows system, you might want to set some 
extensions for added functionality. It is important to note that many extensions are 
built into the Windows version of PHP. To use these extensions, you just uncomment 
them in the php.ini configuration file—no additional DLLs are required. However, 
some of the extensions require extra DLLs to work. For example, the PHP OCI8 
extension needs the Oracle Client libraries if you have your Oracle database and 
Web server running on different machines. The above steps assume that you have 
both the database and Web server installed on the same computer. In this case, you 
already have all the required Oracle components, and no Instant Client is required.

Installing PHP on Unix‑Like Systems
Here are basic installation steps for PHP 5 on Unix-like systems:

Extract the distribution file:
    # gunzip php-5xx.tar.gz
    # tar -xvf php-5xx.tar

Change dir to the directory containing the PHP sources:
    # cd php-5xx

•

•

•

•

•

•



Appendix A

[ 289 ]

Set the ORACLE_HOME environment variable:
    # export  
    ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server

Configure your PHP installation:
    # ./configure \
    --with-oci8=$ORACLE_HOME \
    --with-apxs2=/usr/local/apache2/bin/apxs \
    --with-config-file-path=/usr/local/apache2/conf \
    --enable-sigchild
    --enable-soap

It is assumed here that you will be using an Oracle database XE when 
following the book examples. However, if you're going to use MySQL, 
you must use --with-mysql and --with-mysqli=mysql_config_
path/mysql_config configuration options, where mysql_config_
path is the path to the mysql_config program that comes with MySQL.

Compile and then install PHP:
    # make
    # make install

Set up php.ini:
    # cp php.ini-dist /usr/local/lib/php.ini

Edit the httpd.conf Apache configuration file to load the PHP module  
into Apache:

    LoadModule php5_module modules/libphp5.so

In httpd.conf, add handlers for files with the .php and .phps extensions:
   AddType application/x-httpd-php .php
   AddType application/x-httpd-php-source .phps

Restart Apache:
    # usr/local/apache2/bin/apachectl start

By now you should have a working Apache/PHP Web server.

Installing MySQL
Installing MySQL is a very straightforward process. The following sections explain 
how to install MySQL on Windows and Linux.

•

•

•

•

•

•

•



Setting Up Your Work Environment

[ 290 ]

Installing MySQL on Windows
Here are the basic steps to install MySQL on Windows:

Download the MySQL distribution from http://dev.mysql.com/
downloads/mysql/5.1.html, picking up the Windows Essentials file 
from the Windows downloads section on the page. This file contains the 
minimum set of files needed to install MySQL, including the Configuration 
Wizard. If you want to download the package containing all the MySQL 
components, consider the Complete Package available on the same page and 
packed within a ZIP archive: mysql-5.1.xx-beta-win32.zip.

The above URL assumes that you download MySQL 5.1. At the time of 
this writing, though, MySQL 6.0 is available. You can download MySQL 
6.0 from http://dev.mysql.com/downloads/mysql/6.0.html.

Execute the downloaded mysql-essential-5.1.xx-beta-win32.msi or 
Setup.exe extracted from mysql-5.1.xx-beta-win32.zip, in order to 
install MySQL.
In the Setup Type page of the MySQL Installation Wizard, you have 
to choose Typical, Complete, or Custom. To be able to follow the book 
examples, you might choose the Typical installation type.
In the Confirmation dialog, click the Install button to start the installation.
After the installation is completed, on the final screen of the installer, make 
sure that the Configure the MySQL Server now checkbox is checked, and 
click Finish. As a result, the MySQL Configuration Wizard will be launched.
In the Configuration Type dialog of the Configuration Wizard, choose  
the Standard Configuration option if you want to get started with  
MySQL quickly.

The following steps assume that you choose the Standard Configuration 
option in the preceding step.

In the next dialog, make sure that the Install As Windows Service option  
is selected.
In the next dialog, you have to set the root password.
In the final dialog on the MySQL Configuration Wizard, click the Execute 
button to start the configuration process.

•

•

•

•

•

•

•

•
•



Appendix A

[ 291 ]

Once you've completed these steps, you should have the MySQL server up and 
running on your machine.

Installing MySQL on Linux
Here are basic installation steps for MySQL on Linux:

Download the MySQL distribution from http://dev.mysql.com/
downloads/mysql/5.1.html, picking up RPMs for Server and Client  
from the appropriate section. These packages are required for a standard 
minimal installation.

Using the RPM packages is the recommended way to install MySQL on 
Linux. The following steps assume that your Linux supports RPMs.

Perform the following commands to install the above RPMs:
   # rpm -i MySQL-server-VERSION.i386.rpm
   # rpm -i MySQL-client-VERSION.i386.rpm

By default, the server RPM creates and adds the entries to /etc/init.
d/, which are required to start the mysqld server automatically at  
boot time.

After the installation, it is highly recommended that you assign a password 
to the anonimous accounts:

   # mysql -u root
   mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_pswd');
   mysql> SET PASSWORD FOR ''@'your_hostname' = PASSWORD('new_pswd');

Once you've completed these steps, you should have the MySQL server up and 
running on your machine.

Installing Oracle Database Express 
Edition (XE)
If you want to use a free edition of Oracle database, consider Oracle Database 
Express Edition—a lightweight Oracle database that is free to develop, deploy, and 
distribute. The following sections describe the basic installation steps for this Oracle 
Database edition on Windows and on Linux.

•

•

•



Setting Up Your Work Environment

[ 292 ]

Once you have completed the following installation steps, you will have an Oracle 
Database XE Server (including an Oracle database), Oracle Database XE Client, and 
SQL*Plus installed on your computer.

Installing Oracle Database XE on Windows
Here are the installation steps for Oracle Database 10g Express Edition on Windows:

Log in to Windows as a user of the Administrators group.
Make sure that the ORACLE_HOME environment variable is not set in your 
system. Otherwise delete it. This can be done from the System Properties 
dialog, which can be invoked from Control Panel/System.
Double-click the Oracle Database XE installation executable downloaded 
from OTN to run Oracle Database XE Server installer.

The following figure shows the screen of the Oracle Database XE Server installer 
after you run it.

In the Welcome window of the Wizard, click Next.
In the License Agreement window, click I accept and then click Next.

•

•

•

•

•



Appendix A

[ 293 ]

In the Choose Destination Location window, choose the directory for 
installation and click Next.
If at least one of the port numbers 1521, 2030, and 8080 is already in use 
in your system, you will be prompted to enter an available port number. 
Otherwise, the above numbers will be used automatically.
In the Specify Database Passwords window, enter the passwords for the 
SYS and SYSTEM database accounts and click Next.
In the Summary window, click Install to proceed to installation, or Back to 
turn back and modify the settings.
After the installation is complete, click Finish.

That is it. Your database is up and ready for use now.

Installing Oracle Database XE on Linux
Here are the installation steps for Oracle Database 10g Express Edition on Linux:

Log in to your computer as root.
Change directory to the one in which you downloaded the Oracle Database 
XE oracle-xe-10.2.0.1-1.0.i386.rpm installation executable and install 
the RPM: $ rpm -ivh oracle-xe-10.2.0.1-1.0.i386.rpm.
When prompted, run the following command to configure the database:  
$ /etc/init.d/oracle-xe configure.
When entering configuration information, accept the default port numbers 
for the Oracle Database XE graphical user interface and Oracle database 
listener: 8080 and 1521 respectively. Also, enter and confirm the passwords 
for the SYS and SYSTEM default user accounts.

If, when configuring the database, you select Yes when asked whether 
you want the database to automatically start along with the computer, 
then the database is up and ready for use now. Otherwise you have to 
start it manually as follows: $ /etc/init.d/oracle-xe start.

Installing Apache Tomcat 5.5
Before you can install ActiveBPEL engine, you need to install a servlet container. 
According to the documentation, ActiveBPEL engine has been tested with Apache 
Tomcat 5.x. The following sections discuss how to install Apache Tomcat 5.5 onApache Tomcat 5.5 on 
Windows and on Linux.

•

•

•

•

•

•

•

•

•



Setting Up Your Work Environment

[ 294 ]

For details concerning installing Apache Tomcat 5.5 for running on 
different platforms, you can refer to  
http://tomcat.apache.org/tomcat-5.5-doc/setup.html.

Installing Apache Tomcat 5.5 on Windows
Here are the steps for installing Tomcat 5.5 on Windows:

Download Apache Tomcat 5.5 from http://tomcat.apache.org/
download-55.cgi, picking up the apache-tomcat-5.5.xx.exe file from the 
Binary Distribution/Core section.
Run the downloaded apache-tomcat-5.5.xx.exe to launch the  
Installation Wizard.
In the Choose Components dialog, make sure that the Normal installation 
option is selected, and click Next.
In the Configuration dialog, you may need to change the value of the HTTP 
1.1/Connector Port, set by default to 8080. For example, if you have an Oracle 
database installed on your machine, Oracle XML DB HTTP server may 
already use port 8080. So, you may choose 8081 for the Tomcat server port. In 
this page, also make sure to specify the password for the Administrator user.
In the next dialog, you have to specify the path to the J2SE 5 JRE installed on 
your computer, and click Install.

After the above steps are completed, you will have the Tomcat server installed in 
your system as a Windows service.

Installing Apache Tomcat 5.5 on Linux
Here are the steps for installing Tomcat 5.5 on Linux:

Get the binary distribution of Apache Tomcat 5.5 fromet the binary distribution of Apache Tomcat 5.5 from  
http://tomcat.apache.org/download-55.cgi. In particular, you will need 
the Core tar.gz package.
Unzip the package as follows:

   # tar -xzf apache-tomcat-5.5.xx.tar.gz

Create a simlink to the Tomcat directory:
   # ln -s apache-tomcat-5.5.xx tomcat

•

•

•

•

•

•

•

•



Appendix A

[ 295 ]

Before you can run Tomcat, you should have the CATALINA_HOME 
environment variable set to the directory in which you installed Tomcat, 
say, /opt/tomcat, and JAVA_HOME set to the base path of the JDK 
installed in your system.

If you need to change the Tomcat port set by default to 8080, open the 
CATALINA_HOME/conf/server.xml configuration file and set the port 
attribute of the Connector element to an appropriate value, say 8081.

To start Tomcat, you should run the following script:

   # $CATALINA_HOME/bin/startup.sh

After performing these steps, you should have the Tomcat 5.5 servlet container 
installed and configured on your machine.

Installing the ActiveBPEL Engine
As mentioned, you need to have a servlet container installed and properly 
configured before you can install the ActiveBPEL engine. The next steps assume that 
you have installed and configured Tomcat 5.x as discussed in the preceding sections. 

For detailed information on how to install the ActiveBPEL engine,  
you can refer to  
http://www.active-endpoints.com/installation-guide.htm.

To download the ActiveBPEL engine, you can start with the home page of 
the Active Endpoints website at http://www.active-endpoints.com/. 
In this page, click the ActiveBPEL Open Source Engine link under the 
free downloads section. As a result, you will be taken to the Download 
Terms and Conditions page, where you should examine Terms of Use. If 
you select Accept and then click the Submit button, you will be directed to 
the ActiveBPEL Engine Download page, on which you can select the latest 
version of the ActiveBPEL engine and download the ZIP archive.
Extract the distribution from the downloaded archive, putting the files in  
any directory.

•

•

•

•



Setting Up Your Work Environment

[ 296 ]

Change the current directory to the one containing the ActiveBPEL engine 
files extracted in the preceding step, and run the install.bat script on 
Windows or install.sh on Linux. This might look like the following  
on Windows:

Restart Apache:
   # usr/local/apache2/bin/apachectl start

These steps complete the ActiveBPEL engine installation. The ActiveBPEL engine 
will automatically start with the servlet container.

The install script executed in the penultimate step creates the $CATALINA_HOME/bpr 
directory to which you will deploy your ActiveBPEL projects as bpr archives, as 
discussed in Chapter 5.

Installing ActiveBPEL Designer
Here are the general steps to install ActiveBPEL Designer:

To download ActiveBPEL Designer, you can start with the home page of 
the Active Endpoints website at http://www.active-endpoints.com/. In 
this page, click the ActiveBPEL Designer link under the free downloads 
section. As a result, you will be taken to the Product Download Form page, 
where you should select the ActiveBPEL Designer x.x checkbox and fill out 
the form below and then click the Submit button. As a result, you will be 
directed to the Thank you page.

•

•

•



Appendix A

[ 297 ]

The Thank you page informs you that your submission has been received 
and, upon approval, the product download and installation instructions will 
be sent to the email address submitted.
To complete the installation, follow the steps in the email received.

Note that the ActiveBPEL Designer ships with the Tomcat/ActiveBPEL 
Server. So, if you've installed ActiveBPEL Designer, you don't need to 
have a separate Tomcat/ActiveBPEL Server installation.

By now, you should have installed all the software components required to follow 
the examples provided in the book.

•

•





Index
A
abstraction of underlying logic  18
ActiveBPEL Designer

about  197
deployment archive, creating  208, 209
deployment descriptor, creating  207, 208
installing  296, 297
perspective views  199
Process Editor  199
project, creating  200
user interface, overview  198
using  197
WS-BPEL process, creating  203-207
WS-BPEL process, deploying  210, 211
WS-BPEL process, testing  212
WSDL definition, adding  201, 202

ActiveBPEL engine
BPR, deploying to  177, 178
installing  295, 296
licence  176
project  176
using  174, 175

ActiveBPEL project
about  176
BPR, deploying to ActiveBPEL engine   

177, 178
PDD document, creating  182
WS-BPEL process definition, designing   

180, 181
WS-BPEL process service, deploying   

182-185
WS-BPEL process service, testing  186
WSDL, designing  178, 179
WSDL catalog, designing  180

Apache HTTP server
installing  285, 286

Apache Tomcat 5.5

installing  293
installing, on Linux  294, 295
installing, on Windows  294

application logic as web service
exposing  135-142
level of service, choosing  139-142
PHP handler class, sharing between  

services  136-139
asynchronous communication  232
asynchronous WS-BPEL process service

deploying  279, 280
PDD descriptor for called process, creating  

278
PDD descriptor for calling process, creating  

275-277
process definition, creating  270-273
process definition, creating for called  

process  273-275
project, creating  265
testing  280
troubleshooting  281-284
WSDL, creating  266
WSDL, creating to call asynchronous  

process  267-269
autonomy  18

C
choreography  26
complex data types, transmitting

about  55
attributes  66-75
parameter-driven operations, defining   

83-87
PHP SOAP extension, exchanging with  

56-60
PHP SOAP extension predefined classes, 

extending  81, 82



[ 300 ]

PHP SOAP extension tracing  65, 66
SOAP messages payload, converting to 

XML  62-64
structuring, for sending  60, 61
XML documents transforming, XLST used  

75-80
composability  18
concurrency, implementing

partner services, defining  234-236
partner services, deploying  245, 246
process definition, creating  240, 241
process deployment descriptor, creating  

243, 244
process testing, parallel flow used  248
project, creating  237
sequence, replacing with flow  247, 248
sequential version, testing  246, 247
WSDL, creating  237-239
WSDL definitions, adding as web  

references  239, 240

D
data-centric service

designing  89
parameter-driven operations, defining  117
structure  90

database
criteria for choosing  90-93
data-centric service  90
MySQL  93
Oracle XE  103

discoverability  18

I
interoperability  18

L
loose coupling  17

M
MySQL

installing  289
installing, on Linux  291
installing, on Windows  290
service, building  94-97

using  93
XML data, storing in relational tables   

97-103

O
Oracle XE

installing  291
installing, on Linux  293
installing, on Windows  292, 293
using  103
XML schemas, using  104-111
XML schemas validations  111-116

orchestration  25

P
parallel loop, implementing

about  249
forEach activity  263, 264
forEach activity, testing  264
partner service, defining  249-251
PDD description, creating  258
process definition, creating  255, 256
process service, deploying  260, 261
project, creating  251
sequential form, testing  261, 262
WSDL, creating  252, 254
WSDL definitions, adding as web  

references  255
parallel processing

looping  231, 232
versus sequential processing  230

parameter-driven operations on data-centric 
services

conditional logic  119-123
defining  117
XSD types for parameters  117-119

parameter-driven operations on  
fine-grained services

about  125
application, testing  134
coarse-grained services, creating  132-134
fine-grained services, building  128-131
info, putting on separate XML  127, 128

PHP
installing  287
installing, on Unix systems  288, 289



[ 301 ]

installing, on Windows  287, 288

R
reusability  18

S
sequential processing

versus parallel processing  230
Service-Oriented Architecture. See  SOA
service contract  18
service provider and service requestor

building  39, 41
database, setting up  41-43
PHP handler class, developing  43, 44
service, testing  48
service requestor, building  46, 47
SOAP server, building  46
WSDL document, designing  44, 45

services, securing
about  143
message-level security, implementing   

143-150
message-level security, WS-security   

157-160
SOAP message headers, using  150-157

servive-oriented orchestrations
implementing  187-195
PDD document, creating  193-195
WS-BPEL definition with conditional logic  

189-193
WS-BPEL process service, deploying  194
WS-BPEL process service, testing  195
WSDL catalog, creating  189
WSDL definition, creating  187, 188

servive-oriented orchestrations with  
ActiveBPEL

implementing  212-228
process definition, creating  214-223
process deployment descriptor, creating  

223-225
project, creating  213
WS-BPEL process service, deploying  226, 

227
WS-BPEL process service, testing  227
WSDL, adding  213
WSDL definitions, adding  214

SOA
about  17
basic principles  17
basic principles, applying  19-24
choreography  26
compositions  25
orchestration  25
solutions with WS-BPEL  163

SOAP
about  6
communicating  6-9

statelessness  18

W
Web Services

about  6
applications, building  125
SOAP, for communication  6-9
WSDL, binding with  10-14
XML schema  14-17

Web Services Business Process Execution 
Language. See  WS-BPEL

work environment
setting up  285

WS-BPEL
about  28
composite services  30-35
definition  167-174
definition for process description  187-189
definition structure  165-167
definition with conditional logic  189-193
designing tools  36
processes  28-30
process modelling  229
SOA solutions, composing  163
structure  165-167
testing solutions  36
working of  164, 165

X
XML Schema

data definitions, including in WSDL  49-51
data types, defining  54, 55
Oracle XE, using with  104-111
with WSDL  49
WSDL documents, importing into  52, 53



Thank you for buying  
SOA and WS‑BPEL

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that 
project. Therefore by purchasing SOA and WS-BPEL, Packt will have given some of the money 
received to Active Endpoints, the company behind the open source ActiveBPEL server, whose 
examples are used throughout this book.
In the long term, we see ourselves and you—customers and readers of our books—as part of 
the Open Source ecosystem, providing sustainable revenue for the projects we publish on. Our 
aim at Packt is to establish publishing royalties as an essential part of the service and support a 
business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and 
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to authors@packtpub.com. If your book idea is still at an early stage and 
you would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.  
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.PacktPub.com.



Business Process Execution 
Language for Web Services  
2nd Edition
ISBN: 1-904811-81-7             Paperback: 350 pages

An Architects and Developers Guide to BPEL  
and BPEL4WS

1. Architecture, syntax, development and 
composition of Business Processes and Services 
using BPEL

2. Advanced BPEL features such as compensation, 
concurrency, links, scopes, events, dynamic 
partner links, and correlations

3. Oracle BPEL Process Manager and BPEL 
Designer Microsoft BizTalk Server as a  
BPEL server

BPEL Cookbook: Best Practices 
for SOA‑based integration 
and composite applications 
development
ISBN: 1-904811-33-7            Paperback: 188 pages

Ten practical real-world case studies combining 
business process management and web services 
orchestration

1. Real-world BPEL recipes for SOA integration 
and Composite Application development

2. Combining business process management and 
web services orchestration

3. Techniques and best practices with 
downloadable code samples from ten real-
world case studies

Please check www.PacktPub.com for information on our titles


	Cover
	Table of Contents
	Preface
	Chapter 1: Web Services, SOA, and WS‑BPEL Technologies
	Web Services
	Communicating via SOAP
	Binding with WSDL
	Using XML Schema Types within WSDL Definitions

	Service-Oriented Architecture
	Basic Principles of Service Orientation
	Applying SOA Principles 
	SOA Compositions
	Orchestration
	Choreography


	WS-BPEL
	WS-BPEL Processes
	WSDL Definitions for Composite Services
	Tools for Designing, Deploying, and Testing Solutions Based on WS-BPEL

	Summary

	Chapter 2: SOAP Servers and Clients with PHP SOAP Extension
	Building Service Providers and Service Requestors
	Setting Up the Database
	Developing the PHP Handler Class 
	Designing the WSDL Document
	Building the SOAP Server
	Building the Service Requestor
	Testing the Service

	Using XML Schemas with WSDL
	Including XML Schema Data Type Definitions in WSDL
	Importing XML Schemas into WSDL Documents
	Getting Data Types Defined in the XML Schema

	Transmitting Complex Type Data 
	Exchanging Complex Data Structures with PHP SOAP Extension
	Structuring Complex Data for Sending
	Converting SOAP Messages' Payloads to XML
	Using PHP SOAP Extension Tracing Capabilities
	Dealing with Attributes
	Transforming XML Documents with XSLT

	Extending PHP SOAP Extension Predefined Classes 
	Defining Parameter-Driven Operations
	Summary

	Chapter 3: Designing Data-Centric Web Services
	Which Database to Choose?
	Using MySQL
	Building a Service Interacting with MySQL
	Storing XML Data in Relational Tables

	Using Oracle Database XE
	Using XML Schemas with Oracle XML DB
	XML Schema Validation Considerations

	Defining Parameter-Driven Operations on Data‑Centric Services
	Defining XSD Types for Parameters
	Moving Conditional Logic into the Database

	Summary

	Chapter 4: Building Web Service Applications
	Defining Parameter-Driven Operations on Fine‑Grained Services
	Putting Info on Fine-Grained Services in a Separate XML File
	Building Fine-Grained Services
	Creating the Coarse-Grained Service
	Testing the Application

	Exposing Application Logic as a Web Service
	Sharing the Same PHP Handler Class Between Services
	Choosing the Appropriate Level of Service Granularity

	Securing Services
	Implementing Message-Level Security
	Using SOAP Message Headers
	Using WS-Security for Message-Level Security

	Summary 

	Chapter 5: Composing SOA Solutions with WS-BPEL
	Getting Started with WS-BPEL
	How it Works
	The Structure of a WS-BPEL Definition
	An Example of a WS-BPEL Definition

	Using ActiveBPEL Engine
	Taking Advantage of the ActiveBPEL Open-Source Engine Project
	Your First ActiveBPEL Project
	Structure of the Business Process Archive (BPR) to be Deployed to the ActiveBPEL Engine
	Designing WSDL for the WS-BPEL Process Service
	Creating the WSDL Catalog
	Designing the WS-BPEL Process Definition
	Creating the Process Deployment Descriptor (PDD) Document
	Deploying the WS-BPEL Process Service
	Testing the WS-BPEL Process Service


	Implementing Service-Oriented Orchestrations
	Creating the WSDL Definition Describing the WS-BPEL Process
	Creating the WSDL Catalog

	Creating the WS-BPEL Business Definition Containing Conditional Logic
	Creating the PDD Document
	Deploying the WS-BPEL Process Service
	Testing the WS-BPEL Process Service


	Summary 

	Chapter 6: ActiveBPEL Designer
	Getting Started with ActiveBPEL Designer
	Overview of ActiveBPEL Designer's User Interface
	Your First Project in ActiveBPEL Designer
	Creating the Project
	Adding the WSDL Definition
	Creating the WS-BPEL Process
	Creating the Deployment Descriptor
	Creating the Deployment Archive
	Deploying the WS-BPEL Service to the ActiveBPEL Server Shipped with ActiveBPEL Designer
	Testing the WS-BPEL Process Service


	Implementing Service-Oriented Orchestrations with ActiveBPEL Designer
	Creating the Project
	Adding the WSDL Describing the WS-BPEL Process
	Adding the WSDL Definitions Describing the Partner Services
	Creating the Process Definition
	Creating the Process Deployment Descriptor
	Deploying the WS-BPEL Process Service
	Testing the WS-BPEL Process Service

	Summary

	Chapter 7: WS-BPEL Process Modeling
	Concurrency, Synchronization, and Asynchronous Communication in WS-BPEL
	Parallel Processing versus Sequential Processing
	Parallel Processing in a Loop
	Asynchronous Communication

	Implementing Concurrency with the Flow Container
	Defining Partner Services
	Creating the Project
	Creating the WSDL Describing the WS-BPEL Process
	Adding Partner WSDL Definitions as Web References
	Creating the Process Definition
	Creating the Process Deployment Descriptor
	Deploying the Process Service
	Testing the Sequential Version of the WS-BPEL Process
	Replacing Sequence with Flow
	Testing the WS-BPEL Process Using a Parallel Flow to Handle Partner Services

	Implementing a Parallel Loop
	Defining the Partner Service Being Called from within the Loop
	Creating the Project
	Creating the WSDL Describing the WS-BPEL Process
	Adding WSDL Definitions as Web References
	Creating the Process Definition
	Creating the PDD Descriptor
	Deploying the WS-BPEL Process Service
	Testing the Sequential Form of the forEach Activity
	Moving to a Parallel forEach
	Testing the Parallel forEach

	Building an Asynchronous WS-BPEL Process Service
	Creating the Project
	Creating the WSDL Describing the Asynchronous WS‑BPEL Process
	Creating the WSDL Describing the WS-BPEL Process Calling the Asynchronous WS-BPEL Process
	Creating the Process Definition for the Calling Process
	Creating the Process Definition for the Called Process
	Creating the PDD Descriptor for the Calling Process
	Creating the PDD Descriptor for the Called Process
	Deploying the Example
	Testing the Asynchronous Example
	If Something Goes Wrong 

	Summary

	Appendix A: Setting Up Your Work Environment
	Installing Apache HTTP Server
	Installing PHP
	Installing PHP on Windows
	Installing PHP on Unix-Like Systems

	Installing MySQL
	Installing MySQL on Windows
	Installing MySQL on Linux

	Installing Oracle Database Express Edition (XE)
	Installing Oracle Database XE on Windows
	Installing Oracle Database XE on Linux

	Installing Apache Tomcat 5.5
	Installing Apache Tomcat 5.5 on Windows
	Installing Apache Tomcat 5.5 on Linux

	Installing the ActiveBPEL Engine
	Installing ActiveBPEL Designer

	Index



